Combinatorial Implications of Nrf2 Inhibitors with FN3K Inhibitor: In vitro Breast Cancer Study

Page: [2408 - 2425] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Background: Platinum derivatives are chemotherapeutic agents preferred for the treatment of cancers including breast cancer. Oxaliplatin is an anticancer drug that is in phase II studies to treat metastatic breast cancer. However, its usage is constrained by chemoresistance and dose-related side effects.

Objective: The objective of this study is to examine the combinatorial efficacy of brusatol, an Nrf2 blocker, with oxaliplatin (a proven FN3K blocker in our study) in mitigating breast cancer growth in vitro.

Methods: We performed cytotoxicity assays, combination index (CI) analysis, colony formation assays, apoptosis assays, and Western blotting.

Results: Results of our study described the chemosensitizing efficacy of brusatol in combination with lowdose oxaliplatin against breast cancer through synergistic effects in both BT-474 and T47D cells. A significant mitigation in the migration rate of these cancer cells was observed with the combination regimen, which is equivalent to the IC-50 dose of oxaliplatin (125 μM). Furthermore, ROS-mediated and apoptotic modes of cell death were observed with a combinatorial regimen. Colony formation of breast cancer cell lines was mitigated with a combinatorial regimen of bursatol and oxaliplatin than the individual treatment regimen. FN3K expression downregulated with oxaliplatin in T47D cells. The mitigation of FN3K protein expression with a combination regimen was not observed but the Nrf2 downstream antioxidant signaling proteins were significantly downregulated with a combination regimen similar to individual drug regimens.

Conclusion: Our study concluded the combination efficacy of phytochemicals like brusatol in combination with low-dose oxaliplatin (FN3K blocker), which could enhance the chemosensitizing effect in breast cancer and minimize the overall dose requirement of oxaliplatin.

[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Zheng F, Du F, Qian H, et al. Expression and clinical prognostic value of m6A RNA methylation modification in breast cancer. Biomark Res 2021; 9(1): 28.
[http://dx.doi.org/10.1186/s40364-021-00285-w] [PMID: 33926554]
[3]
Parker JS, Mullins M, Cheang MCU, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 2009; 27(8): 1160-7.
[http://dx.doi.org/10.1200/JCO.2008.18.1370] [PMID: 19204204]
[4]
Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009; 361(2): 123-34.
[http://dx.doi.org/10.1056/NEJMoa0900212] [PMID: 19553641]
[5]
Kriege M, Seynaeve C, Meijers-Heijboer H, et al. Sensitivity to first-line chemotherapy for metastatic breast cancer in BRCA1 and BRCA2 mutation carriers. J Clin Oncol 2009; 27(23): 3764-71.
[http://dx.doi.org/10.1200/JCO.2008.19.9067] [PMID: 19564533]
[6]
Kriege M, Jager A, Hooning MJ, et al. The efficacy of taxane chemotherapy for metastatic breast cancer in BRCA1 and BRCA2 mutation carriers. Cancer 2012; 118(4): 899-907.
[http://dx.doi.org/10.1002/cncr.26351] [PMID: 21761396]
[7]
Beeraka NM, Bovilla VR, Doreswamy SH, Puttalingaiah S, Srinivasan A, Madhunapantula SV. The taming of nuclear factor erythroid-2-related factor-2 (Nrf2) deglycation by fructosamine-3-kinase (FN3K)-inhibitors-A novel strategy to combat cancers. Cancers 2021; 13(2): 281.
[http://dx.doi.org/10.3390/cancers13020281] [PMID: 33466626]
[8]
Beeraka NM, Doreswamy SH, Sadhu SP, et al. The role of] exosomes in stemness and neurodegenerative diseases-chemoresistant-cancer therapeutics and phytochemicals. Int J Mol Sci 2020; 21(18): 6818.
[http://dx.doi.org/10.3390/ijms21186818] [PMID: 32957534]
[9]
Chen K, Lu P, Beeraka NM, et al. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers. Semin Cancer Biol 2020; 83: 556-69.
[10]
Gradishar WJ, Anderson BO, Balassanian R, et al. NCCN guidelines insights: Breast cancer, version 1.2017. J Natl Compr Canc Netw 2017; 15(4): 433-51.
[http://dx.doi.org/10.6004/jnccn.2017.0044] [PMID: 28404755]
[11]
Pernaut C, Lopez F, Ciruelos E. Standard neoadjuvant treatment in early/locally advanced breast cancer. Breast Care 2018; 13(4): 244-9.
[http://dx.doi.org/10.1159/000491759] [PMID: 30319326]
[12]
Andreopoulou E, Schweber SJ, Sparano JA, McDaid HM. Therapies for triple negative breast cancer. Expert Opin Pharmacother 2015; 16(7): 983-98.
[http://dx.doi.org/10.1517/14656566.2015.1032246] [PMID: 25881743]
[13]
Sanghvi VR, Leibold J, Mina M, et al. The oncogenic action of NRF2 depends on de-glycation by fructosamine-3-kinase. Cell 2019; 178(4): 807-19.
[http://dx.doi.org/10.1016/j.cell.2019.07.031]
[14]
Bai X, Chen Y, Hou X, Huang M, Jin J. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab Rev 2016; 48(4): 541-67.
[http://dx.doi.org/10.1080/03602532.2016.1197239] [PMID: 27320238]
[15]
Bovilla VR, Kuruburu MG, Bettada VG, et al. Targeted inhibition of anti-inflammatory regulator Nrf2 results in breast cancer retardation in vitro and in vivo. Biomedicines 2021; 9(9): 1119.
[http://dx.doi.org/10.3390/biomedicines9091119] [PMID: 34572304]
[16]
Surh YJ, Kundu J, Na HK. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med 2008; 74(13): 1526-39.
[http://dx.doi.org/10.1055/s-0028-1088302] [PMID: 18937164]
[17]
Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1–Nrf2 pathway. Arch Toxicol 2011; 85(4): 241-72.
[http://dx.doi.org/10.1007/s00204-011-0674-5] [PMID: 21365312]
[18]
Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 2011; 16(2): 123-40.
[http://dx.doi.org/10.1111/j.1365-2443.2010.01473.x] [PMID: 21251164]
[19]
Onodera Y, Motohashi H, Takagi K, et al. NRF2 immunolocalization in human breast cancer patients as a prognostic factor. Endocr Relat Cancer 2014; 21(2): 241-52.
[http://dx.doi.org/10.1530/ERC-13-0234] [PMID: 24302665]
[20]
Manogaran P, Beeraka NM, Huang CY, Vijaya Padma V. Neferine and isoliensinine enhance ‘intracellular uptake of cisplatin’ and induce ‘ROS-mediated apoptosis’ in colorectal cancer cells – A comparative study. Food Chem Toxicol 2019; 132: 110652.
[http://dx.doi.org/10.1016/j.fct.2019.110652] [PMID: 31255669]
[21]
Sivalingam KS, Paramasivan P, Weng CF, Viswanadha V. Neferine potentiates the antitumor effect of cisplatin in human lung adenocarcinoma cells via a mitochondria-mediated apoptosis pathway. J Cell Biochem 2017; 118(9): 2865-76.
[http://dx.doi.org/10.1002/jcb.25937] [PMID: 28214344]
[22]
Yang Y, Tian Z, Guo R, Ren F. Nrf2 inhibitor, brusatol in combination with trastuzumab exerts synergistic antitumor activity in HER2-positive cancers by inhibiting Nrf2/HO-1 and HER2-AKT/ERK1/2 pathways. Oxid Med Cell Longev 2020; 2020: 9867595.
[23]
Serova M, Calvo F, Lokiec F, et al. Characterizations of irofulven cytotoxicity in combination with cisplatin and oxaliplatin in human colon, breast, and ovarian cancer cells. Cancer Chemother Pharmacol 2006; 57(4): 491-9.
[http://dx.doi.org/10.1007/s00280-005-0063-y] [PMID: 16075278]
[24]
Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27-55.
[http://dx.doi.org/10.1016/0065-2571(84)90007-4] [PMID: 6382953]
[25]
Tong N, Zhang J, Chen Y, et al. Berberine sensitizes mutliple human cancer cells to the anticancer effects of doxorubicin in vitro. Oncol Lett 2012; 3(6): 1263-7.
[http://dx.doi.org/10.3892/ol.2012.644] [PMID: 22783430]
[26]
Prasath M, Narasimha MB, Chih-Yang H, Viswanadha VP. Neferine and isoliensinine from Nelumbo nucifera induced reactive oxygen species (ROS)-mediated apoptosis in colorectal cancer HCT-15 cells. Afr J Pharm Pharmacol 2019; 13(8): 90-9.
[http://dx.doi.org/10.5897/AJPP2019.5036]
[27]
Zhang VX, Sze KMF, Chan LK, et al. Antioxidant supplements promote tumor formation and growth and confer drug resistance in hepatocellular carcinoma by reducing intracellular ROS and induction of TMBIM1. Cell Biosci 2021; 11(1): 217.
[http://dx.doi.org/10.1186/s13578-021-00731-0] [PMID: 34924003]
[28]
Staff PO. Correction: Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS One 2014; 9(4): e93799.
[http://dx.doi.org/10.1371/journal.pone.0093799]
[29]
Fu S, Chen X, Lo HW, Lin J. Combined bazedoxifene and paclitaxel treatments inhibit cell viability, cell migration, colony formation, and tumor growth and induce apoptosis in breast cancer. Cancer Lett 2019; 448: 11-9.
[http://dx.doi.org/10.1016/j.canlet.2019.01.026] [PMID: 30707920]
[30]
Almeida VM, Bezerra MA, Nascimento JC, Amorim LMF. Anticancer drug screening: Standardization of in vitro wound healing assay. J Bras Patol Med Lab 2020; 55: 606-19.
[31]
Kabała-Dzik A, Rzepecka-Stojko A, Kubina R, et al. Migration rate inhibition of breast cancer cells treated by caffeic acid and caffeic acid phenethyl ester: An in vitro comparison study. Nutrients 2017; 9(10): 1144.
[http://dx.doi.org/10.3390/nu9101144] [PMID: 29048370]
[32]
Tallarida RJ. Drug synergism: Its detection and applications. J Pharmacol Exp Ther 2001; 298(3): 865-72.
[PMID: 11504778]
[33]
Tian Z, Yang Y, Wu H, et al. The Nrf2 inhibitor brusatol synergistically enhances the cytotoxic effect of lapatinib in HER2-positive cancers. Heliyon 2022; 8(8): e10410.
[http://dx.doi.org/10.1016/j.heliyon.2022.e10410] [PMID: 36090218]
[34]
Azizi M, Ghourchian H, Yazdian F, Dashtestani F. AlizadehZeinabad H. Cytotoxic effect of albumin coated copper nanoparticle on human breast cancer cells of MDA-MB 231. PLoS One 2017; 12(11): e0188639.
[http://dx.doi.org/10.1371/journal.pone.0188639] [PMID: 29186208]
[35]
Fortpied J, Maliekal P, Vertommen D, Van Schaftingen E. Magnesium-dependent phosphatase-1 is a protein-fructosamine-6-phosphatase potentially involved in glycation repair. J Biol Chem 2006; 281(27): 18378-85.
[http://dx.doi.org/10.1074/jbc.M513208200] [PMID: 16670083]
[36]
Takahashi M. Glycation of proteins. Informatics Med 2015; 36: 101166.
[http://dx.doi.org/10.1007/978-4-431-54841-6_182]
[37]
Zhang Q, Ames JM, Smith RD, Baynes JW, Metz TO. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: Probing the pathogenesis of chronic disease. J Proteome Res 2009; 8(2): 754-69.
[http://dx.doi.org/10.1021/pr800858h] [PMID: 19093874]
[38]
Van Schaftingen E, Collard F, Wiame E, Veiga-da-Cunha M. Enzymatic repair of amadori products. Amino Acids 2012; 42(4): 1143-50.
[http://dx.doi.org/10.1007/s00726-010-0780-3] [PMID: 20967558]
[39]
Singh A, Boldin-Adamsky S, Thimmulappa RK, et al. RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res 2008; 68(19): 7975-84.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1401] [PMID: 18829555]
[40]
Bialk P, Wang Y, Banas K, Kmiec EB. Functional gene knockout of NRF2 increases chemosensitivity of human lung cancer A549 cells in vitro and in a xenograft mouse model. Mol Ther Oncolytics 2018; 11: 75-89.
[http://dx.doi.org/10.1016/j.omto.2018.10.002] [PMID: 30505938]
[41]
Wang XJ, Sun Z, Villeneuve NF, et al. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 2008; 29(6): 1235-43.
[http://dx.doi.org/10.1093/carcin/bgn095] [PMID: 18413364]
[42]
Xiang Y, Ye W, Huang C, et al. Brusatol enhances the chemotherapy efficacy of gemcitabine in pancreatic cancer via the Nrf2 signalling pathway. Oxid Med Cell Longev 2018; 2018.
[http://dx.doi.org/10.1155/2018/2360427]
[43]
Karathedath S, Rajamani BM, Musheer Aalam SM, et al. Role of NF-E2 related factor 2 (Nrf2) on chemotherapy resistance in acute myeloid leukemia (AML) and the effect of pharmacological inhibition of Nrf2. PLoS One 2017; 12(5): e0177227.
[http://dx.doi.org/10.1371/journal.pone.0177227] [PMID: 28505160]
[44]
Pouremamali F, Jeddi F, Samadi N. Nrf2-ME-1 axis is associated with 5-FU resistance in gastric cancer cell line. Process Biochem 2022; 114: 174-84.
[45]
Woo Y, Oh J, Kim JS. Suppression of Nrf2 activity by chestnut leaf extract increases chemosensitivity of breast cancer stem cells to paclitaxel. Nutrients 2017; 9(7): 760.
[http://dx.doi.org/10.3390/nu9070760] [PMID: 28718813]
[46]
Chandrasekaran J, Balasubramaniam J, Sellamuthu A, Ravi A. An in vitro study on the reversal of epithelial to mesenchymal transition by brusatol and its synergistic properties in triple-negative breast cancer cells. J Pharm Pharmacol 2021; 73(6): 749-57.
[http://dx.doi.org/10.1093/jpp/rgab018] [PMID: 33769483]
[47]
Evans JP, Winiarski BK, Sutton PA, et al. The Nrf2 inhibitor brusatol is a potent antitumour agent in an orthotopic mouse model of colorectal cancer. Oncotarget 2018; 9(43): 27104-16.
[http://dx.doi.org/10.18632/oncotarget.25497] [PMID: 29930754]
[48]
Cai SJ, Liu Y, Han S, Yang C. Brusatol, an NRF2 inhibitor for future cancer therapeutic. Cell Biosci 2019; 9(1): 45.
[http://dx.doi.org/10.1186/s13578-019-0309-8] [PMID: 31183074]
[49]
Yu X, Shang X, Huang X, Yao G, Song S. Brusatol: A potential anti-tumor quassinoid from Brucea javanica. Chin Herb Med 2020; 12(4): 359-66.
[http://dx.doi.org/10.1016/j.chmed.2020.05.007] [PMID: 36120179]
[50]
Ashkenazi A, Dixit VM. Death receptors: Signaling and modulation. Science 1998; 281(5381): 1305-8.
[http://dx.doi.org/10.1126/science.281.5381.1305] [PMID: 9721089]
[51]
Omabe M, Okorocha E. Molecular basis of cancer initiation. Int J Biotechnol Biochem 2011; 7(2): 229-38.
[52]
Kalai Selvi S, Vinoth A, Varadharajan T, Weng CF, Vijaya Padma V. Neferine augments therapeutic efficacy of cisplatin through ROS- mediated non-canonical autophagy in human lung adenocarcinoma (A549 cells). Food Chem Toxicol 2017; 103: 28-40.
[http://dx.doi.org/10.1016/j.fct.2017.02.020] [PMID: 28223119]
[53]
Marullo R, Werner E, Degtyareva N, et al. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One 2013; 8(11): e81162.
[http://dx.doi.org/10.1371/journal.pone.0081162] [PMID: 24260552]
[54]
Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 2007; 26(7): 1749-60.
[http://dx.doi.org/10.1038/sj.emboj.7601623] [PMID: 17347651]
[55]
Hrgovic I, Doll M, Kleemann J, et al. The histone deacetylase inhibitor trichostatin a decreases lymphangiogenesis by inducing apoptosis and cell cycle arrest via p21-dependent pathways. BMC Cancer 2016; 16(1): 763.
[http://dx.doi.org/10.1186/s12885-016-2807-y] [PMID: 27716272]
[56]
Torrente L, Sanchez C, Moreno R, et al. Crosstalk between Nrf2 and HIPK2 shapes cytoprotective responses. Oncogene 2017; 36(44): 6204-12.
[http://dx.doi.org/10.1038/onc.2017.221] [PMID: 28692050]
[57]
Vallejo MJ, Salazar L, Grijalva M. Oxidative stress modulation and ROS-mediated toxicity in cancer: A review on in vitro models for plant-derived compounds. Oxid Med Cell Longev 2017; 2017.
[http://dx.doi.org/10.1155/2017/4586068]
[58]
López-Barrera LD, Díaz-Torres R, Martínez-Rosas JR, Salazar AM, Rosales C, Ramírez-Noguera P. Modification of proliferation and apoptosis in breast cancer cells by exposure of antioxidant nanoparticles due to modulation of the cellular redox state induced by doxorubicin exposure. Pharmaceutics 2021; 13(8): 1251.
[http://dx.doi.org/10.3390/pharmaceutics13081251] [PMID: 34452212]
[59]
Präbst K, Engelhardt H, Ringgeler S, Hübner H. Basic colorimetric proliferation assays: MTT, WST, and resazurin. In: Cell viability assays. Springer 2017.
[http://dx.doi.org/10.1007/978-1-4939-6960-9_1]
[60]
Maria RM, Altei WF, Selistre-de-Araujo HS, Colnago LA. Effects of doxorubicin, cisplatin, and tamoxifen on the metabolic profile of human breast cancer MCF-7 cells as determined by 1H high-resolution magic angle spinning nuclear magnetic resonance. Biochemistry 2017; 56(16): 2219-24.
[http://dx.doi.org/10.1021/acs.biochem.7b00015] [PMID: 28379688]
[61]
Nogueira V, Park Y, Chen CC, et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 2008; 14(6): 458-70.
[http://dx.doi.org/10.1016/j.ccr.2008.11.003] [PMID: 19061837]
[62]
Zhao XZ, Wu XH. A small compound spindlactone A sensitizes human endometrial cancer cells to TRAIL-induced apoptosis via the inhibition of NAD(P)H dehydrogenase quinone 1. OncoTargets Ther 2018; 11: 3609-17.
[http://dx.doi.org/10.2147/OTT.S165723] [PMID: 29950865]
[63]
Gérard C, Goldbeter A. The balance between cell cycle arrest and cell proliferation: Control by the extracellular matrix and by contact inhibition. Interface Focus 2014; 4(3): 20130075.
[http://dx.doi.org/10.1098/rsfs.2013.0075] [PMID: 24904738]
[64]
Olayanju A, Copple IM, Bryan HK, et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic Biol Med 2015; 78: 202-12.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.11.003] [PMID: 25445704]
[65]
Niture SK, Kaspar JW, Shen J, Jaiswal AK. Nrf2 signaling and cell survival. Toxicol Appl Pharmacol 2010; 244(1): 37-42.
[http://dx.doi.org/10.1016/j.taap.2009.06.009] [PMID: 19538984]
[66]
Wu S, Lu H, Bai Y. Nrf2 in cancers: A double‐edged sword. Cancer Med 2019; 8(5): 2252-67.
[http://dx.doi.org/10.1002/cam4.2101] [PMID: 30929309]
[67]
Syu JP, Chi JT, Kung HN. Nrf2 is the key to chemotherapy resistance in MCF7 breast cancer cells under hypoxia. Oncotarget 2016; 7(12): 14659-72.
[http://dx.doi.org/10.18632/oncotarget.7406] [PMID: 26894974]
[68]
Nogueira V, Hay N. Molecular pathways: Reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res 2013; 19(16): 4309-14.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1424] [PMID: 23719265]
[69]
Sporn MB, Liby KT. NRF2 and cancer: The good, the bad and the importance of context. Nat Rev Cancer 2012; 12(8): 564-71.
[http://dx.doi.org/10.1038/nrc3278] [PMID: 22810811]