Insights on Natural Products Against Amyotrophic Lateral Sclerosis (ALS)

Page: [1169 - 1188] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that causes the death of motor neurons and consequent muscle paralysis. Despite many efforts to address it, current therapy targeting ALS remains limited, increasing the interest in complementary therapies. Over the years, several herbal preparations and medicinal plants have been studied to prevent and treat this disease, which has received remarkable attention due to their blood-brain barrier penetration properties and low toxicity. Thus, this review presents the therapeutic potential of a variety of medicinal herbs and their relationship with ALS and their physiopathological pathways.

Graphical Abstract

[1]
Taylor, J.P.; Brown, R.H., Jr; Cleveland, D.W. Decoding ALS: From genes to mechanism. Nature, 2016, 539(7628), 197-206.
[http://dx.doi.org/10.1038/nature20413] [PMID: 27830784]
[2]
Zarei, S.; Carr, K.; Reiley, L.; Diaz, K.; Guerra, O.; Altamirano, P.; Pagani, W.; Lodin, D.; Orozco, G.; Chinea, A. A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int., 2015, 6(1), 171.
[http://dx.doi.org/10.4103/2152-7806.169561] [PMID: 26629397]
[3]
Gil, J.; Funalot, B.; Verschueren, A.; Danel-Brunaud, V.; Camu, W.; Vandenberghe, N.; Desnuelle, C.; Guy, N.; Camdessanche, J.P.; Cintas, P.; Carluer, L.; Pittion, S.; Nicolas, G.; Corcia, P.; Fleury, M.C.; Maugras, C.; Besson, G.; Le Masson, G.; Couratier, P. Causes of death amongst French patients with amyotrophic lateral sclerosis: A prospective study. Eur. J. Neurol., 2008, 15(11), 1245-1251.
[http://dx.doi.org/10.1111/j.1468-1331.2008.02307.x] [PMID: 18973614]
[4]
Spataro, R.; Lo Re, M.; Piccoli, T.; Piccoli, F.; La Bella, V. Causes and place of death in Italian patients with amyotrophic lateral sclerosis. Acta Neurol. Scand., 2010, 122(3), 217-223.
[http://dx.doi.org/10.1111/j.1600-0404.2009.01290.x] [PMID: 20078446]
[5]
Turner, M.R.; Hardiman, O.; Benatar, M.; Brooks, B.R.; Chio, A.; de Carvalho, M.; Ince, P.G.; Lin, C.; Miller, R.G.; Mitsumoto, H.; Nicholson, G.; Ravits, J.; Shaw, P.J.; Swash, M.; Talbot, K.; Traynor, B.J.; Van den Berg, L.H.; Veldink, J.H.; Vucic, S.; Kiernan, M.C. Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol., 2013, 12(3), 310-322.
[http://dx.doi.org/10.1016/S1474-4422(13)70036-X] [PMID: 23415570]
[6]
Mejzini, R.; Flynn, L.L.; Pitout, I.L.; Fletcher, S.; Wilton, S.D.; Akkari, P.A. ALS genetics, mechanisms, and therapeutics: Where are we now? Front. Neurosci., 2019, 13, 1310.
[http://dx.doi.org/10.3389/fnins.2019.01310] [PMID: 31866818]
[7]
Torquato, H.; Goettert, M.; Justo, G.; Paredes-Gamero, E. Anti-cancer phytometabolites targeting cancer stem cells. Curr. Genomics, 2017, 18(2), 156-174.
[http://dx.doi.org/10.2174/1389202917666160803162309] [PMID: 28367074]
[8]
Kim, J.; Lee, H.J.; Lee, K.W. Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J. Neurochem., 2010, 112(6), 1415-1430.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06562.x] [PMID: 20050972]
[9]
Lahlou, M. The success of natural products in drug discovery. Pharmacol. & Pharm., 2013, 04, 17-31.
[10]
Henkel, T.; Brunne, R.M.; Müller, H.; Reichel, F. Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew. Chem. Int. Ed., 1999, 38(5), 643-647.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990301)38:5<643:AID-ANIE643>3.0.CO;2-G] [PMID: 29711552]
[11]
Lee, M.L.; Schneider, G. Scaffold architecture and pharmacophoric properties of natural products and trade drugs: Application in the design of natural product-based combinatorial libraries. J. Comb. Chem., 2001, 3(3), 284-289.
[http://dx.doi.org/10.1021/cc000097l] [PMID: 11350252]
[12]
Jin, X.; Liu, M.Y.; Zhang, D.F.; Zhong, X.; Du, K.; Qian, P.; Gao, H.; Wei, M.J. Natural products as a potential modulator of microglial polarization in neurodegenerative diseases. Pharmacol. Res., 2019, 145, 104253.
[http://dx.doi.org/10.1016/j.phrs.2019.104253] [PMID: 31059788]
[13]
Liu, Z.; Ran, Y.; Huang, S.; Wen, S.; Zhang, W.; Liu, X.; Ji, Z.; Geng, X.; Ji, X.; Du, H.; Leak, R.K.; Hu, X. Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization. Front. Aging Neurosci., 2017, 9, 233.
[http://dx.doi.org/10.3389/fnagi.2017.00233] [PMID: 28785217]
[14]
Di Paolo, M.; Papi, L.; Gori, F.; Turillazzi, E. Natural products in neurodegenerative diseases: A great promise but an ethical challenge. Int. J. Mol. Sci., 2019, 20(20), 5170.
[http://dx.doi.org/10.3390/ijms20205170] [PMID: 31635296]
[15]
Silva, J.M.; Nobre, M.S.C.; Albino, S.L.; Lócio, L.L.; Nascimento, A.P.S.; Scotti, L.; Scotti, M.T.; Oshiro-Junior, J.A.; Lima, M.C.A.; Mendonça-Junior, F.J.B.; Moura, R.O. Secondary metabolites with antioxidant activities for the putative treatment of amyotrophic lateral sclerosis (ALS): “Experimental evidences. Oxid. Med. Cell. Longev., 2020, 2020, 1-22.
[http://dx.doi.org/10.1155/2020/5642029] [PMID: 33299526]
[16]
Shao, J.W.; Jiang, J.L.; Zou, J.J.; Yang, M.Y.; Chen, F.M.; Zhang, Y.J.; Jia, L. Therapeutic potential of ginsenosides on diabetes: From hypoglycemic mechanism to clinical trials. J. Funct. Foods, 2020, 64, 103630.
[http://dx.doi.org/10.1016/j.jff.2019.103630]
[17]
Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[18]
Cenini, G.; Lloret, A.; Cascella, R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid. Med. Cell. Longev., 2019, 2019, 1-18.
[http://dx.doi.org/10.1155/2019/2105607] [PMID: 31210837]
[19]
Dirnagl, U.; Meisel, A. Endogenous neuroprotection: Mitochondria as gateways to cerebral preconditioning? Neuropharmacology, 2008, 55(3), 334-344.
[http://dx.doi.org/10.1016/j.neuropharm.2008.02.017] [PMID: 18402985]
[20]
Dirnagl, U.; Becker, K.; Meisel, A. Preconditioning and tolerance against cerebral ischaemia: From experimental strategies to clinical use. Lancet Neurol., 2009, 8(4), 398-412.
[http://dx.doi.org/10.1016/S1474-4422(09)70054-7] [PMID: 19296922]
[21]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[22]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J. Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis. Biofactors, 2009, 35(2), 146-160.
[http://dx.doi.org/10.1002/biof.22] [PMID: 19449442]
[23]
Calabrese, E.J.; Iavicoli, I.; Calabrese, V. Hormesis: Why it is important to biogerontologists. Biogerontology, 2012, 13(3), 215-235.
[http://dx.doi.org/10.1007/s10522-012-9374-7] [PMID: 22270337]
[24]
Sies, H.; Belousov, V.V.; Chandel, N.S.; Davies, M.J.; Jones, D.P.; Mann, G.E.; Murphy, M.P.; Yamamoto, M.; Winterbourn, C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol., 2022, 23(7), 499-515.
[http://dx.doi.org/10.1038/s41580-022-00456-z] [PMID: 35190722]
[25]
Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol., 2020, 21(7), 363-383.
[http://dx.doi.org/10.1038/s41580-020-0230-3] [PMID: 32231263]
[26]
Van Houten, B.; Woshner, V.; Santos, J.H. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair, 2006, 5(2), 145-152.
[http://dx.doi.org/10.1016/j.dnarep.2005.03.002] [PMID: 15878696]
[27]
Selvaraji, S.; Poh, L.; Natarajan, V.; Mallilankaraman, K.; Arumugam, T.V. Negative conditioning of mitochondrial dysfunction in age-related neurodegenerative diseases. Cond. Med., 2019, 2(1), 30-39.
[PMID: 31058265]
[28]
Wang, Y.; Xu, E.; Musich, P.R.; Lin, F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci. Ther., 2019, 25(7), 816-824.
[http://dx.doi.org/10.1111/cns.13116] [PMID: 30889315]
[29]
Hemerková, P.; Vališ, M. Role of oxidative stress in the pathogenesis of amyotrophic lateral sclerosis: Antioxidant metalloenzymes and therapeutic strategies. Biomolecules, 2021, 11(3), 437.
[http://dx.doi.org/10.3390/biom11030437] [PMID: 33809730]
[30]
Golenia, A.; Leśkiewicz, M.; Regulska, M.; Budziszewska, B.; Szczęsny, E.; Jagiełła, J.; Wnuk, M.; Ostrowska, M.; Lasoń, W.; Basta-Kaim, A.; Słowik, A. Catalase activity in blood fractions of patients with sporadic ALS. Pharmacol. Rep., 2014, 66(4), 704-707.
[http://dx.doi.org/10.1016/j.pharep.2014.02.021] [PMID: 24948075]
[31]
Tabrizi, S. Neurodegenerative diseases neurobiology pathogenesis and therapeutics. J. Neurol. Neurosurg. Psychiatry, 2006, 77(2), 284-284.
[http://dx.doi.org/10.1136/jnnp.2005.072710]
[32]
Angelova, P.R.; Abramov, A.Y. Role of mitochondrial ROS in the brain: From physiology to neurodegeneration. FEBS Lett., 2018, 592(5), 692-702.
[http://dx.doi.org/10.1002/1873-3468.12964] [PMID: 29292494]
[33]
Pehar, M.; Beeson, G.; Beeson, C.C.; Johnson, J.A.; Vargas, M.R. Mitochondria-targeted catalase reverts the neurotoxicity of hSOD1G⁹³A astrocytes without extending the survival of ALS-linked mutant hSOD1 mice. PLoS One, 2014, 9(7), e103438.
[http://dx.doi.org/10.1371/journal.pone.0103438] [PMID: 25054289]
[34]
Richardson, K.; Allen, S.P.; Mortiboys, H.; Grierson, A.J.; Wharton, S.B.; Ince, P.G.; Shaw, P.J.; Heath, P.R. The effect of SOD1 mutation on cellular bioenergetic profile and viability in response to oxidative stress and influence of mutation-type. PLoS One, 2013, 8(6), e68256.
[http://dx.doi.org/10.1371/journal.pone.0068256] [PMID: 23840839]
[35]
Ahtoniemi, T.; Jaronen, M.; Keksa-Goldsteine, V.; Goldsteins, G.; Koistinaho, J. Mutant SOD1 from spinal cord of G93A rats is destabilized and binds to inner mitochondrial membrane. Neurobiol. Dis., 2008, 32(3), 479-485.
[http://dx.doi.org/10.1016/j.nbd.2008.08.010] [PMID: 18817872]
[36]
Xiao, Y.; Karam, C.; Yi, J.; Zhang, L.; Li, X.; Yoon, D.; Wang, H.; Dhakal, K.; Ramlow, P.; Yu, T.; Mo, Z.; Ma, J.; Zhou, J. ROS-related mitochondrial dysfunction in skeletal muscle of an ALS mouse model during the disease progression. Pharmacol. Res., 2018, 138, 25-36.
[http://dx.doi.org/10.1016/j.phrs.2018.09.008] [PMID: 30236524]
[37]
Bruijn, L.I.; Miller, T.M.; Cleveland, D.W. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci., 2004, 27(1), 723-749.
[http://dx.doi.org/10.1146/annurev.neuro.27.070203.144244] [PMID: 15217349]
[38]
Vijayvergiya, C.; Beal, M.F.; Buck, J.; Manfredi, G. Mutant superoxide dismutase 1 forms aggregates in the brain mitochondrial matrix of amyotrophic lateral sclerosis mice. J. Neurosci., 2005, 25(10), 2463-2470.
[http://dx.doi.org/10.1523/JNEUROSCI.4385-04.2005] [PMID: 15758154]
[39]
Babu, G.N.; Kumar, A.; Chandra, R.; Puri, S.K.; Singh, R.L.; Kalita, J.; Misra, U.K. Oxidant-antioxidant imbalance in the erythrocytes of sporadic amyotrophic lateral sclerosis patients correlates with the progression of disease. Neurochem. Int., 2008, 52(6), 1284-1289.
[http://dx.doi.org/10.1016/j.neuint.2008.01.009] [PMID: 18308427]
[40]
Ikawa, M.; Okazawa, H.; Tsujikawa, T.; Matsunaga, A.; Yamamura, O.; Mori, T.; Hamano, T.; Kiyono, Y.; Nakamoto, Y.; Yoneda, M. Increased oxidative stress is related to disease severity in the ALS motor cortex: A PET study. Neurology, 2015, 84(20), 2033-2039.
[http://dx.doi.org/10.1212/WNL.0000000000001588] [PMID: 25904686]
[41]
Ehrhart, J.; Smith, A.J.; Kuzmin-Nichols, N.; Zesiewicz, T.A.; Jahan, I.; Shytle, R.D.; Kim, S.H.; Sanberg, C.D.; Vu, T.H.; Gooch, C.L.; Sanberg, P.R.; Garbuzova-Davis, S. Humoral factors in ALS patients during disease progression. J. Neuroinflammation, 2015, 12(1), 127.
[http://dx.doi.org/10.1186/s12974-015-0350-4] [PMID: 26126965]
[42]
Pollari, E.; Goldsteins, G.; Bart, G.; Koistinaho, J.; Giniatullin, R. The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Front. Cell. Neurosci., 2014, 8, 131.
[http://dx.doi.org/10.3389/fncel.2014.00131] [PMID: 24860432]
[43]
Tan, W.; Pasinelli, P.; Trotti, D. Role of mitochondria in mutant SOD1 linked amyotrophic lateral sclerosis. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(8), 1295-1301.
[http://dx.doi.org/10.1016/j.bbadis.2014.02.009] [PMID: 24568860]
[44]
LoGerfo, A.; Chico, L.; Borgia, L.; Petrozzi, L.; Rocchi, A.; D’Amelio, A.; Carlesi, C.; Ienco, E.; Mancuso, M.; Siciliano, G. Lack of association between nuclear factor erythroid-derived 2-like 2 promoter gene polymorphisms and oxidative stress biomarkers in amyotrophic lateral sclerosis patients. Oxid. Med. Cell. Longev., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/432626] [PMID: 24672634]
[45]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[46]
Mancuso, C.; Pani, G.; Calabrese, V. Bilirubin: An endogenous scavenger of nitric oxide and reactive nitrogen species. Redox Rep., 2006, 11(5), 207-213.
[http://dx.doi.org/10.1179/135100006X154978] [PMID: 17132269]
[47]
Drake, J.; Sultana, R.; Aksenova, M.; Calabrese, V.; Butterfield, D.A. Elevation of mitochondrial glutathione by? -glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress. J. Neurosci. Res., 2003, 74(6), 917-927.
[http://dx.doi.org/10.1002/jnr.10810] [PMID: 14648597]
[48]
Siracusa, R.; Scuto, M.; Fusco, R.; Trovato, A.; Ontario, M.L.; Crea, R.; Di Paola, R.; Cuzzocrea, S.; Calabrese, V. Anti-inflammatory and anti-oxidant activity of hidrox® in rotenone-induced parkinson’s disease in mice. Antioxidants, 2020, 9(9), 824.
[http://dx.doi.org/10.3390/antiox9090824] [PMID: 32899274]
[49]
Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; Tabolacci, C.; Jadeja, R.N. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res. Int., 2019, 2019, 1-16.
[http://dx.doi.org/10.1155/2019/8748253] [PMID: 31080832]
[50]
Chico, L.; Ienco, E.C.; Bisordi, C.; Lo Gerfo, A.; Petrozzi, L.; Petrucci, A.; Mancuso, M.; Siciliano, G. Amyotrophic lateral sclerosis and oxidative stress: A double-blind therapeutic trial after curcumin supplementation. CNS Neurol. Disord. Drug Targets, 2018, 17(10), 767-779.
[http://dx.doi.org/10.2174/1871527317666180720162029] [PMID: 30033879]
[51]
Kim, D.S.; Kim, J.Y.; Han, Y. Curcuminoids in neurodegenerative diseases. Recent Patents CNS Drug Discov., 2012, 7(3), 184-204.
[http://dx.doi.org/10.2174/157488912803252032] [PMID: 22742420]
[52]
Darvesh, A.S.; Carroll, R.T.; Bishayee, A.; Novotny, N.A.; Geldenhuys, W.J.; Van der Schyf, C.J. Curcumin and neurodegenerative diseases: A perspective. Expert Opin. Investig. Drugs, 2012, 21(8), 1123-1140.
[http://dx.doi.org/10.1517/13543784.2012.693479] [PMID: 22668065]
[53]
Jiang, H.; Tian, X.; Guo, Y.; Duan, W.; Bu, H.; Li, C. Activation of nuclear factor erythroid 2-related factor 2 cytoprotective signaling by curcumin protect primary spinal cord astrocytes against oxidative toxicity. Biol. Pharm. Bull., 2011, 34(8), 1194-1197.
[http://dx.doi.org/10.1248/bpb.34.1194] [PMID: 21804205]
[54]
Dong, H.; Xu, L.; Wu, L.; Wang, X.; Duan, W.; Li, H.; Li, C. Curcumin abolishes mutant TDP-43 induced excitability in a motoneuron-like cellular model of ALS. Neuroscience, 2014, 272, 141-153.
[http://dx.doi.org/10.1016/j.neuroscience.2014.04.032] [PMID: 24785678]
[55]
Janssens, J.; Kleinberger, G.; Wils, H.; Van Broeckhoven, C. The role of mutant TAR DNA-binding protein 43 in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Biochem. Soc. Trans., 2011, 39(4), 954-959.
[http://dx.doi.org/10.1042/BST0390954] [PMID: 21787329]
[56]
Mackenzie, I.R.A.; Rademakers, R. The role of transactive response DNA-binding protein-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Curr. Opin. Neurol., 2008, 21(6), 693-700.
[http://dx.doi.org/10.1097/WCO.0b013e3283168d1d] [PMID: 18989115]
[57]
Lu, J.; Duan, W.; Guo, Y.; Jiang, H.; Li, Z.; Huang, J.; Hong, K.; Li, C. Mitochondrial dysfunction in human TDP-43 transfected NSC34 cell lines and the protective effect of dimethoxy curcumin. Brain Res. Bull., 2012, 89(5-6), 185-190.
[http://dx.doi.org/10.1016/j.brainresbull.2012.09.005] [PMID: 22986236]
[58]
Bhatia, N.K.; Srivastava, A.; Katyal, N.; Jain, N.; Khan, M.A.I.; Kundu, B.; Deep, S. Curcumin binds to the pre-fibrillar aggregates of Cu/Zn superoxide dismutase (SOD1) and alters its amyloidogenic pathway resulting in reduced cytotoxicity. Biochim. Biophys. Acta. Proteins Proteomics, 2015, 1854(5), 426-436.
[http://dx.doi.org/10.1016/j.bbapap.2015.01.014] [PMID: 25666897]
[59]
Strong, R.; Miller, R.A.; Astle, C.M.; Baur, J.A.; de Cabo, R.; Fernandez, E.; Guo, W.; Javors, M.; Kirkland, J.L.; Nelson, J.F.; Sinclair, D.A.; Teter, B.; Williams, D.; Zaveri, N.; Nadon, N.L.; Harrison, D.E. Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci., 2013, 68(1), 6-16.
[http://dx.doi.org/10.1093/gerona/gls070] [PMID: 22451473]
[60]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[61]
Liu, W.; Zhai, Y.; Heng, X.; Che, F.Y.; Chen, W.; Sun, D.; Zhai, G. Oral bioavailability of curcumin: Problems and advancements. J. Drug Target., 2016, 24(8), 694-702.
[http://dx.doi.org/10.3109/1061186X.2016.1157883] [PMID: 26942997]
[62]
Tripodo, G.; Chlapanidas, T.; Perteghella, S.; Vigani, B.; Mandracchia, D.; Trapani, A.; Galuzzi, M.; Tosca, M.C.; Antonioli, B.; Gaetani, P.; Marazzi, M.; Torre, M.L. Mesenchymal stromal cells loading curcumin-INVITE-micelles: A drug delivery system for neurodegenerative diseases. Colloids Surf. B Biointerfaces, 2015, 125, 300-308.
[http://dx.doi.org/10.1016/j.colsurfb.2014.11.034] [PMID: 25524221]
[63]
Wu, A.; Ying, Z.; Gomez-Pinilla, F. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp. Neurol., 2006, 197(2), 309-317.
[http://dx.doi.org/10.1016/j.expneurol.2005.09.004] [PMID: 16364299]
[64]
Ullah, F.; Liang, A.; Rangel, A.; Gyengesi, E.; Niedermayer, G.; Münch, G. High bioavailability curcumin: An anti-inflammatory and neurosupportive bioactive nutrient for neurodegenerative diseases characterized by chronic neuroinflammation. Arch. Toxicol., 2017, 91(4), 1623-1634.
[http://dx.doi.org/10.1007/s00204-017-1939-4] [PMID: 28204864]
[65]
Rakotoarisoa, M.; Angelova, A. Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders. Medicines, 2018, 5(4), 126.
[http://dx.doi.org/10.3390/medicines5040126] [PMID: 30477087]
[66]
Ahmadi, M.; Agah, E.; Nafissi, S.; Jaafari, M.R.; Harirchian, M.H.; Sarraf, P.; Faghihi-Kashani, S.; Hosseini, S.J.; Ghoreishi, A.; Aghamollaii, V.; Hosseini, M.; Tafakhori, A. Safety and efficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: A pilot randomized clinical trial. Neurotherapeutics, 2018, 15(2), 430-438.
[http://dx.doi.org/10.1007/s13311-018-0606-7] [PMID: 29352425]
[67]
Ghasemi, F.; Bagheri, H.; Barreto, G.E.; Read, M.I.; Sahebkar, A. Effects of curcumin on microglial cells. Neurotox. Res., 2019, 36(1), 12-26.
[http://dx.doi.org/10.1007/s12640-019-00030-0] [PMID: 30949950]
[68]
Handique, J.G.; Baruah, J.B. Polyphenolic compounds: An overview. React. Funct. Polym., 2002, 52(3), 163-188.
[http://dx.doi.org/10.1016/S1381-5148(02)00091-3]
[69]
Wang, J.; Zhang, Y.; Tang, L.; Zhang, N.; Fan, D. Protective effects of resveratrol through the up-regulation of SIRT1 expression in the mutant hSOD1-G93A-bearing motor neuron-like cell culture model of amyotrophic lateral sclerosis. Neurosci. Lett., 2011, 503(3), 250-255.
[http://dx.doi.org/10.1016/j.neulet.2011.08.047] [PMID: 21896316]
[70]
Barber, S.C.; Higginbottom, A.; Mead, R.J.; Barber, S.; Shaw, P.J. An in vitro screening cascade to identify neuroprotective antioxidants in ALS. Free Radic. Biol. Med., 2009, 46(8), 1127-1138.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.01.019] [PMID: 19439221]
[71]
Mancuso, R.; del Valle, J.; Modol, L.; Martinez, A.; Granado-Serrano, A.B.; Ramirez-Núñez, O.; Pallás, M.; Portero-Otin, M.; Osta, R.; Navarro, X. Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics, 2014, 11(2), 419-432.
[PMID: 24414863]
[72]
Song, L.; Chen, L.; Zhang, X.; Li, J.; Le, W. Resveratrol ameliorates motor neuron degeneration and improves survival in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. BioMed Res. Int., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/483501] [PMID: 25057490]
[73]
Mancuso, R.; del Valle, J.; Morell, M.; Pallás, M.; Osta, R.; Navarro, X. Lack of synergistic effect of resveratrol and sigma-1 receptor agonist (PRE-084) in SOD1G93A ALS mice: Overlapping effects or limited therapeutic opportunity? Orphanet J. Rare Dis., 2014, 9(1), 78.
[http://dx.doi.org/10.1186/1750-1172-9-78] [PMID: 24885036]
[74]
Srinivasan, E.; Rajasekaran, R. Quantum chemical and molecular mechanics studies on the assessment of interactions between resveratrol and mutant SOD1 (G93A) protein. J. Comput. Aided Mol. Des., 2018, 32(12), 1347-1361.
[http://dx.doi.org/10.1007/s10822-018-0175-1] [PMID: 30368622]
[75]
Yun, Y.C.; Jeong, S.; Kim, S.H.; Cho, G. Reduced sirtuin 1/adenosine monophosphate-activated protein kinase in amyotrophic lateral sclerosis patient-derived mesenchymal stem cells can be restored by resveratrol. J. Tissue Eng. Regen. Med., 2018, 13(1), 110-115.
[76]
Laudati, G.; Mascolo, L.; Guida, N.; Sirabella, R.; Pizzorusso, V.; Bruzzaniti, S.; Serani, A.; Di Renzo, G.; Canzoniero, L.M.T.; Formisano, L. Resveratrol treatment reduces the vulnerability of SH-SY5Y cells and cortical neurons overexpressing SOD1-G93A to Thimerosal toxicity through SIRT1/DREAM/PDYN pathway. Neurotoxicology, 2019, 71, 6-15.
[http://dx.doi.org/10.1016/j.neuro.2018.11.009] [PMID: 30503815]
[77]
Caplliure-Llopis, J.; Peralta-Chamba, T.; Carrera-Juliá, S.; Cuerda-Ballester, M.; Drehmer-Rieger, E.; López-Rodriguez, M.M.; Rubia Ortí, J.E. Therapeutic alternative of the ketogenic Mediterranean diet to improve mitochondrial activity in Amyotrophic Lateral Sclerosis (ALS): A Comprehensive Review. Food Sci. Nutr., 2020, 8(1), 23-35.
[http://dx.doi.org/10.1002/fsn3.1324] [PMID: 31993129]
[78]
Hu, T.; He, X.W.; Jiang, J.G.; Xu, X.L. Hydroxytyrosol and its potential therapeutic effects. J. Agric. Food Chem., 2014, 62(7), 1449-1455.
[http://dx.doi.org/10.1021/jf405820v] [PMID: 24479643]
[79]
de Pablos, R.M.; Espinosa-Oliva, A.M.; Hornedo-Ortega, R.; Cano, M.; Arguelles, S. Hydroxytyrosol protects from aging process via AMPK and autophagy; a review of its effects on cancer, metabolic syndrome, osteoporosis, immune-mediated and neurodegenerative diseases. Pharmacol. Res., 2019, 143, 58-72.
[http://dx.doi.org/10.1016/j.phrs.2019.03.005] [PMID: 30853597]
[80]
Oliván, S.; Martínez-Beamonte, R.; Calvo, A.C.; Surra, J.C.; Manzano, R.; Arnal, C.; Osta, R.; Osada, J. Extra virgin olive oil intake delays the development of amyotrophic lateral sclerosis associated with reduced reticulum stress and autophagy in muscle of SOD1G93A mice. J. Nutr. Biochem., 2014, 25(8), 885-892.
[http://dx.doi.org/10.1016/j.jnutbio.2014.04.005] [PMID: 24917047]
[81]
Kalaiselvan, I.; Samuthirapandi, M.; Govindaraju, A.; Sheeja Malar, D.; Kasi, P.D. Olive oil and its phenolic compounds (hydroxytyrosol and tyrosol) ameliorated TCDD-induced heptotoxicity in rats via inhibition of oxidative stress and apoptosis. Pharm. Biol., 2016, 54(2), 338-346.
[http://dx.doi.org/10.3109/13880209.2015.1042980] [PMID: 25955957]
[82]
Rajabian, A.; Sadeghnia, H.; Fanoudi, S.; Hosseini, A. Genus Boswellia as a new candidate for neurodegenerative disorders. Iran. J. Basic Med. Sci., 2020, 23(3), 277-286.
[PMID: 32440312]
[83]
Ammon, H. Boswellic acids in chronic inflammatory diseases. Planta Med., 2006, 72(12), 1100-1116.
[http://dx.doi.org/10.1055/s-2006-947227] [PMID: 17024588]
[84]
Siddiqui, A.; Shah, Z.; Jahan, R.N.; Othman, I.; Kumari, Y. Mechanistic role of boswellic acids in Alzheimer’s disease: Emphasis on anti-inflammatory properties. Biomed. Pharmacother., 2021, 144, 112250.
[http://dx.doi.org/10.1016/j.biopha.2021.112250] [PMID: 34607104]
[85]
Minj, E.; Upadhayay, S.; Mehan, S. Nrf2/HO-1 signaling activator acetyl-11-keto-beta boswellic acid (AKBA)-mediated neuroprotection in methyl mercury-induced experimental model of ALS. Neurochem. Res., 2021, 46(11), 2867-2884.
[http://dx.doi.org/10.1007/s11064-021-03366-2] [PMID: 34075522]
[86]
Landis-Piwowar, K.R.; Huo, C.; Chen, D.; Milacic, V.; Shi, G.; Chan, T.H.; Dou, Q.P. A novel prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Res., 2007, 67(9), 4303-4310.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4699] [PMID: 17483343]
[87]
Bedlack, R.S.; Joyce, N.; Carter, G.T.; Paganoni, S.; Karam, C. Complementary and alternative therapies in amyotrophic lateral sclerosis. Neurol. Clin., 2015, 33(4), 909-936.
[http://dx.doi.org/10.1016/j.ncl.2015.07.008] [PMID: 26515629]
[88]
Hockenbery, D.M.; Oltvai, Z.N.; Yin, X.M.; Milliman, C.L.; Korsmeyer, S.J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell, 1993, 75(2), 241-251.
[http://dx.doi.org/10.1016/0092-8674(93)80066-N] [PMID: 7503812]
[89]
Terao, J.; Piskula, M.; Yao, Q. Protective effect of epicatechin, epicatechin gallate, and quercetin on lipid peroxidation in phospholipid bilayers. Arch. Biochem. Biophys., 1994, 308(1), 278-284.
[http://dx.doi.org/10.1006/abbi.1994.1039] [PMID: 8311465]
[90]
Levites, Y.; Amit, T.; Youdim, M.B.H.; Mandel, S. Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J. Biol. Chem., 2002, 277(34), 30574-30580.
[http://dx.doi.org/10.1074/jbc.M202832200] [PMID: 12058035]
[91]
Mandel, S.A.; Avramovich-Tirosh, Y.; Reznichenko, L.; Zheng, H.; Weinreb, O.; Amit, T.; Youdim, M.B.H. Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals, 2005, 14(1-2), 46-60.
[http://dx.doi.org/10.1159/000085385] [PMID: 15956814]
[92]
Nie, G.; Cao, Y.; Zhao, B. Protective effects of green tea polyphenols and their major component, (-)-epigallocatechin-3-gallate (EGCG), on 6-hydroxydopamine-induced apoptosis in PC12 cells. Redox Rep., 2002, 7(3), 171-177.
[http://dx.doi.org/10.1179/135100002125000424] [PMID: 12189048]
[93]
Reznichenko, L.; Amit, T.; Youdim, M.B.H.; Mandel, S. Green tea polyphenol (-)-epigallocatechin-3-gallate induces neurorescue of long-term serum-deprived PC12 cells and promotes neurite outgrowth. J. Neurochem., 2005, 93(5), 1157-1167.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03085.x] [PMID: 15934936]
[94]
Mandel, S.; Weinreb, O.; Amit, T.; Youdim, M.B.H. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: Implications for neurodegenerative diseases. J. Neurochem., 2004, 88(6), 1555-1569.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02291.x] [PMID: 15009657]
[95]
Panickar, K.S.; Polansky, M.M.; Anderson, R.A. Green tea polyphenols attenuate glial swelling and mitochondrial dysfunction following oxygen-glucose deprivation in cultures. Nutr. Neurosci., 2009, 12(3), 105-113.
[http://dx.doi.org/10.1179/147683009X423300] [PMID: 19356313]
[96]
Koh, S.; Kwon, H.; Kim, K.S.; Kim, J.; Kim, M.H.; Yu, H.J.; Kim, M.; Lee, K.W.; Do, B.R.; Jung, H.K.; Yang, K.W.; Appel, S.H.; Kim, S.H. Epigallocatechin gallate prevents oxidative-stress-induced death of mutant Cu/Zn-superoxide dismutase (G93A) motoneuron cells by alteration of cell survival and death signals. Toxicology, 2004, 202(3), 213-225.
[http://dx.doi.org/10.1016/j.tox.2004.05.008] [PMID: 15337584]
[97]
Koh, S.H.; Lee, S.M.; Kim, H.Y.; Lee, K.Y.; Lee, Y.J.; Kim, H.T.; Kim, J.; Kim, M.H.; Hwang, M.S.; Song, C.; Yang, K.W.; Lee, K.W.; Kim, S.H.; Kim, O.H. The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci. Lett., 2006, 395(2), 103-107.
[http://dx.doi.org/10.1016/j.neulet.2005.10.056] [PMID: 16356650]
[98]
Xu, Z.; Chen, S.; Li, X.; Luo, G.; Li, L.; Le, W. Neuroprotective effects of (-)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem. Res., 2006, 31(10), 1263-1269.
[http://dx.doi.org/10.1007/s11064-006-9166-z] [PMID: 17021948]
[99]
Srinivasan, E.; Rajasekaran, R. Probing the inhibitory activity of epigallocatechin-gallate on toxic aggregates of mutant (L84F) SOD1 protein through geometry based sampling and steered molecular dynamics. J. Mol. Graph. Model., 2017, 74, 288-295.
[http://dx.doi.org/10.1016/j.jmgm.2017.04.019] [PMID: 28458007]
[100]
Cao, G.; Sofic, E.; Prior, R.L. Antioxidant and prooxidant behavior of flavonoids: Structure-activit relationships. Free Radic. Biol. Med., 1997, 22(5), 749-760.
[http://dx.doi.org/10.1016/S0891-5849(96)00351-6] [PMID: 9119242]
[101]
Esposito, E.; Rotilio, D.; Dimatteo, V.; Digiulio, C.; Cacchio, M.; Algeri, S. A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol. Aging, 2002, 23(5), 719-735.
[http://dx.doi.org/10.1016/S0197-4580(02)00078-7] [PMID: 12392777]
[102]
Vauzour, D.; Vafeiadou, K.; Rodriguez-Mateos, A.; Rendeiro, C.; Spencer, J.P.E. The neuroprotective potential of flavonoids: A multiplicity of effects. Genes Nutr., 2008, 3(3-4), 115-126.
[http://dx.doi.org/10.1007/s12263-008-0091-4] [PMID: 18937002]
[103]
He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell. Physiol. Biochem., 2017, 44(2), 532-553.
[http://dx.doi.org/10.1159/000485089] [PMID: 29145191]
[104]
Kim, T.Y.; Leem, E.; Lee, J.M.; Kim, S.R. Control of reactive oxygen species for the prevention of parkinson’s disease: The possible application of flavonoids. Antioxidants, 2020, 9(7), 583.
[http://dx.doi.org/10.3390/antiox9070583] [PMID: 32635299]
[105]
Solanki, I.; Parihar, P.; Mansuri, M.L.; Parihar, M.S. Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv. Nutr., 2015, 6(1), 64-72.
[http://dx.doi.org/10.3945/an.114.007500] [PMID: 25593144]
[106]
Mansuri, M.L.; Parihar, P.; Solanki, I.; Parihar, M.S. Flavonoids in modulation of cell survival signalling pathways. Genes Nutr., 2014, 9(3), 400.
[http://dx.doi.org/10.1007/s12263-014-0400-z] [PMID: 24682883]
[107]
Mantilla, C.B.; Ermilov, L.G. The novel TrkB receptor agonist 7,8-dihydroxyflavone enhances neuromuscular transmission. Muscle Nerve, 2012, 45(2), 274-276.
[http://dx.doi.org/10.1002/mus.22295] [PMID: 22246885]
[108]
Korkmaz, O.T.; Aytan, N.; Carreras, I.; Choi, J.K.; Kowall, N.W.; Jenkins, B.G.; Dedeoglu, A. 7,8-Dihydroxyflavone improves motor performance and enhances lower motor neuronal survival in a mouse model of amyotrophic lateral sclerosis. Neurosci. Lett., 2014, 566, 286-291.
[http://dx.doi.org/10.1016/j.neulet.2014.02.058] [PMID: 24637017]
[109]
Sharma, D.R.; Wani, W.Y.; Sunkaria, A.; Kandimalla, R.J.; Sharma, R.K.; Verma, D.; Bal, A.; Gill, K.D. Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus. Neuroscience, 2016, 324, 163-176.
[http://dx.doi.org/10.1016/j.neuroscience.2016.02.055] [PMID: 26944603]
[110]
Ip, P.; Sharda, P.R.; Cunningham, A.; Chakrabartty, S.; Pande, V.; Chakrabartty, A. Quercitrin and quercetin 3-β-d-glucoside as chemical chaperones for the A4V SOD1 ALS-causing mutant. Protein Eng. Des. Sel., 2017, 30(6), 431-440.
[http://dx.doi.org/10.1093/protein/gzx025] [PMID: 28475686]
[111]
Wang, T.H.; Wang, S.Y.; Wang, X.D.; Jiang, H.Q.; Yang, Y.Q.; Wang, Y.; Cheng, J.L.; Zhang, C.T.; Liang, W.W.; Feng, H.L. Fisetin exerts antioxidant and neuroprotective effects in multiple mutant hsod1 models of amyotrophic lateral sclerosis by activating ERK. Neuroscience, 2018, 379, 152-166.
[http://dx.doi.org/10.1016/j.neuroscience.2018.03.008] [PMID: 29559385]
[112]
Ye, L.; Wang, H.; Duncan, S.E.; Eigel, W.N.; O’Keefe, S.F. Antioxidant activities of Vine Tea (Ampelopsis grossedentata) extract and its major component dihydromyricetin in soybean oil and cooked ground beef. Food Chem., 2015, 172, 416-422.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.090] [PMID: 25442572]
[113]
Murakami, T.; Miyakoshi, M.; Araho, D.; Mizutani, K.; Kambara, T.; Ikeda, T.; Chou, W.H.; Inukai, M.; Takenaka, A.; Igarashi, K. Hepatoprotective activity of tocha, the stems and leaves of Ampelopsis grossedentata, and ampelopsin. Biofactors, 2004, 21(1-4), 175-178.
[http://dx.doi.org/10.1002/biof.552210136] [PMID: 15630194]
[114]
Kou, X.; Shen, K.; An, Y.; Qi, S.; Dai, W.X.; Yin, Z. Ampelopsin inhibits H2O2-induced apoptosis by ERK and Akt signaling pathways and up-regulation of heme oxygenase-1. Phytother. Res., 2012, 26(7), 988-994.
[http://dx.doi.org/10.1002/ptr.3671] [PMID: 22144097]
[115]
Singh, B.; Kaur, P. Gopichand; Singh, R.D.; Ahuja, P.S. Biology and chemistry of Ginkgo biloba. Fitoterapia, 2008, 79(6), 401-418.
[http://dx.doi.org/10.1016/j.fitote.2008.05.007] [PMID: 18639617]
[116]
Ferrante, R.J.; Klein, A.M.; Dedeoglu, A.; Beal, M.F. Therapeutic efficacy of EGb761 (Gingko biloba extract) in a transgenic mouse model of amyotrophic lateral sclerosis. J. Mol. Neurosci., 2001, 17(1), 89-96.
[http://dx.doi.org/10.1385/JMN:17:1:89] [PMID: 11665866]
[117]
Jiang, F.; DeSilva, S.; Turnbull, J. Beneficial effect of ginseng root in SOD-1 (G93A) transgenic mice. J. Neurol. Sci., 2000, 180(1-2), 52-54.
[http://dx.doi.org/10.1016/S0022-510X(00)00421-4] [PMID: 11090864]
[118]
Trieu, V.N.; Uckun, F.M. Genistein is neuroprotective in murine models of familial amyotrophic lateral sclerosis and stroke. Biochem. Biophys. Res. Commun., 1999, 258(3), 685-688.
[http://dx.doi.org/10.1006/bbrc.1999.0577] [PMID: 10329446]
[119]
Orrell, R.; Lane, J.; Ross, M. Antioxidant treatment for amyotrophic lateral sclerosis/motor neuron disease.In: Cochrane Database of Systematic Reviews; John Wiley & Sons, Ltd: Chichester, UK, 2004.
[http://dx.doi.org/10.1002/14651858.CD002829.pub2]
[120]
Gurney, M.E.; Cutting, F.B.; Zhai, P.; Doble, A.; Taylor, C.P.; Andrus, P.K.; Hall, E.D. Benefit of vitamin E, riluzole, and gababapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann. Neurol., 1996, 39(2), 147-157.
[http://dx.doi.org/10.1002/ana.410390203] [PMID: 8967745]
[121]
Desnuelle, C.; Dib, M.; Garrel, C.; Favier, A. A double-blind, placebo-controlled randomized clinical trial of α-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord., 2001, 2(1), 9-18.
[http://dx.doi.org/10.1080/146608201300079364] [PMID: 11465936]
[122]
Ascherio, A.; Weisskopf, M.G.; O’Reilly, E.J.; Jacobs, E.J.; McCullough, M.L.; Calle, E.E.; Cudkowicz, M.; Thun, M.J.; Vitamin, E. Vitamin E intake and risk of amyotrophic lateral sclerosis. Ann. Neurol., 2005, 57(1), 104-110.
[http://dx.doi.org/10.1002/ana.20316] [PMID: 15529299]
[123]
Veldink, J.H.; Kalmijn, S.; Groeneveld, G-J.; Wunderink, W.; Koster, A.; de Vries, J.H.M.; van der Luyt, J.; Wokke, J.H.J.; Van den Berg, L.H. Intake of polyunsaturated fatty acids and vitamin E reduces the risk of developing amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry, 2006, 78(4), 367-371.
[http://dx.doi.org/10.1136/jnnp.2005.083378] [PMID: 16648143]
[124]
Wang, H.; O’Reilly, E.J.; Weisskopf, M.G.; Logroscino, G.; McCullough, M.L.; Schatzkin, A.; Kolonel, L.N.; Ascherio, A.; Vitamin, E. Vitamin E intake and risk of amyotrophic lateral sclerosis: A pooled analysis of data from 5 prospective cohort studies. Am. J. Epidemiol., 2011, 173(6), 595-602.
[http://dx.doi.org/10.1093/aje/kwq416] [PMID: 21335424]
[125]
Graf, M.; Ecker, D.; Horowski, R.; Kramer, B.; Riederer, P.; Gerlach, M.; Hager, C.; Ludolph, A.C.; Becker, G.; Osterhage, J.; Jost, W.H.; Schrank, B.; Stein, C.; Kostopulos, P.; Lubik, S.; Wekwerth, K.; Dengler, R.; Troeger, M.; Wuerz, A.; Hoge, A.; Schrader, C.; Schimke, N.; Krampfl, K.; Petri, S.; Zierz, S.; Eger, K.; Neudecker, S.; Traufeller, K.; Sievert, M.; Neundörfer, B.; Hecht, M. High dose vitamin E therapy in amyotrophic lateral sclerosis as add-on therapy to riluzole: Results of a placebo-controlled double-blind study. J. Neural Transm., 2005, 112(5), 649-660.
[http://dx.doi.org/10.1007/s00702-004-0220-1] [PMID: 15517433]
[126]
Michal Freedman, D.; Kuncl, R.W.; Weinstein, S.J.; Malila, N.; Virtamo, J.; Albanes, D. Vitamin E serum levels and controlled supplementation and risk of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener., 2013, 14(4), 246-251.
[http://dx.doi.org/10.3109/21678421.2012.745570] [PMID: 23286756]
[127]
Galbussera, A.; Tremolizzo, L.; Brighina, L.; Testa, D.; Lovati, R.; Ferrarese, C.; Cavaletti, G.; Filippini, G. Vitamin E intake and quality of life in amyotrophic lateral sclerosis patients: A follow-up case series study. Neurol. Sci., 2006, 27(3), 190-193.
[http://dx.doi.org/10.1007/s10072-006-0668-x] [PMID: 16897634]
[128]
Longnecker, M.P.; Kamel, F.; Umbach, D.M.; Munsat, T.L.; Shefner, J.M.; Lansdell, L.W.; Sandler, D.P. Dietary intake of calcium, magnesium and antioxidants in relation to risk of amyotrophic lateral sclerosis. Neuroepidemiology, 2000, 19(4), 210-216.
[http://dx.doi.org/10.1159/000026258] [PMID: 10859501]
[129]
Nieves, J.W.; Gennings, C.; Factor-Litvak, P.; Hupf, J.; Singleton, J.; Sharf, V.; Oskarsson, B.; Fernandes Filho, J.A.M.; Sorenson, E.J.; D’Amico, E.; Goetz, R.; Mitsumoto, H. Association between dietary intake and function in amyotrophic lateral sclerosis. JAMA Neurol., 2016, 73(12), 1425-1432.
[http://dx.doi.org/10.1001/jamaneurol.2016.3401] [PMID: 27775751]
[130]
Fitzgerald, K.C.; O’Reilly, É.J.; Fondell, E.; Falcone, G.J.; McCullough, M.L.; Park, Y.; Kolonel, L.N.; Ascherio, A. Intakes of vitamin C and carotenoids and risk of amyotrophic lateral sclerosis: Pooled results from 5 cohort studies. Ann. Neurol., 2013, 73(2), 236-245.
[http://dx.doi.org/10.1002/ana.23820] [PMID: 23362045]
[131]
Okamoto, K.; Kihira, T.; Kobashi, G.; Washio, M.; Sasaki, S.; Yokoyama, T.; Miyake, Y.; Sakamoto, N.; Inaba, Y.; Nagai, M. Fruit and vegetable intake and risk of amyotrophic lateral sclerosis in Japan. Neuroepidemiology, 2009, 32(4), 251-256.
[http://dx.doi.org/10.1159/000201563] [PMID: 19209004]
[132]
Ma, Z.; Yang, Z. Scavenging effects of Astragalus and Gynostemma pentaphyllum with its product on O2-. and. OH. Zhong Yao Cai, 1999, 22(6), 303-306.
[PMID: 12575069]
[133]
Shahzad, M.; Shabbir, A.; Wojcikowski, K.; Wohlmuth, H.; Gobe, G.C. The antioxidant effects of radix astragali (Astragalus membranaceus and related species) in protecting tissues from injury and disease. Curr. Drug Targets, 2016, 17(12), 1331-1340.
[http://dx.doi.org/10.2174/1389450116666150907104742] [PMID: 26343107]
[134]
Rong, J.; Cheung, C.; Lau, A.; Shen, J.; Tam, P.; Cheng, Y.C. Induction of heme oxygenase-1 by traditional Chinese medicine formulation ISF-1 and its ingredients as a cytoprotective mechanism against oxidative stress. Int. J. Mol. Med., 2008, 21(4), 405-411.
[http://dx.doi.org/10.3892/ijmm.21.4.405] [PMID: 18360685]
[135]
Hu, J.Y.; Han, J.; Chu, Z.G.; Song, H.P.; Zhang, D.X.; Zhang, Q.; Huang, Y.S. Astragaloside IV attenuates hypoxia-induced cardiomyocyte damage in rats by upregulating superoxide dismutase-1 levels. Clin. Exp. Pharmacol. Physiol., 2009, 36(4), 351-357.
[http://dx.doi.org/10.1111/j.1440-1681.2008.05059.x] [PMID: 18986331]
[136]
Liu, X.; Zhang, J.; Wang, S.; Qiu, J.; Yu, C.; Astragaloside, I.V. Astragaloside IV attenuates the H2O2-induced apoptosis of neuronal cells by inhibiting α-synuclein expression via the p38 MAPK pathway. Int. J. Mol. Med., 2017, 40(6), 1772-1780.
[http://dx.doi.org/10.3892/ijmm.2017.3157] [PMID: 29039448]
[137]
Yu, J.; Guo, M.; Li, Y.; Zhang, H.; Chai, Z.; Wang, Q.; Yan, Y.; Yu, J.; Liu, C.; Zhang, G.; Cungen, M. Astragaloside IV protects neurons from microglia-mediated cell damage through promoting microglia polarization. Folia Neuropathol., 2019, 57(2), 170-181.
[http://dx.doi.org/10.5114/fn.2019.86299] [PMID: 31556576]
[138]
Liu, Y. Therapeutic potential of madecassoside in transgenic mice of amyotrophic lateral sclerosis. Chin. Tradit. Herbal Drugs, 2006, 37, 718-720.
[139]
Bai, J-R.; Liu, Y-J.; Song, Y. The mechanism of interfere effects of madecassoside (MC) on neurodegeneration in mice. Zhongguo Laonianxue Zazhi, 2008, 28, 2297-2300.
[140]
Sasmita, A.O.; Ling, A.P.K.; Voon, K.G.L.; Koh, R.Y.; Wong, Y.P. Madecassoside activates anti neuroinflammatory mechanisms by inhibiting lipopolysaccharide induced microglial inflammation. Int. J. Mol. Med., 2018, 41(5), 3033-3040.
[http://dx.doi.org/10.3892/ijmm.2018.3479] [PMID: 29436598]
[141]
Liu, S.; Li, G.; Tang, H.; Pan, R.; Wang, H.; Jin, F.; Yan, X.; Xing, Y.; Chen, G.; Fu, Y.; Dong, J. Madecassoside ameliorates lipopolysaccharide-induced neurotoxicity in rats by activating the Nrf2-HO-1 pathway. Neurosci. Lett., 2019, 709, 134386.
[http://dx.doi.org/10.1016/j.neulet.2019.134386] [PMID: 31330225]
[142]
Lee, K.; Choi, J.; Choi, B.K.; Gu, Y.M.; Ryu, H.W.; Oh, S.R.; Lee, H.J.; Picroside, I.I.; Picroside, II. Isolated from Pseudolysimachion rotundum var. subintegrum inhibits glucocorticoid refractory serum amyloid A (SAA) Expression and SAA-induced IL-33 secretion. Molecules, 2019, 24(10), 2020.
[http://dx.doi.org/10.3390/molecules24102020] [PMID: 31137813]
[143]
Li, B.; Lei, S.; Xiong, S.; Chen, S.; Zhang, Z. Pharmacokinetics and pharmacodynamics of morroniside: A review. Nat. Prod. Commun., 2019, 2019.
[http://dx.doi.org/10.1177/1934578X19856526]
[144]
Wang, W.; Huang, W.; Li, L.; Ai, H.; Sun, F.; Liu, C.; An, Y. Morroniside prevents peroxide-induced apoptosis by induction of endogenous glutathione in human neuroblastoma cells. Cell. Mol. Neurobiol., 2008, 28(2), 293-305.
[http://dx.doi.org/10.1007/s10571-007-9168-7] [PMID: 17647102]
[145]
Wang, W.; Sun, F.; An, Y.; Ai, H.; Zhang, L.; Huang, W.; Li, L. Morroniside protects human neuroblastoma SH-SY5Y cells against hydrogen peroxide-induced cytotoxicity. Eur. J. Pharmacol., 2009, 613(1-3), 19-23.
[http://dx.doi.org/10.1016/j.ejphar.2009.04.013] [PMID: 19379729]
[146]
Wang, W.; Xu, J.; Li, L.; Wang, P.; Ji, X.; Ai, H.; Zhang, L.; Li, L. Neuroprotective effect of morroniside on focal cerebral ischemia in rats. Brain Res. Bull., 2010, 83(5), 196-201.
[http://dx.doi.org/10.1016/j.brainresbull.2010.07.003] [PMID: 20637265]
[147]
Zhang, J.X.; Wang, R.; Xi, J.; Shen, L.; Zhu, A.Y.; Qi, Q.; Wang, Q.Y.; Zhang, L.J.; Wang, F.C.; Lü, H.Z.; Hu, J.G. Morroniside protects SK-N-SH human neuroblastoma cells against H2O2-induced damage. Int. J. Mol. Med., 2017, 39(3), 603-612.
[http://dx.doi.org/10.3892/ijmm.2017.2882] [PMID: 28204825]
[148]
Li, P.; Matsunaga, K.; Ohizumi, Y. Nerve growth factor-potentiating compounds from Picrorhizae Rhizoma. Biol. Pharm. Bull., 2000, 23(7), 890-892.
[http://dx.doi.org/10.1248/bpb.23.890] [PMID: 10919373]
[149]
Cao, Y.; Liu, J.W.; Yu, Y.J.; Zheng, P.Y.; Zhang, X.D.; Li, T.; Guo, M.C. Synergistic protective effect of picroside II and NGF on PC12 cells against oxidative stress induced by H2O2. Pharmacol. Rep., 2007, 59(5), 573-579.
[PMID: 18048958]
[150]
Guo, N.; Jin, C.; Shen, L.; Wu, F.; Lin, X.; Feng, Y. Chemical components, pharmacological actions, and clinical applications of Rhizoma picrorhizae. Phytother. Res., 2020, 34(5), 1071-1082.
[http://dx.doi.org/10.1002/ptr.6591] [PMID: 31880854]
[151]
Li, T.; Liu, J.W.; Zhang, X.D.; Guo, M.C.; Ji, G. The neuroprotective effect of picroside II from hu-huang-lian against oxidative stress. Am. J. Chin. Med., 2007, 35(4), 681-691.
[http://dx.doi.org/10.1142/S0192415X0700517X] [PMID: 17708634]
[152]
Gong, X.; Su, X.; Liu, H. Diallyl trisulfide, the antifungal component of garlic essential oil and the bioactivity of its nanoemulsions formed by spontaneous emulsification. Molecules, 2021, 26(23), 7186.
[http://dx.doi.org/10.3390/molecules26237186] [PMID: 34885768]
[153]
Calò, L.A.; Fusaro, M.; Davis, P.A. HO-1 attenuates hypertension-induced inflammation/oxidative stress: Support from Bartter’s/Gitelman’s patients. Am. J. Hypertens., 2010, 23(9), 936-936.
[http://dx.doi.org/10.1038/ajh.2010.130] [PMID: 20733571]
[154]
Sun, M.M.; Bu, H.; Li, B.; Yu, J.X.; Guo, Y.S.; Li, C.Y. Neuroprotective potential of phase II enzyme inducer diallyl trisulfide. Neurol. Res., 2009, 31(1), 23-27.
[http://dx.doi.org/10.1179/174313208X332959] [PMID: 18768114]
[155]
Guo, Y.; Zhang, K.; Wang, Q.; Li, Z.; Yin, Y.; Xu, Q.; Duan, W.; Li, C. Neuroprotective effects of diallyl trisulfide in SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis. Brain Res., 2011, 1374, 110-115.
[http://dx.doi.org/10.1016/j.brainres.2010.12.014] [PMID: 21147075]
[156]
Liu, C.; Leng, B.; Li, Y.; Jiang, H.; Duan, W.; Guo, Y.; Li, C.; Hong, K. Diallyl trisulfide protects motor neurons from the neurotoxic protein TDP-43 via activating lysosomal degradation and the antioxidant response. Neurochem. Res., 2018, 43(12), 2304-2312.
[http://dx.doi.org/10.1007/s11064-018-2651-3] [PMID: 30317421]
[157]
Silva-Islas, C.A.; Chánez-Cárdenas, M.E.; Barrera-Oviedo, D.; Ortiz-Plata, A.; Pedraza-Chaverri, J.; Maldonado, P.D. Diallyl trisulfide protects rat brain tissue against the damage induced by ischemia-reperfusion through the Nrf2 pathway. Antioxidants, 2019, 8(9), 410.
[http://dx.doi.org/10.3390/antiox8090410] [PMID: 31540440]
[158]
Zhu, J.; Shen, L.; Lin, X.; Hong, Y.; Feng, Y. Clinical research on traditional chinese medicine compounds and their preparations for amyotrophic lateral sclerosis. Biomed. Pharmacother., 2017, 96, 854-864.
[http://dx.doi.org/10.1016/j.biopha.2017.09.135] [PMID: 29078263]
[159]
Kumar, V.; Gupta, P.; Hassan, M.I. Mechanism and implications of traditional chinese medicine in amyotrophic lateral sclerosis therapy. J. Proteins Proteomics., 2019, 2019, 1-17.
[http://dx.doi.org/10.1007/s42485-019-00009-7]
[160]
Komine, O.; Yamanaka, K. Neuroinflammation in motor neuron disease. Nagoya J. Med. Sci., 2015, 77(4), 537-549.
[PMID: 26663933]
[161]
Hooten, K.G.; Beers, D.R.; Zhao, W.; Appel, S.H. Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. Neurotherapeutics, 2015, 12(2), 364-375.
[http://dx.doi.org/10.1007/s13311-014-0329-3] [PMID: 25567201]
[162]
Liu, J.; Wang, F. Role of neuroinflammation in amyotrophic lateral sclerosis: Cellular mechanisms and therapeutic implications. Front. Immunol., 2017, 8, 1005.
[http://dx.doi.org/10.3389/fimmu.2017.01005] [PMID: 28871262]
[163]
Süssmuth, S.; Brettschneider, J.; Ludolph, A.; Tumani, H. Biochemical markers in CSF of ALS patients. Curr. Med. Chem., 2008, 15(18), 1788-1801.
[http://dx.doi.org/10.2174/092986708785133031] [PMID: 18691039]
[164]
Philips, T.; Robberecht, W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol., 2011, 10(3), 253-263.
[http://dx.doi.org/10.1016/S1474-4422(11)70015-1] [PMID: 21349440]
[165]
Peric, M.; Mitrecic, D.; Andjus, P.R. Targeting astrocytes for treatment in amyotrophic lateral sclerosis. Curr. Pharm. Des., 2018, 23(33), 23.
[http://dx.doi.org/10.2174/1381612823666170615110446] [PMID: 28619002]
[166]
Liu, E.; Karpf, L.; Bohl, D. Neuroinflammation in amyotrophic lateral sclerosis and frontotemporal dementia and the interest of induced pluripotent stem cells to study immune cells interactions with neurons. Front. Mol. Neurosci., 2021, 14, 767041.
[http://dx.doi.org/10.3389/fnmol.2021.767041] [PMID: 34970118]
[167]
Yang, C.; Zhang, X.; Fan, H.; Liu, Y. Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res., 2009, 1282, 133-141.
[http://dx.doi.org/10.1016/j.brainres.2009.05.009] [PMID: 19445907]
[168]
Sikora, E.; Scapagnini, G.; Barbagallo, M. Curcumin, inflammation, ageing and age-related diseases. Immun. Ageing, 2010, 7(1), 1.
[http://dx.doi.org/10.1186/1742-4933-7-1] [PMID: 20205886]
[169]
Chico, L.; Ienco, E.; Bisordi, C.; Gerfo, A.; Schirinzi, E.; Siciliano, G. Curcumin as an ROS scavenger in amyotrophic lateral sclerosis. React. Oxyg. Species, 2016, 2(5)
[http://dx.doi.org/10.20455/ros.2016.861]
[170]
Bedlack, R. ALSUntangled 44: curcumin. Amyotroph. Lateral Scler. Frontotemporal Degener., 2018, 19(7-8), 623-629.
[http://dx.doi.org/10.1080/21678421.2018.1440738] [PMID: 29493344]
[171]
Adami, R.; Bottai, D. Curcumin and neurological diseases. Nutr. Neurosci., 2022, 25(3), 441-461.
[http://dx.doi.org/10.1080/1028415X.2020.1760531] [PMID: 32441587]
[172]
Bi, X.L.; Yang, J.Y.; Dong, Y.X.; Wang, J.M.; Cui, Y.H.; Ikeshima, T.; Zhao, Y.Q.; Wu, C.F. Resveratrol inhibits nitric oxide and TNF-α production by lipopolysaccharide-activated microglia. Int. Immunopharmacol., 2005, 5(1), 185-193.
[http://dx.doi.org/10.1016/j.intimp.2004.08.008] [PMID: 15589480]
[173]
Meng, X.L.; Yang, J.Y.; Chen, G.L.; Wang, L.H.; Zhang, L.J.; Wang, S.; Li, J.; Wu, C.F. Effects of resveratrol and its derivatives on lipopolysaccharide-induced microglial activation and their structure-activity relationships. Chem. Biol. Interact., 2008, 174(1), 51-59.
[http://dx.doi.org/10.1016/j.cbi.2008.04.015] [PMID: 18513711]
[174]
Morita, T. Celastrol: A new therapeutic potential of traditional Chinese medicine. Am. J. Hypertens., 2010, 23(8), 821-821.
[http://dx.doi.org/10.1038/ajh.2010.87] [PMID: 20644533]
[175]
Venkatesha, S.H.; Dudics, S.; Astry, B.; Moudgil, K.D. Control of autoimmune inflammation by celastrol, a natural triterpenoid. Pathog. Dis., 2016, 74(6), ftw059.
[http://dx.doi.org/10.1093/femspd/ftw059] [PMID: 27405485]
[176]
Kiaei, M.; Kipiani, K.; Petri, S.; Chen, J.; Calingasan, N.Y.; Beal, M.F. Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener. Dis., 2005, 2(5), 246-254.
[http://dx.doi.org/10.1159/000090364] [PMID: 16909005]
[177]
Jung, H.W.; Chung, Y.S.; Kim, Y.S.; Park, Y.K. Celastrol inhibits production of nitric oxide and proinflammatory cytokines through MAPK signal transduction and NF-κB in LPS-stimulated BV-2 microglial cells. Exp. Mol. Med., 2007, 39(6), 715-721.
[http://dx.doi.org/10.1038/emm.2007.78] [PMID: 18160842]
[178]
Zhang, R.; Zhu, Y.; Dong, X.; Liu, B.; Zhang, N.; Wang, X.; Liu, L.; Xu, C.; Huang, S.; Chen, L. Celastrol attenuates cadmium-induced neuronal apoptosis via inhibiting Ca2+-CaMKII-Dependent Akt/mTOR pathway. J. Cell. Physiol., 2017, 232(8), 2145-2157.
[http://dx.doi.org/10.1002/jcp.25703] [PMID: 27891586]
[179]
Jin, X.; Wang, J.; Xia, Z.M.; Shang, C.H.; Chao, Q.L.; Liu, Y.R.; Fan, H.Y.; Chen, D.Q.; Qiu, F.; Zhao, F. Anti-inflammatory and anti-oxidative activities of paeonol and its metabolites through blocking MAPK/ERK/p38 signaling pathway. Inflammation, 2016, 39(1), 434-446.
[http://dx.doi.org/10.1007/s10753-015-0265-3] [PMID: 26433578]
[180]
Wang, X.; Zhu, G.; Yang, S.; Wang, X.; Cheng, H.; Wang, F.; Li, X.; Li, Q. Paeonol prevents excitotoxicity in rat pheochromocytoma PC12 cells via downregulation of ERK activation and inhibition of apoptosis. Planta Med., 2011, 77(15), 1695-1701.
[http://dx.doi.org/10.1055/s-0030-1271033] [PMID: 21509715]
[181]
Tseng, Y.T.; Hsu, Y.Y.; Shih, Y.T.; Lo, Y.C. Paeonol attenuates microglia-mediated inflammation and oxidative stress-induced neurotoxicity in rat primary microglia and cortical neurons. Shock, 2012, 37(3), 312-318.
[http://dx.doi.org/10.1097/SHK.0b013e31823fe939] [PMID: 22089194]
[182]
He, L.X.; Tong, X.; Zeng, J.; Tu, Y.; Wu, S.; Li, M.; Deng, H.; Zhu, M.; Li, X.; Nie, H.; Yang, L.; Huang, F. Paeonol suppresses neuroinflammatory responses in LPS-activated microglia cells. Inflammation, 2016, 39(6), 1904-1917.
[http://dx.doi.org/10.1007/s10753-016-0426-z] [PMID: 27624059]
[183]
Vu, V.T.; Liu, X.Q.; Nguyen, M.T.; Lin, Y.L.; Kong, L.Y.; Luo, J.G. New obovatol trimeric neolignans with NO inhibitory activity from the leaves of Magnolia officinalis var. biloba. Bioorg. Chem., 2020, 96, 103586.
[http://dx.doi.org/10.1016/j.bioorg.2020.103586] [PMID: 31982819]
[184]
Ock, J.; Han, H.S.; Hong, S.H.; Lee, S.Y.; Han, Y.M.; Kwon, B.M.; Suk, K. Obovatol attenuates microglia-mediated neuroinflammation by modulating redox regulation. Br. J. Pharmacol., 2010, 159(8), 1646-1662.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00659.x] [PMID: 20397299]
[185]
Liu, J.; Su, G.; Gao, J.; Tian, Y.; Liu, X.; Zhang, Z. Effects of peroxiredoxin 2 in neurological disorders: A review of its molecular mechanisms. Neurochem. Res., 2020, 45(4), 720-730.
[http://dx.doi.org/10.1007/s11064-020-02971-x] [PMID: 32002772]
[186]
Yuan, D.; Ma, B.; Yang, J.; Xie, Y.; Wang, L.; Zhang, L.; Kano, Y.; Wu, C. Anti-inflammatory effects of rhynchophylline and isorhynchophylline in mouse N9 microglial cells and the molecular mechanism. Int. Immunopharmacol., 2009, 9(13-14), 1549-1554.
[http://dx.doi.org/10.1016/j.intimp.2009.09.010] [PMID: 19781666]
[187]
Lee, H.; Kim, Y.O.; Kim, H.; Kim, S.Y.; Noh, H.S.; Kang, S.S.; Cho, G.J.; Choi, W.S.; Suk, K. Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J., 2003, 17(13), 1-21.
[http://dx.doi.org/10.1096/fj.03-0057fje] [PMID: 12897065]
[188]
Du, Z.Y.; Li, X.Y. Inhibitory effects of ginkgolides on nitric oxide production in neonatal rat microglia in vitro. Chung Kuo Yao Li Hsueh Pao, 1998, 19(5), 467-470.
[PMID: 10375812]
[189]
Wang, L.; Lei, Q.; Zhao, S.; Xu, W.; Dong, W.; Ran, J.; Shi, Q.; Fu, J.; Ginkgolide, B. Ginkgolide B maintains calcium homeostasis in hypoxic hippocampal neurons by inhibiting calcium influx and intracellular calcium release. Front. Cell. Neurosci., 2021, 14, 627846.
[http://dx.doi.org/10.3389/fncel.2020.627846] [PMID: 33679323]
[190]
Huang, L.; Shi, Y.; Zhao, L.; Ginkgolide, B. Alleviates learning and memory impairment in rats with vascular dementia by reducing neuroinflammation via regulating NF-ₖB pathway. Front. Pharmacol., 2021, 12.
[191]
Sun, M.; Sheng, Y.; Zhu, Y.; Ginkgolide, B. Ginkgolide B alleviates the inflammatory response and attenuates the activation of LPS induced BV2 cells in vitro and in vivo. Exp. Ther. Med., 2021, 21(6), 586.
[http://dx.doi.org/10.3892/etm.2021.10018] [PMID: 33850558]
[192]
Briones, M.R.S.; Snyder, A.M.; Ferreira, R.C.; Neely, E.B.; Connor, J.R.; Broach, J.R. A possible role for platelet-activating factor receptor in amyotrophic lateral sclerosis treatment. Front. Neurol., 2018, 9, 39.
[http://dx.doi.org/10.3389/fneur.2018.00039] [PMID: 29472887]
[193]
Ko, H.M.; Koppula, S.; Kim, B.W.; Kim, I.S.; Hwang, B.Y.; Suk, K.; Park, E.J.; Choi, D.K. Inflexin attenuates proinflammatory responses and nuclear factor-κB activation in LPS-treated microglia. Eur. J. Pharmacol., 2010, 633(1-3), 98-106.
[http://dx.doi.org/10.1016/j.ejphar.2010.02.011] [PMID: 20159010]
[194]
Ha, S.K.; Moon, E.; Kim, S.Y. Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells. Neurosci. Lett., 2010, 485(3), 143-147.
[http://dx.doi.org/10.1016/j.neulet.2010.08.064] [PMID: 20813161]
[195]
Grewer, C.; Rauen, T. Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J. Membr. Biol., 2005, 203(1), 1-20.
[http://dx.doi.org/10.1007/s00232-004-0731-6] [PMID: 15834685]
[196]
Foran, E.; Trotti, D. Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis. Antioxid. Redox Signal., 2009, 11(7), 1587-1602.
[http://dx.doi.org/10.1089/ars.2009.2444] [PMID: 19413484]
[197]
Choi, D.W. Glutamate receptors and the induction of excitotoxic neuronal death. Prog. Brain Res., 1994, 100, 47-51.
[http://dx.doi.org/10.1016/S0079-6123(08)60767-0]
[198]
Cheah, B.C.; Vucic, S.; Krishnan, A.; Kiernan, M.C. Riluzole, neuroprotection and amyotrophic lateral sclerosis. Curr. Med. Chem., 2010, 17(18), 1942-1959.
[http://dx.doi.org/10.2174/092986710791163939] [PMID: 20377511]
[199]
Rothstein, J.D.; Tsai, G.; Kuncl, R.W.; Clawson, L.; Cornblath, D.R.; Drachman, D.B.; Pestronk, A.; Stauch, B.L.; Coyle, J.T. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann. Neurol., 1990, 28(1), 18-25.
[http://dx.doi.org/10.1002/ana.410280106] [PMID: 2375630]
[200]
Plaitakis, A.; Constantakakis, E. Altered metabolism of excitatory amino acids, N-acetyl-aspartate and N-acetyl-aspartylglutamate in amyotrophic lateral sclerosis. Brain Res. Bull., 1993, 30(3-4), 381-386.
[http://dx.doi.org/10.1016/0361-9230(93)90269-H] [PMID: 8457887]
[201]
Ferrarese, C.; Sala, G.; Riva, R.; Begni, B.; Zoia, C.; Tremolizzo, L.; Galimberti, G.; Millul, A.; Bastone, A.; Mennini, T.; Balzarini, C.; Frattola, L.; Beghi, E. Decreased platelet glutamate uptake in patients with amyotrophic lateral sclerosis. Neurology, 2001, 56(2), 270-272.
[http://dx.doi.org/10.1212/WNL.56.2.270] [PMID: 11160972]
[202]
Cho, J.; Ho Kim, Y.; Kong, J.Y.; Ha, Yang C.; Gook Park, C. Protection of cultured rat cortical neurons from excitotoxicity by asarone, a major essential oil component in the rhizomes of Acorus gramineus. Life Sci., 2002, 71(5), 591-599.
[http://dx.doi.org/10.1016/S0024-3205(02)01729-0] [PMID: 12052443]
[203]
Chen, Y.Z.; Wang, Q.W.; Liang, Y.; Fang, Y.Q. Protective effects of beta-asarone on cultured rat cortical neurons damage induced by glutamate. Zhong Yao Cai, 2007, 30(4), 436-439.
[PMID: 17674798]
[204]
Jiang, B.; Liu, J.H.; Bao, Y.M.; An, L.J. Catalpol inhibits apoptosis in hydrogen peroxide-induced PC12 cells by preventing cytochrome c release and inactivating of caspase cascade. Toxicon, 2004, 43(1), 53-59.
[http://dx.doi.org/10.1016/j.toxicon.2003.10.017] [PMID: 15037029]
[205]
Ved, H.S.; Koenig, M.L.; Dave, J.R.; Doctor, B.P. Huperzine A, a potential therapeutic agent for dementia, reduces neuronal cell death caused by glutamate. Neuroreport, 1997, 8(4), 963-967.
[http://dx.doi.org/10.1097/00001756-199703030-00029] [PMID: 9141073]
[206]
Gordon, R.K.; Nigam, S.V.; Weitz, J.A.; Dave, J.R.; Doctor, B.P.; Ved, H.S. The NMDA receptor ion channel: A site for binding of huperzine A. J. Appl. Toxicol., 2001, 21(S1), S47-S51.
[http://dx.doi.org/10.1002/jat.805] [PMID: 11920920]
[207]
Hemendinger, R.A.; Armstrong, E.J., III; Persinski, R.; Todd, J.; Mougeot, J.L.; Volvovitz, F.; Rosenfeld, J. Huperzine a provides neuroprotection against several cell death inducers using in vitro model systems of motor neuron cell death. Neurotox. Res., 2008, 13(1), 49-61.
[http://dx.doi.org/10.1007/BF03033367] [PMID: 18367440]
[208]
Wang, C.J.; Hu, C.P.; Xu, K.P.; Yuan, Q.; Li, F.S.; Zou, H.; Tan, G.S.; Li, Y.J. Protective effect of selaginellin on glutamate-induced cytotoxicity and apoptosis in differentiated PC12 cells. Naunyn Schmiedebergs Arch. Pharmacol., 2010, 381(1), 73-81.
[http://dx.doi.org/10.1007/s00210-009-0470-4] [PMID: 19936711]
[209]
Zhang, F.; Zheng, W.; Pi, R.; Mei, Z.; Bao, Y.; Gao, J.; Tang, W.; Chen, S.; Liu, P. Cryptotanshinone protects primary rat cortical neurons from glutamate-induced neurotoxicity via the activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. Exp. Brain Res., 2009, 193(1), 109-118.
[http://dx.doi.org/10.1007/s00221-008-1600-9] [PMID: 18936923]
[210]
Kanekura, K.; Hashimoto, Y.; Kita, Y.; Sasabe, J.; Aiso, S.; Nishimoto, I.; Matsuoka, M.A. Rac1/phosphatidylinositol 3-kinase/Akt3 anti-apoptotic pathway, triggered by AlsinLF, the product of the ALS2 gene, antagonizes Cu/Zn-superoxide dismutase (SOD1) mutant-induced motoneuronal cell death. J. Biol. Chem., 2005, 280(6), 4532-4543.
[http://dx.doi.org/10.1074/jbc.M410508200] [PMID: 15579468]
[211]
Chang, M.X.; Xu, L.Y.; Tao, J.S.; Feng, Y. Metabolism and pharmacokinetics of ferulic acid in rats. Zhongguo Zhongyao Zazhi, 1993, 18(5), 300-302, 319.
[PMID: 8216807]
[212]
Jin, Y.; Yan, E.; Fan, Y.; Guo, X.; Zhao, Y.; Zong, Z.; Liu, Z. Neuroprotection by sodium ferulate against glutamate-induced apoptosis is mediated by ERK and PI3 kinase pathways. Acta Pharmacol. Sin., 2007, 28(12), 1881-1890.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00634.x] [PMID: 18031600]
[213]
Ren, Z.; Zhang, R.; Li, Y.; Li, Y.; Yang, Z.; Yang, H. Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int. J. Mol. Med., 2017, 40(5), 1444-1456.
[http://dx.doi.org/10.3892/ijmm.2017.3127] [PMID: 28901374]
[214]
Nakayama, H.; Nakahara, M.; Matsugi, E.; Soda, M.; Hattori, T.; Hara, K.; Usami, A.; Kusumoto, C.; Higashiyama, S.; Kitaichi, K. Protective effect of ferulic acid against hydrogen peroxide induced apoptosis in PC12 cells. Molecules, 2020, 26(1), 90.
[http://dx.doi.org/10.3390/molecules26010090] [PMID: 33379243]
[215]
Yingzhu, CHEN.; Yongjian, GU.; Shiyao, BAO. Protective effects of acanthopanax senticousus saponins on cortical neuronal ischemia-hypoxia injury. J. Clin. Neurol., 1988, 6, 84-87.
[216]
Diao, H-X.; Song, S-L.; Liang, H.; Wang, Y-S.; Wang, W-L.; Ji, A-G. Protective effect of polysaccharides from sea cucumber on glu-induced neurotoxicity in PC12 cells. Zhong Yao Cai, 2009, 32(3), 398-400.
[PMID: 19565721]
[217]
Guatteo, E.; Carunchio, I.; Pieri, M.; Albo, F.; Canu, N.; Mercuri, N.B.; Zona, C. Altered calcium homeostasis in motor neurons following AMPA receptor but not voltage-dependent calcium channels’ activation in a genetic model of amyotrophic lateral sclerosis. Neurobiol. Dis., 2007, 28(1), 90-100.
[http://dx.doi.org/10.1016/j.nbd.2007.07.002] [PMID: 17706428]
[218]
Van Den Bosch, L.; Vandenberghe, W.; Klaassen, H.; Van Houtte, E.; Robberecht, W. Ca2+-permeable AMPA receptors and selective vulnerability of motor neurons. J. Neurol. Sci., 2000, 180(1-2), 29-34.
[http://dx.doi.org/10.1016/S0022-510X(00)00414-7] [PMID: 11090861]
[219]
Prell, T.; Lautenschläger, J.; Grosskreutz, J. Calcium-dependent protein folding in amyotrophic lateral sclerosis. Cell Calcium, 2013, 54(2), 132-143.
[http://dx.doi.org/10.1016/j.ceca.2013.05.007] [PMID: 23764168]
[220]
Hammadi, M.; Oulidi, A.; Gackière, F.; Katsogiannou, M.; Slomianny, C.; Roudbaraki, M.; Dewailly, E.; Delcourt, P.; Lepage, G.; Lotteau, S.; Ducreux, S.; Prevarskaya, N.; Van Coppenolle, F. Modulation of ER stress and apoptosis by endoplasmic reticulum calcium leak via translocon during unfolded protein response: Involvement of GRP78. FASEB J., 2013, 27(4), 1600-1609.
[http://dx.doi.org/10.1096/fj.12-218875] [PMID: 23322163]
[221]
Grosskreutz, J.; Van Den Bosch, L.; Keller, B.U. Calcium dysregulation in amyotrophic lateral sclerosis. Cell Calcium, 2010, 47(2), 165-174.
[http://dx.doi.org/10.1016/j.ceca.2009.12.002] [PMID: 20116097]
[222]
Mao, Q.Q.; Zhong, X.M.; Feng, C.R.; Pan, A.J.; Li, Z.Y.; Huang, Z. Protective effects of paeoniflorin against glutamate-induced neurotoxicity in PC12 cells via antioxidant mechanisms and Ca2+ antagonism. Cell. Mol. Neurobiol., 2010, 30(7), 1059-1066.
[http://dx.doi.org/10.1007/s10571-010-9537-5] [PMID: 20577899]
[223]
Mao, Q.Q.; Zhong, X.M.; Li, Z.Y.; Huang, Z. Paeoniflorin protects against NMDA-induced neurotoxicity in PC12 cells via Ca2+ antagonism. Phytother. Res., 2011, 25(5), 681-685.
[http://dx.doi.org/10.1002/ptr.3321] [PMID: 21043034]
[224]
You, J.; Tan, T.; Kuang, A.; Zhong, Y.; He, S. Biodistribution and metabolism of 3h-gastrodigenin and 3H-gastrodin in mice. J. West China Univ. Med. Sci., 1994, 25, 325-328.
[225]
Chen, W.D.; Lu, X.L. Effect of gastrodin on release of glutamate from cultured nerve cells induced by potassium chloride. Chin. J. Nat. Med., 2000, 2, 8-10.
[226]
Sun, R.; Zhang, Z.; Huang, W.; Lv, L.; Yin, J. Protective effects and machanism of muskone on pheochromocytoma cell injure induced by glutamate. Zhongguo Zhongyao Zazhi, 2009, 34(13), 1701-1704.
[PMID: 19873786]
[227]
Shu-li, S. Effects of ligustrazine on L-type calcium current in SH-SY5Y human neuroblastoma. Chinese J. Neuroimmunol. Neurol., 2004, 11, 43-45.