Insight to Biofabrication of Liver Microtissues for Disease Modeling: Challenges and Opportunities

Page: [1303 - 1311] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

In the last decade, liver diseases with high mortality rates have become one of the most important health problems in the world. Organ transplantation is currently considered the most effective treatment for compensatory liver failure. An increasing number of patients and shortage of donors has led to the attention of reconstructive medicine methods researchers. The biggest challenge in the development of drugs effective in chronic liver disease is the lack of a suitable preclinical model that can mimic the microenvironment of liver problems. Organoid technology is a rapidly evolving field that enables researchers to reconstruct, evaluate, and manipulate intricate biological processes in vitro. These systems provide a biomimetic model for studying the intercellular interactions necessary for proper organ function and architecture in vivo. Liver organoids, formed by the self-assembly of hepatocytes, are microtissues and can exhibit specific liver characteristics for a long time in vitro. Hepatic organoids are identified as an impressive tool for evaluating potential cures and modeling liver diseases. Modeling various liver diseases, including tumors, fibrosis, non-alcoholic fatty liver, etc., allows the study of the effects of various drugs on these diseases in personalized medicine. Here, we summarize the literature relating to the hepatic stem cell microenvironment and the formation of liver Organoids.

[1]
Dunn, M.A.; Rogal, S.S.; Duarte-Rojo, A.; Lai, J.C. Physical function, physical activity, and quality of life after liver transplantation. Liver Transpl., 2020, 26(5), 702-708.
[http://dx.doi.org/10.1002/lt.25742] [PMID: 32128971]
[2]
Orcutt, S.T.; Anaya, D.A. Liver resection and surgical strategies for management of primary liver cancer. Cancer Contr., 2018, 25(1)
[http://dx.doi.org/10.1177/1073274817744621] [PMID: 29327594]
[3]
Tsochatzis, E.; Coilly, A.; Nadalin, S.; Levistky, J.; Tokat, Y.; Ghobrial, M.; Klinck, J.; Berenguer, M. International liver transplantation consensus statement on end-stage liver disease due to nonalcoholic steatohepatitis and liver transplantation. Transplantation, 2019, 103(1), 45-56.
[http://dx.doi.org/10.1097/TP.0000000000002433] [PMID: 30153225]
[4]
Cong, Y.; Han, X.; Wang, Y.; Chen, Z.; Lu, Y.; Liu, T.; Wu, Z.; Jin, Y.; Luo, Y.; Zhang, X. Drug toxicity evaluation based on organ-on-a-chip technology: A review. Micromachines, 2020, 11(4), 381.
[http://dx.doi.org/10.3390/mi11040381] [PMID: 32260191]
[5]
Wu, Q.; Liu, J.; Wang, X.; Feng, L.; Wu, J.; Zhu, X.; Wen, W.; Gong, X. Organ-on-a-chip: Recent breakthroughs and future prospects. Biomed. Eng. Online, 2020, 19(1), 9.
[http://dx.doi.org/10.1186/s12938-020-0752-0] [PMID: 32050989]
[6]
Prior, N.; Inacio, P.; Huch, M. Liver organoids: From basic research to therapeutic applications. Gut, 2019, 68(12), 2228-2237.
[http://dx.doi.org/10.1136/gutjnl-2019-319256] [PMID: 31300517]
[7]
Liu, Z.; Takeuchi, M.; Nakajima, M.; Hu, C.; Hasegawa, Y.; Huang, Q.; Fukuda, T. Three-dimensional hepatic lobule-like tissue constructs using cell-microcapsule technology. Acta Biomater., 2017, 50, 178-187.
[http://dx.doi.org/10.1016/j.actbio.2016.12.020] [PMID: 27993637]
[8]
Abdollahiyan, P.; Oroojalian, F.; Mokhtarzadeh, A. The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. J. Control. Release, 2021, 332, 460-492.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.036] [PMID: 33675876]
[9]
Hofer, M.; Lutolf, M.P. Engineering organoids. Nat. Rev. Mater., 2021, 6(5), 402-420.
[http://dx.doi.org/10.1038/s41578-021-00279-y] [PMID: 33623712]
[10]
Weston, A.D.; Hood, L. Systems biology, proteomics, and the future of health care: Toward predictive, preventative, and personalized medicine. J. Proteome Res., 2004, 3(2), 179-196.
[http://dx.doi.org/10.1021/pr0499693] [PMID: 15113093]
[11]
Alber, M.; Buganza Tepole, A.; Cannon, W.R.; De, S.; Dura-Bernal, S.; Garikipati, K.; Karniadakis, G.; Lytton, W.W.; Perdikaris, P.; Petzold, L.; Kuhl, E. Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digit. Med., 2019, 2(1), 115.
[http://dx.doi.org/10.1038/s41746-019-0193-y] [PMID: 31799423]
[12]
Breslin, S.; O’Driscoll, L. Three-dimensional cell culture: The missing link in drug discovery. Drug Discov. Today, 2013, 18(5-6), 240-249.
[http://dx.doi.org/10.1016/j.drudis.2012.10.003] [PMID: 23073387]
[13]
Langhans, S.A. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front. Pharmacol., 2018, 9, 6.
[http://dx.doi.org/10.3389/fphar.2018.00006] [PMID: 29410625]
[14]
Lai, H.; Gong, B.; Yin, J.; Qian, J. 3D printing topographic cues for cell contact guidance: A review. Mater. Des., 2022, 218, 110663.
[http://dx.doi.org/10.1016/j.matdes.2022.110663]
[15]
AlMusawi, S.; Ahmed, M.; Nateri, A.S. Understanding cell-cell communication and signaling in the colorectal cancer microenvironment. Clin. Transl. Med., 2021, 11(2), e308.
[http://dx.doi.org/10.1002/ctm2.308] [PMID: 33635003]
[16]
Lancaster, M.A.; Huch, M. Disease modelling in human organoids. Dis. Model. Mech., 2019, 12(7), dmm039347.
[http://dx.doi.org/10.1242/dmm.039347] [PMID: 31383635]
[17]
Akbari, S.; Arslan, N.; Senturk, S.; Erdal, E. Next-generation liver medicine using organoid models. Front. Cell Dev. Biol., 2019, 7, 345.
[http://dx.doi.org/10.3389/fcell.2019.00345] [PMID: 31921856]
[18]
Li, Y.; Tang, P.; Cai, S.; Peng, J.; Hua, G. Organoid based personalized medicine: From bench to bedside. Cell Regen., 2020, 9(1), 21.
[http://dx.doi.org/10.1186/s13619-020-00059-z] [PMID: 33135109]
[19]
Yin, X.; Mead, B.E.; Safaee, H.; Langer, R.; Karp, J.M.; Levy, O. Engineering stem cell organoids. Cell Stem Cell, 2016, 18(1), 25-38.
[http://dx.doi.org/10.1016/j.stem.2015.12.005] [PMID: 26748754]
[20]
Saglam-Metiner, P.; Gulce-Iz, S.; Biray-Avci, C. Bioengineering-inspired three-dimensional culture systems: Organoids to create tumor microenvironment. Gene, 2019, 686, 203-212.
[http://dx.doi.org/10.1016/j.gene.2018.11.058] [PMID: 30481551]
[21]
Ogoke, O.; Maloy, M.; Parashurama, N. The science and engineering of stem cell-derived organoids-examples from hepatic, biliary, and pancreatic tissues. Biol. Rev. Camb. Philos. Soc., 2021, 96(1), 179-204.
[http://dx.doi.org/10.1111/brv.12650] [PMID: 33002311]
[22]
Wörsdörfer, P; Asahina, I; Sumita, Y; Ergün, S Do not keep it simple: Recent advances in the generation of complex organoids. J Nural Trans., 2020, 127(11), 1569-77.
[http://dx.doi.org/10.1007/s00702-020-02198-8]
[23]
Busfield, J. Documenting the financialisation of the pharmaceutical industry. Soc. Sci. Med., 2020, 258, 113096.
[http://dx.doi.org/10.1016/j.socscimed.2020.113096] [PMID: 32563788]
[24]
Rashid, M.B.M.A. Artificial intelligence effecting a paradigm shift in drug development. SLAS Technol., 2021, 26(1), 3-15.
[http://dx.doi.org/10.1177/2472630320956931] [PMID: 32940124]
[25]
Gille, C.; Bölling, C.; Hoppe, A.; Bulik, S.; Hoffmann, S.; Hübner, K.; Karlstädt, A.; Ganeshan, R.; König, M.; Rother, K.; Weidlich, M.; Behre, J.; Holzhütter, H.G. HepatoNet1: A comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Mol. Syst. Biol., 2010, 6(1), 411.
[http://dx.doi.org/10.1038/msb.2010.62] [PMID: 20823849]
[26]
Zhou, Q.; Fan, L.; Li, J. Liver regeneration and tissue engineering. In: Artificial Liver; Springer, 2021; pp. 73-94.
[27]
Lee, S.Y.; Kim, H.J.; Choi, D. Cell sources, liver support systems and liver tissue engineering: Alternatives to liver transplantation. Int. J. Stem Cells, 2015, 8(1), 36-47.
[http://dx.doi.org/10.15283/ijsc.2015.8.1.36] [PMID: 26019753]
[28]
Gómez-Lechón, M.J.; Tolosa, L.; Conde, I.; Donato, M.T. Competency of different cell models to predict human hepatotoxic drugs. Expert Opin. Drug Metab. Toxicol., 2014, 10(11), 1553-1568.
[http://dx.doi.org/10.1517/17425255.2014.967680] [PMID: 25297626]
[29]
Geraghty, R.J.; Capes-Davis, A.; Davis, J.M.; Downward, J.; Freshney, R.I.; Knezevic, I.; Lovell-Badge, R.; Masters, J.R.W.; Meredith, J.; Stacey, G.N.; Thraves, P.; Vias, M. Guidelines for the use of cell lines in biomedical research. Br. J. Cancer, 2014, 111(6), 1021-1046.
[http://dx.doi.org/10.1038/bjc.2014.166] [PMID: 25117809]
[30]
Bissell, D.M.; Levine, G.A.; Bissell, M.J. Glucose metabolism by adult hepatocytes in primary culture and by cell lines from rat liver. Am. J. Physiol. Cell Physiol., 1978, 234(3), C122-C130.
[http://dx.doi.org/10.1152/ajpcell.1978.234.3.C122] [PMID: 629333]
[31]
Young, E.W.K.; Beebe, D.J. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev., 2010, 39(3), 1036-1048.
[http://dx.doi.org/10.1039/b909900j] [PMID: 20179823]
[32]
Liting, S.; Emanuel, G. Induced pluripotent stem cells are induced pluripotent stem cell-like cells. J. Biomed. Res., 2015, 29(1), 1-2.
[http://dx.doi.org/10.7555/JBR.29.20140166] [PMID: 25745470]
[33]
Rashid, S.T.; Corbineau, S.; Hannan, N.; Marciniak, S.J.; Miranda, E.; Alexander, G.; Huang-Doran, I.; Griffin, J.; Ahrlund-Richter, L.; Skepper, J.; Semple, R.; Weber, A.; Lomas, D.A.; Vallier, L. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J. Clin. Invest., 2010, 120(9), 3127-3136.
[http://dx.doi.org/10.1172/JCI43122] [PMID: 20739751]
[34]
Afify, S.M.; Sanchez Calle, A.; Hassan, G.; Kumon, K.; Nawara, H.M.; Zahra, M.H.; Mansour, H.M.; Khayrani, A.C.; Alam, M.J.; Du, J.; Seno, A.; Iwasaki, Y.; Seno, M. A novel model of liver cancer stem cells developed from induced pluripotent stem cells. Br. J. Cancer, 2020, 122(9), 1378-1390.
[http://dx.doi.org/10.1038/s41416-020-0792-z] [PMID: 32203212]
[35]
Chen, Y.F.; Tseng, C.Y.; Wang, H.W.; Kuo, H.C.; Yang, V.W.; Lee, O.K. Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology, 2012, 55(4), 1193-1203.
[http://dx.doi.org/10.1002/hep.24790] [PMID: 22095466]
[36]
Mallanna, SK; Duncan, SA Differentiation of hepatocytes from pluripotent stem cells. Curr Prot Stem Cell Biol, 2013, 26(1), 4.1-4.13.
[http://dx.doi.org/10.1002/9780470151808.sc01g04s26]
[37]
Schwartz, R.E.; Fleming, H.E.; Khetani, S.R.; Bhatia, S.N. Pluripotent stem cell-derived hepatocyte-like cells. Biotechnol. Adv., 2014, 32(2), 504-513.
[http://dx.doi.org/10.1016/j.biotechadv.2014.01.003] [PMID: 24440487]
[38]
Hannoun, Z.; Steichen, C.; Dianat, N.; Weber, A.; Dubart-Kupperschmitt, A. The potential of induced pluripotent stem cell derived hepatocytes. J. Hepatol., 2016, 65(1), 182-199.
[http://dx.doi.org/10.1016/j.jhep.2016.02.025] [PMID: 26916529]
[39]
Xie, Y.; Yao, J.; Jin, W.; Ren, L.; Li, X. Induction and maturation of hepatocyte-like cells in vitro: Focus on technological advances and challenges. Front. Cell Dev. Biol., 2021, 9, 765980.
[http://dx.doi.org/10.3389/fcell.2021.765980] [PMID: 34901010]
[40]
Dedifferentiation, transdifferentiation, and reprogramming: Future directions in regenerative medicine. In: Seminars in reproductive medicine; Eguizabal, C.; Montserrat, N.; Veiga, A.; Belmonte, J.C.I., Eds.; Thieme Medical Publishers, 2013.
[41]
Yang, L.; Li, S.; Hatch, H.; Ahrens, K.; Cornelius, J.G.; Petersen, B.E.; Peck, A.B. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc. Natl. Acad. Sci., 2002, 99(12), 8078-8083.
[http://dx.doi.org/10.1073/pnas.122210699] [PMID: 12048252]
[42]
Tolosa, L.; Pareja, E.; Gómez-Lechón, M.J. Clinical application of pluripotent stem cells: An alternative cell-based therapy for treating liver diseases? Transplantation, 2016, 100(12), 2548-2557.
[http://dx.doi.org/10.1097/TP.0000000000001426] [PMID: 27495745]
[43]
Gattazzo, F.; Urciuolo, A.; Bonaldo, P. Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(8), 2506-2519.
[http://dx.doi.org/10.1016/j.bbagen.2014.01.010] [PMID: 24418517]
[44]
Nuciforo, S.; Heim, M.H. Organoids to model liver disease. JHEP Reports, 2021, 3(1), 100198.
[http://dx.doi.org/10.1016/j.jhepr.2020.100198] [PMID: 33241206]
[45]
Bilzer, M.; Roggel, F.; Gerbes, A.L. Role of Kupffer cells in host defense and liver disease. Liver Int., 2006, 26(10), 1175-1186.
[http://dx.doi.org/10.1111/j.1478-3231.2006.01342.x] [PMID: 17105582]
[46]
Gracia-Sancho, J.; Caparrós, E.; Fernández-Iglesias, A.; Francés, R. Role of liver sinusoidal endothelial cells in liver diseases. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(6), 411-431.
[http://dx.doi.org/10.1038/s41575-020-00411-3] [PMID: 33589830]
[47]
Parthasarathy, G.; Revelo, X.; Malhi, H. Pathogenesis of nonalcoholic steatohepatitis: An overview. Hepatol. Commun., 2020, 4(4), 478-492.
[http://dx.doi.org/10.1002/hep4.1479] [PMID: 32258944]
[48]
Knight, E.; Przyborski, S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J. Anat., 2015, 227(6), 746-756.
[http://dx.doi.org/10.1111/joa.12257] [PMID: 25411113]
[49]
Khademhosseini, A.; Langer, R. Microengineered hydrogels for tissue engineering. Biomaterials, 2007, 28(34), 5087-5092.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.021] [PMID: 17707502]
[50]
Badekila, A.K.; Kini, S.; Jaiswal, A.K. Fabrication techniques of biomimetic scaffolds in three-dimensional cell culture: A review. J. Cell. Physiol., 2021, 236(2), 741-762.
[http://dx.doi.org/10.1002/jcp.29935] [PMID: 32657458]
[51]
Karsdal, M.A.; Manon-Jensen, T.; Genovese, F.; Kristensen, J.H.; Nielsen, M.J.; Sand, J.M.B.; Hansen, N.U.B.; Bay-Jensen, A.C.; Bager, C.L.; Krag, A.; Blanchard, A.; Krarup, H.; Leeming, D.J.; Schuppan, D. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol., 2015, 308(10), G807-G830.
[http://dx.doi.org/10.1152/ajpgi.00447.2014] [PMID: 25767261]
[52]
Ye, S.; Boeter, J.W.B.; Penning, L.C.; Spee, B.; Schneeberger, K. Hydrogels for liver tissue engineering. Bioengineering, 2019, 6(3), 59.
[http://dx.doi.org/10.3390/bioengineering6030059] [PMID: 31284412]
[53]
Tsou, Y.H.; Khoneisser, J.; Huang, P.C.; Xu, X. Hydrogel as a bioactive material to regulate stem cell fate. Bioact. Mater., 2016, 1(1), 39-55.
[http://dx.doi.org/10.1016/j.bioactmat.2016.05.001] [PMID: 29744394]
[54]
Xu, M.; Qin, M.; Cheng, Y.; Niu, X.; Kong, J.; Zhang, X.; Huang, D.; Wang, H. Alginate microgels as delivery vehicles for cell-based therapies in tissue engineering and regenerative medicine. Carbohydr. Polym., 2021, 266, 118128.
[http://dx.doi.org/10.1016/j.carbpol.2021.118128] [PMID: 34044944]
[55]
Liu, T.; Wang, Y.; Zhong, W.; Li, B.; Mequanint, K.; Luo, G.; Xing, M. Biomedical applications of layer-by-layer self-assembly for cell encapsulation: Current status and future perspectives. Adv. Healthc. Mater., 2019, 8(1), 1800939.
[http://dx.doi.org/10.1002/adhm.201800939] [PMID: 30511822]
[56]
Zhang, B.; Li, Y.; Wang, G.; Jia, Z.; Li, H.; Peng, Q.; Gao, Y. Fabrication of agarose concave petridish for 3D-culture microarray method for spheroids formation of hepatic cells. J. Mater. Sci. Mater. Med., 2018, 29(5), 49.
[http://dx.doi.org/10.1007/s10856-018-6058-0] [PMID: 29675647]
[57]
Krull, R.; Lladó-Maldonado, S.; Lorenz, T.; Demming, S.; Büttgenbach, S. Microbioreactors. In: Microsystems for Pharmatechnology; Springer, 2016; pp. 99-152.
[http://dx.doi.org/10.1007/978-3-319-26920-7_4]
[58]
Polidoro, M.A.; Ferrari, E.; Marzorati, S.; Lleo, A.; Rasponi, M. Experimental liver models: From cell culture techniques to microfluidic organs-on-chip. Liver Int., 2021, 41(8), 1744-1761.
[http://dx.doi.org/10.1111/liv.14942] [PMID: 33966344]
[59]
Illath, K.; Kar, S.; Gupta, P.; Shinde, A.; Wankhar, S.; Tseng, F.G.; Lim, K.T.; Nagai, M.; Santra, T.S. Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials, 2022, 280, 121247.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121247] [PMID: 34801251]
[60]
Rothbauer, M.; Wartmann, D.; Charwat, V.; Ertl, P. Recent advances and future applications of microfluidic live-cell microarrays. Biotechnol. Adv., 2015, 33(6), 948-961.
[http://dx.doi.org/10.1016/j.biotechadv.2015.06.006] [PMID: 26133396]
[61]
Moraes, C.; Mehta, G.; Lesher-Perez, S.C.; Takayama, S. Organs-on-a-chip: A focus on compartmentalized microdevices. Ann. Biomed. Eng., 2012, 40(6), 1211-1227.
[http://dx.doi.org/10.1007/s10439-011-0455-6] [PMID: 22065201]
[62]
Fang, X. Microfluidic chip. In: Clinical Molecular Diagnostics; Springer, 2021; pp. 357-375.
[http://dx.doi.org/10.1007/978-981-16-1037-0_26]
[63]
Kulkarni, P.; Parkale, R.; Khare, S.; Kumar, P.; Arya, N. Cell immobilization strategies for tissue engineering: Recent trends and future perspectives. In: Immobilization Strategies; Springer, 2021; pp. 85-139.
[64]
Hajifathaliha, F.; Mahboubi, A.; Bolourchian, N.; Mohit, E.; Nematollahi, L. Multilayer alginate microcapsules for live cell microencapsulation; is there any preference for selecting cationic polymers? Iran. J. Pharm. Res., 2021, 20(2), 173-182.
[PMID: 34567154]
[65]
Razavi, S.; Janfaza, S.; Tasnim, N.; Gibson, D.L.; Hoorfar, M. Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll., 2021, 120, 106882.
[http://dx.doi.org/10.1016/j.foodhyd.2021.106882]
[66]
Da Silva, K.; Kumar, P.; Choonara, Y.E.; du Toit, L.C.; Pillay, V. Three-dimensional printing of extracellular matrix (ECM)-mimicking scaffolds: A critical review of the current ECM materials. J. Biomed. Mater. Res. A, 2020, 108(12), 2324-2350.
[http://dx.doi.org/10.1002/jbm.a.36981] [PMID: 32363804]
[67]
Moradi, E.; Jalili-Firoozinezhad, S.; Solati-Hashjin, M. Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomater., 2020, 116, 67-83.
[http://dx.doi.org/10.1016/j.actbio.2020.08.041] [PMID: 32890749]
[68]
Ahn, J.; Ko, J.; Lee, S.; Yu, J.; Kim, Y.; Jeon, N.L. Microfluidics in nanoparticle drug delivery; From synthesis to pre-clinical screening. Adv. Drug Deliv. Rev., 2018, 128, 29-53.
[http://dx.doi.org/10.1016/j.addr.2018.04.001] [PMID: 29626551]
[69]
Cecen, B.; Bal-Ozturk, A.; Yasayan, G.; Alarcin, E.; Kocak, P.; Tutar, R.; Kozaci, L.D.; Shin, S.R.; Miri, A.K. Selection of natural biomaterials for micro-tissue and organ-on-chip models. J. Biomed. Mater. Res. A, 2022, 110(5), 1147-1165.
[http://dx.doi.org/10.1002/jbm.a.37353] [PMID: 35102687]
[70]
Agarwal, T.; Subramanian, B.; Maiti, T.K. Liver tissue engineering: Challenges and opportunities. ACS Biomater. Sci. Eng., 2019, 5(9), 4167-4182.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00745] [PMID: 33417776]
[71]
Li, K.; Zhang, G.; Zhang, C.; Yang, J.; Wu, C.; Huo, X. Assessment of in vitro 3D large-scale hepatocyte proliferation culture system and automated and intelligent bioreactor systems. Chinese J Tissue Eng Res., 2022, 26(19), 3100.
[72]
Chen, S.; Wang, J.; Ren, H.; Liu, Y.; Xiang, C.; Li, C.; Lu, S.; Shi, Y.; Deng, H.; Shi, X. Hepatic spheroids derived from human induced pluripotent stem cells in bio-artificial liver rescue porcine acute liver failure. Cell Res., 2020, 30(1), 95-97.
[http://dx.doi.org/10.1038/s41422-019-0261-5] [PMID: 31827240]
[73]
Tuerxun, K.; He, J.; Ibrahim, I.; Yusupu, Z.; Yasheng, A.; Xu, Q.; Tang, R.; Aikebaier, A.; Wu, Y.; Tuerdi, M.; Nijiati, M.; Zou, X.; Xu, T. Bioartificial livers: A review of their design and manufacture. Biofabrication, 2022, 14(3), 032003.
[http://dx.doi.org/10.1088/1758-5090/ac6e86] [PMID: 35545058]
[74]
Zhang, Y.; Lu, J.; Ji, F.; Wang, J.; Pan, X.; Li, L. Bio-artificial liver. In: Artificial Liver; Springer, 2021; pp. 479-504.
[75]
Kryou, C.; Leva, V.; Chatzipetrou, M.; Zergioti, I. Bioprinting for liver transplantation. Bioengineering, 2019, 6(4), 95.
[http://dx.doi.org/10.3390/bioengineering6040095] [PMID: 31658719]
[76]
Ma, L.; Wu, Y.; Li, Y.; Aazmi, A.; Zhou, H.; Zhang, B.; Yang, H. Current advances on 3D-bioprinted liver tissue models. Adv. Healthc. Mater., 2020, 9(24), 2001517.
[http://dx.doi.org/10.1002/adhm.202001517] [PMID: 33073522]
[77]
Nie, J.; Gao, Q.; Fu, J.; He, Y. Grafting of 3D bioprinting to in vitro drug screening: A review. Adv. Healthc. Mater., 2020, 9(7), 1901773.
[http://dx.doi.org/10.1002/adhm.201901773] [PMID: 32125787]
[78]
Han, W.; Wu, Q.; Zhang, X.; Duan, Z. Innovation for hepatotoxicity in vitro research models: A review. J. Appl. Toxicol., 2019, 39(1), 146-162.
[http://dx.doi.org/10.1002/jat.3711] [PMID: 30182494]
[79]
Calitz, C. Establishing three-dimensional cell culture models to measure biotransformation and toxicity: North-West University; Campus: Potchefstroom, 2018.
[80]
Ou, X.; Chen, P.; Huang, X.; Li, S.; Liu, B.F. Microfluidic chip electrophoresis for biochemical analysis. J. Sep. Sci., 2020, 43(1), 258-270.
[http://dx.doi.org/10.1002/jssc.201900758] [PMID: 31654552]
[81]
Wang, Y.; Wang, H.; Deng, P.; Tao, T.; Liu, H.; Wu, S.; Chen, W.; Qin, J. Modeling human nonalcoholic fatty liver disease (NAFLD) with an organoids-on-a-chip system. ACS Biomater. Sci. Eng., 2020, 6(10), 5734-5743.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00682] [PMID: 33320545]
[82]
Kanabekova, P.; Kadyrova, A.; Kulsharova, G. Microfluidic organ-on-a-chip devices for liver disease modeling in vitro. Micromachines, 2022, 13(3), 428.
[http://dx.doi.org/10.3390/mi13030428] [PMID: 35334720]
[83]
Rauth, S.; Karmakar, S.; Batra, S.K.; Ponnusamy, M.P. Recent advances in organoid development and applications in disease modeling. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(2), 188527.
[http://dx.doi.org/10.1016/j.bbcan.2021.188527] [PMID: 33640383]
[84]
Zhu, M.; Huang, Y.; Bian, S.; Song, Q.; Zhang, J.; Zheng, W.; Cheng, C. Organoids: Current implications and pharmaceutical applications in liver diseases. Curr. Mol. Pharmacol., 2021, 14(4), 498-508.
[http://dx.doi.org/10.2174/1874467213666201217115854] [PMID: 33334301]
[85]
Hassan, S.; Sebastian, S.; Maharjan, S.; Lesha, A.; Carpenter, A.M.; Liu, X.; Xie, X.; Livermore, C.; Zhang, Y.S.; Zarrinpar, A. Liver-on-a-chip models of fatty liver disease. Hepatology, 2020, 71(2), 733-740.
[http://dx.doi.org/10.1002/hep.31106] [PMID: 31909504]