Potential Herbal Remedies for Treatment of Depression: A Mini Review

Article ID: e121023222146 Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Depression is a psychiatric and mood disorder that impacts a person's mental health and behavior and is frequently linked to suicide. As per the World Health Organization's estimate, depressive disorder will be the main cause of mental disorders by the year 2030, and it has a huge impact on the burden of disease in the world. To treat depression, there are pharmacological and nonpharmacological therapy alternatives. With little to no consideration of other neurochemicals altered in depression, most antidepressant preparations are based on the monoamines, neuroendocrine, and neuro-inflammation concepts.

Objective: The present study aims to provide comprehensive data related to depression, the factors associated, the mechanism involved, herbal plants effective for managing depression, and novel formulations along with patents and clinical trials.

Methods: A thorough assessment of herbs and novel formulations that have been proven effective in treating depression was conducted. After extensive review, the present study includes a mechanism of action of herbal plants showing antidepressant effects, novel formulations, patents, and clinical trials related to depression.

Results: Numerous studies reported that diverse herbal plants have been found to have a positive effect on depression management, such as Panax ginseng, Melissa officinalis, Piper methysticum, Schinus molle L, Kielmeyera coriacea Mart, Elaeocarpus ganitrus, Hypericum perforatum, Lavandula angustifolia Mill, Crocus Sativus L.

Conclusion: Herbal plant research could help establish the potential of isolated compounds from plants with medicinal properties for managing depressive illnesses.

Graphical Abstract

[1]
Ekong, M.B.; Iniodu, C.F. Nutritional therapy can reduce the burden of depression management in low income countries: A review. IBRO Neurosci. Reports, 2021, 11, 15-28.
[http://dx.doi.org/10.1016/j.ibneur.2021.06.002] [PMID: 34939062]
[2]
Huang, R.; Wang, K.; Hu, J. Effect of probiotics on depression: a systematic review and meta-analysis of randomized controlled trials. Nutrients, 2016, 8(8), 483.
[http://dx.doi.org/10.3390/nu8080483] [PMID: 27509521]
[3]
Ren, Y.; Hu, S.; Pu, H.; Zhou, Y.; Jiang, M.; Li, Y.; Deng, C.; Gao, J.; Xu, M.; Ge, C. Juglanin ameliorates depression-like behavior in chronic unpredictable mild stress-induced mice by improving AMPK signaling. J. Funct. Foods, 2022, 98, 105263.
[http://dx.doi.org/10.1016/j.jff.2022.105263]
[4]
Hao, Y.; Ge, H.; Sun, M.; Gao, Y. Selecting an appropriate animal model of depression. Int. J. Mol. Sci., 2019, 20(19), 4827.
[http://dx.doi.org/10.3390/ijms20194827] [PMID: 31569393]
[5]
Moinuddin, G.; Devi, K.; Kumar Khajuria, D. Evaluation of the anti-depressant activity of Myristica fragrans (Nutmeg) in male rats. Avicenna J. Phytomed., 2012, 2(2), 72-78.
[PMID: 25050233]
[6]
Rahim, T.; Rashid, R. Comparison of depression symptoms between primary depression and secondary-to-schizophrenia depression. Int. J. Psychiatry Clin. Pract., 2017, 21(4), 314-317.
[http://dx.doi.org/10.1080/13651501.2017.1324036] [PMID: 28503978]
[7]
Krishna, U; Nayak, RP. Preclinical evaluation of antidepressant activity of aqueous extract of Piper betle leaves in Swiss albino mice. Int. J. Basic Clin. Pharmacol., 2018, 8(1), 143.
[http://dx.doi.org/10.18203/2319-2003.ijbcp20185173]
[8]
Pund, S.; Rasve, G.; Borade, G. Ex vivo permeation characteristics of venlafaxine through sheep nasal mucosa. Eur. J. Pharm. Sci., 2013, 48(1-2), 195-201.
[http://dx.doi.org/10.1016/j.ejps.2012.10.029] [PMID: 23159662]
[9]
Firoozeei, T.S.; Feizi, A.; Rezaeizadeh, H.; Zargaran, A.; Roohafza, H.R.; Karimi, M. The antidepressant effects of lavender (Lavandula angustifolia Mill.): A systematic review and meta-analysis of randomized controlled clinical trials. Complement. Ther. Med., 2021, 59, 102679.
[http://dx.doi.org/10.1016/j.ctim.2021.102679] [PMID: 33549687]
[10]
Navarro, C.; González-Álvarez, I.; González-Álvarez, M.; Manku, M.; Merino, V.; Casabó, V.G.; Bermejo, M. Influence of polyunsaturated fatty acids on Cortisol transport through MDCK and MDCK-MDR1 cells as blood-brain barrier in vitro model. Eur. J. Pharm. Sci., 2011, 42(3), 290-299.
[http://dx.doi.org/10.1016/j.ejps.2010.12.005] [PMID: 21182940]
[11]
Read, J.R.; Sharpe, L.; Modini, M.; Dear, B.F. Multimorbidity and depression: A systematic review and meta-analysis. J. Affect. Disord., 2017, 221, 36-46.
[http://dx.doi.org/10.1016/j.jad.2017.06.009] [PMID: 28628766]
[12]
Rabiei, Z.; Rabiei, S. A review on antidepressant effect of medicinal plants. Bangladesh J. Pharmacol., 2017, 12(1), 1-1.
[http://dx.doi.org/10.3329/bjp.v12i1.29184]
[13]
Moraczewski, J. Aedma, KK Tricyclic antidepressants; StatPearls, 2022.
[14]
Dwyer, A.V.; Whitten, D.L.; Hawrelak, J.A. Herbal medicines, other than St. John’s Wort, in the treatment of depression: A systematic review. Altern. Med. Rev., 2011, 16(1), 40-49.
[PMID: 21438645]
[15]
Tripathi, A.C.; Upadhyay, S.; Paliwal, S.; Saraf, S.K. Privileged scaffolds as MAO inhibitors: Retrospect and prospects. Eur. J. Med. Chem., 2018, 145, 445-497.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.003] [PMID: 29335210]
[16]
Moragrega, I.; Ríos, J.L. Medicinal plants in the treatment of depression: evidence from preclinical studies. Planta Med., 2021, 87(9), 656-685.
[http://dx.doi.org/10.1055/a-1338-1011] [PMID: 33434941]
[17]
Jesulola, E.; Micalos, P.; Baguley, I.J. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model - are we there yet? Behav. Brain Res., 2018, 341, 79-90.
[http://dx.doi.org/10.1016/j.bbr.2017.12.025] [PMID: 29284108]
[18]
Lee, G.; Bae, H. Therapeutic effects of phytochemicals and medicinal herbs on depression. BioMed Res. Int., 2017, 2017, 6596241.
[http://dx.doi.org/10.1155/2017/6596241] [PMID: 28503571]
[19]
Jiang, Y.; Peng, T.; Gaur, U.; Silva, M.; Little, P.; Chen, Z.; Qiu, W.; Zhang, Y.; Zheng, W. Role of corticotropin releasing factor in the neuroimmune mechanisms of depression: Examination of current pharmaceutical and herbal therapies. Front. Cell. Neurosci., 2019, 13, 290.
[http://dx.doi.org/10.3389/fncel.2019.00290] [PMID: 31312123]
[20]
Ali, F; Nemeroff, CB Neuroendocrine alterations in major depressive disorder.Major Depressive Disorder, 2020, pp. 63-74.
[http://dx.doi.org/10.1016/B978-0-323-58131-8.00005-7]
[21]
Pandya, C.D.; Howell, K.R.; Pillai, A. Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 46, 214-223.
[http://dx.doi.org/10.1016/j.pnpbp.2012.10.017] [PMID: 23123357]
[22]
Maes, M.; Galecki, P.; Chang, Y.S.; Berk, M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(3), 676-692.
[http://dx.doi.org/10.1016/j.pnpbp.2010.05.004] [PMID: 20471444]
[23]
Eyre, H.; Baune, B.T. Neuroplastic changes in depression: a role for the immune system. Psychoneuroendocrinology, 2012, 37(9), 1397-1416.
[http://dx.doi.org/10.1016/j.psyneuen.2012.03.019] [PMID: 22525700]
[24]
Cai, T.; Zheng, S.P.; Shi, X.; Yuan, L.Z.; Hu, H.; Zhou, B.; Xiao, S.L.; Wang, F. Therapeutic effect of fecal microbiota transplantation on chronic unpredictable mild stress-induced depression. Front. Cell. Infect. Microbiol., 2022, 12, 900652.
[http://dx.doi.org/10.3389/fcimb.2022.900652] [PMID: 35967846]
[25]
Sarris, J.; Panossian, A.; Schweitzer, I.; Stough, C.; Scholey, A. Herbal medicine for depression, anxiety and insomnia: a review of psychopharmacology and clinical evidence. Eur. Neuropsychopharmacol., 2011, 21(12), 841-860.
[http://dx.doi.org/10.1016/j.euroneuro.2011.04.002] [PMID: 21601431]
[26]
Peppel, L.D.; Ribbers, G.M.; Heijenbrok-Kal, M.H. Pharmacological and non-pharmacological interventions for depression after moderate-to-severe traumatic brain injury: a systematic review and meta-analysis. J. Neurotrauma, 2020, 37(14), 1587-1596.
[http://dx.doi.org/10.1089/neu.2019.6735] [PMID: 32041474]
[27]
Khoodoruth, M.A.S.; Estudillo-Guerra, M.A.; Pacheco-Barrios, K.; Nyundo, A.; Chapa-Koloffon, G.; Ouanes, S. Glutamatergic system in depression and its role in neuromodulatory techniques optimization. Front. Psychiatry, 2022, 13, 886918.
[http://dx.doi.org/10.3389/fpsyt.2022.886918] [PMID: 35492692]
[28]
Duman, R.S. Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections. Dialogues Clin. Neurosci., 2022.
[PMID: 24733968]
[29]
El-Nabarawi, M.A.; Bendas, E.R.; El Rehem, R.T.A.; Abary, M.Y.S. Transdermal drug delivery of paroxetine through lipid-vesicular formulation to augment its bioavailability. Int. J. Pharm., 2013, 443(1-2), 307-317.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.016] [PMID: 23337629]
[30]
Shahzad, Y.; Maqbool, M.; Hussain, T.; Yousaf, A.M.; Khan, I.U.; Mahmood, T.; Jamshaid, M. Natural and semisynthetic polymers blended orodispersible films of citalopram. Nat. Prod. Res., 2020, 34(1), 16-25.
[http://dx.doi.org/10.1080/14786419.2018.1552698] [PMID: 30663358]
[31]
Tyagi, Y.; Madhav, N.V.S. Design of selegiline-loaded bio-nanosuspension for the management of depression using novel bio-retardant from Manilkara zapota. Drug Dev. Ind. Pharm., 2019, 45(8), 1351-1360.
[http://dx.doi.org/10.1080/03639045.2019.1619760] [PMID: 31084445]
[32]
Teaima, M.H.; Abdel Hamid, M.M.; Shoman, N.A.; Jasti, B.R.; El-Nabarawi, M.A.; Yasser, M. Formulation, Characterization and comparative pharmacokinetic study of bupropion floating raft system as a promising approach for treating depression. J. Pharm. Sci., 2020, 109(11), 3451-3461.
[http://dx.doi.org/10.1016/j.xphs.2020.08.011] [PMID: 32835701]
[33]
Tyagi, Y.; Madhav, N.S. Inbuilt novel bioretardant feature of biopolymer isolated from cucumis sativa for designing drug loaded bionanosuspension. J. Drug Assess., 2020, 9(1), 72-81.
[http://dx.doi.org/10.1080/21556660.2020.1745210] [PMID: 32341840]
[34]
Elhesaisy, N.; Swidan, S. Trazodone loaded lipid core poly (ε-caprolactone) nanocapsules: Development, characterization and in vivo antidepressant effect evaluation. Sci. Rep., 2020, 10(1), 1964.
[http://dx.doi.org/10.1038/s41598-020-58803-z] [PMID: 32029776]
[35]
Al-Mogherah, A.I.; Ibrahim, M.A.; Hassan, M.A. Optimization and evaluation of venlafaxine hydrochloride fast dissolving oral films. Saudi Pharm. J., 2020, 28(11), 1374-1382.
[http://dx.doi.org/10.1016/j.jsps.2020.09.001] [PMID: 33250644]
[36]
Szafrański, T. Herbal remedies in depression--state of the art. Psychiatr. Pol., 2014, 48(1), 59-73.
[http://dx.doi.org/10.12740/PP/21865] [PMID: 24946435]
[37]
Fathinezhad, Z.; Sewell, R.D.E.; Lorigooini, Z.; Rafieian-Kopaei, M. Depression and treatment with effective herbs. Curr. Pharm. Des., 2019, 25(6), 738-745.
[http://dx.doi.org/10.2174/1381612825666190402105803] [PMID: 30947651]
[38]
Xing, B.; Li, S.; Yang, J.; Lin, D.; Feng, Y.; Lu, J.; Shao, Q. Phytochemistry, pharmacology, and potential clinical applications of saffron: A review. J. Ethnopharmacol., 2021, 281, 114555.
[http://dx.doi.org/10.1016/j.jep.2021.114555] [PMID: 34438035]
[39]
Ahmad, S.; Azhar, A.; Tikmani, P.; Rafique, H.; Khan, A.; Mesiya, H.; Saeed, H. A randomized clinical trial to test efficacy of chamomile and saffron for neuroprotective and anti-inflammatory responses in depressive patients. Heliyon, 2022, 8(10), e10774.
[http://dx.doi.org/10.1016/j.heliyon.2022.e10774] [PMID: 36217471]
[40]
Ghavami, T.; Kazeminia, M.; Rajati, F. The effect of lavender on stress in individuals: A systematic review and meta-analysis. Complement. Ther. Med., 2022, 68, 102832.
[http://dx.doi.org/10.1016/j.ctim.2022.102832] [PMID: 35429599]
[41]
Shammas, R.L.; Marks, C.E.; Broadwater, G.; Le, E.; Glener, A.D.; Sergesketter, A.R.; Cason, R.W.; Rezak, K.M.; Phillips, B.T.; Hollenbeck, S.T. The effect of lavender oil on perioperative pain, anxiety, depression, and sleep after microvascular breast reconstruction: a prospective, single-blinded, randomized, controlled trial. J. Reconstr. Microsurg., 2021, 37(6), 530-540.
[http://dx.doi.org/10.1055/s-0041-1724465] [PMID: 33548936]
[42]
Ng, Q.X.; Venkatanarayanan, N.; Ho, C.Y.X. Clinical use of Hypericum perforatum (St John’s wort) in depression: A meta-analysis. J. Affect. Disord., 2017, 210, 211-221.
[http://dx.doi.org/10.1016/j.jad.2016.12.048] [PMID: 28064110]
[43]
Fiebich, B.L.; Knörle, R.; Appel, K.; Kammler, T.; Weiss, G. Pharmacological studies in an herbal drug combination of St. John’s Wort (Hypericum perforatum) and passion flower (Passiflora incarnata): In vitro and in vivo evidence of synergy between Hypericum and Passiflora in antidepressant pharmacological models. Fitoterapia, 2011, 82(3), 474-480.
[http://dx.doi.org/10.1016/j.fitote.2010.12.006] [PMID: 21185920]
[44]
Dadhich, A; Jasuja, ND; Chandra, S; Sharma, G Antidepressant effects of fruit extract of Elaeocarpus ganitrus in force swim test. Int. J. Pharm. Sci. Res., 2014, 5(7), 2807.
[45]
Brinckmann, J.A.; Cunningham, A.B.; Harter, D.E.V. Running out of time to smell the roseroots: Reviewing threats and trade in wild Rhodiola rosea L. J. Ethnopharmacol., 2021, 269, 113710.
[http://dx.doi.org/10.1016/j.jep.2020.113710] [PMID: 33358852]
[46]
Amsterdam, J.D.; Panossian, A.G. Rhodiola rosea L. as a putative botanical antidepressant. Phytomedicine, 2016, 23(7), 770-783.
[http://dx.doi.org/10.1016/j.phymed.2016.02.009] [PMID: 27013349]
[47]
Golzio Dos Santos, S.; Fernandes Gomes, I.; Fernandes de Oliveira Golzio, A.M.; Lopes Souto, A.; Scotti, M.T.; Fechine Tavares, J.; Chavez Gutierrez, S.J.; Nóbrega de Almeida, R.; Barbosa-Filho, J.M.; Sobral da Silva, M. Psychopharmacological effects of riparin III from Aniba riparia (Nees) Mez. (Lauraceae) supported by metabolic approach and multivariate data analysis. BMC Compl. Med. Therap., 2020, 20(1), 149.
[http://dx.doi.org/10.1186/s12906-020-02938-z] [PMID: 32416725]
[48]
Chaves, R.C.; Mallmann, A.S.V.; Oliveira, N.F.; Oliveira, I.C.M.; Capibaribe, V.C.C.; da Silva, D.M.A.; Lopes, I.S.; Valentim, J.T.; de Carvalho, A.M.R.; Macêdo, D.S.; Vasconcelos, S.M.M.; Gutierrez, S.J.C.; Barbosa Filho, J.M.; de Sousa, F.C.F. Reversal effect of Riparin IV in depression and anxiety caused by corticosterone chronic administration in mice. Pharmacol. Biochem. Behav., 2019, 180, 44-51.
[http://dx.doi.org/10.1016/j.pbb.2019.03.005] [PMID: 30904544]
[49]
Mallmann, A.S.V.; Chaves, R.C.; de Oliveira, N.F.; Oliveira, I.C.M.; Capibaribe, V.C.C.; Valentim, J.T.; da Silva, D.M.A.; Sartori, D.P.; Rodrigues, G.C.; Filho, A.J.M.C.; Riello, G.B.; Fonteles, M.M.F.; Vasconcelos, S.M.M.; Macedo, D.; Gutierrez, S.J.C.; Filho, J.M.B.; de Carvalho, A.M.R.; de Sousa, F.C.F. Is Riparin III a promising drug in the treatment for depression? Eur. J. Pharm. Sci., 2021, 162, 105824.
[http://dx.doi.org/10.1016/j.ejps.2021.105824] [PMID: 33798709]
[50]
Sela, V.R.; Hattanda, I.; Albrecht, C.M.; De Almeida, C.B.; Obici, S.; Cortez, D.A.; Audi, E.A. Effect of xanthone from Kielmeyera coriacea stems on serotonergic neurons of the median raphe nucleus. Phytomedicine, 2010, 17(3-4), 274-278.
[http://dx.doi.org/10.1016/j.phymed.2009.07.002] [PMID: 19674881]
[51]
Hawiset, T.; Sriraksa, N.; Kamsrijai, U.; Wanchai, K.; Inkaew, P. Anxiolytic and antidepressant-like activities of aqueous extract of Azadirachta indica A. Juss. flower in the stressed rats. Heliyon, 2022, 8(2), e08881.
[http://dx.doi.org/10.1016/j.heliyon.2022.e08881] [PMID: 35198760]
[52]
Saleem, S.; Muhammad, G.; Hussain, M.A.; Bukhari, S.N.A. A comprehensive review of phytochemical profile, bioactives for pharmaceuticals, and pharmacological attributes of Azadirachta indica. Phytother. Res., 2018, 32(7), 1241-1272.
[http://dx.doi.org/10.1002/ptr.6076] [PMID: 29671907]
[53]
Machado, D.G.; Bettio, L.E.B.; Cunha, M.P.; Santos, A.R.S.; Pizzolatti, M.G.; Brighente, I.M.C.; Rodrigues, A.L.S. Antidepressant-like effect of rutin isolated from the ethanolic extract from Schinus molle L. in mice: evidence for the involvement of the serotonergic and noradrenergic systems. Eur. J. Pharmacol., 2008, 587(1-3), 163-168.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.021] [PMID: 18457827]
[54]
Martins, Mdo R.; Arantes, S.; Candeias, F.; Tinoco, M.T.; Cruz-Morais, J. Antioxidant, antimicrobial and toxicological properties of Schinus molle L. essential oils. J. Ethnopharmacol., 2014, 151(1), 485-492.
[http://dx.doi.org/10.1016/j.jep.2013.10.063] [PMID: 24231069]
[55]
Sarris, J.; Kavanagh, D.J.; Byrne, G.; Bone, K.M.; Adams, J.; Deed, G. The Kava Anxiety Depression Spectrum Study (KADSS): A randomized, placebo-controlled crossover trial using an aqueous extract of Piper methysticum. Psychopharmacology (Berl.), 2009, 205(3), 399-407.
[http://dx.doi.org/10.1007/s00213-009-1549-9] [PMID: 19430766]
[56]
Speers, A.B.; Cabey, K.A.; Soumyanath, A.; Wright, K.M. Effects of withania somnifera (ashwagandha) on stress and the stress-related neuropsychiatric disorders anxiety, depression, and insomnia. Curr. Neuropharmacol., 2021, 19(9), 1468-1495.
[http://dx.doi.org/10.2174/1570159X19666210712151556] [PMID: 34254920]
[57]
Araj-Khodaei, M.; Noorbala, A.A.; Yarani, R.; Emadi, F.; Emaratkar, E.; Faghihzadeh, S.; Parsian, Z.; Alijaniha, F.; Kamalinejad, M.; Naseri, M. A double-blind, randomized pilot study for comparison of Melissa officinalis L. and Lavandula angustifolia Mill. with Fluoxetine for the treatment of depression. BMC Compl. Med. Therap., 2020, 20(1), 1-9.
[http://dx.doi.org/10.1186/s12906-020-03003-5]
[58]
Taiwo, A.E.; Leite, F.B.; Lucena, G.M.; Barros, M.; Silveira, D.; Silva, M.V.; Ferreira, V.M. Anxiolytic and antidepressant-like effects of Melissa officinalis (lemon balm) extract in rats: Influence of administration and gender. Indian J. Pharmacol., 2012, 44(2), 189-192.
[http://dx.doi.org/10.4103/0253-7613.93846] [PMID: 22529473]
[59]
Haybar, H.; Javid, A.Z.; Haghighizadeh, M.H.; Valizadeh, E.; Mohaghegh, S.M.; Mohammadzadeh, A. The effects of Melissa officinalis supplementation on depression, anxiety, stress, and sleep disorder in patients with chronic stable angina. Clin. Nutr. ESPEN, 2018, 26, 47-52.
[http://dx.doi.org/10.1016/j.clnesp.2018.04.015] [PMID: 29908682]
[60]
Sanmukhani, J.; Satodia, V.; Trivedi, J.; Patel, T.; Tiwari, D.; Panchal, B.; Goel, A.; Tripathi, C.B. Efficacy and safety of curcumin in major depressive disorder: A randomized controlled trial. Phytother. Res., 2014, 28(4), 579-585.
[http://dx.doi.org/10.1002/ptr.5025] [PMID: 23832433]
[61]
Dang, H.; Chen, Y.; Liu, X.; Wang, Q.; Wang, L.; Jia, W.; Wang, Y. Antidepressant effects of ginseng total saponins in the forced swimming test and chronic mild stress models of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(8), 1417-1424.
[http://dx.doi.org/10.1016/j.pnpbp.2009.07.020] [PMID: 19632285]
[62]
Xu, C.; Teng, J.; Chen, W.; Ge, Q.; Yang, Z.; Yu, C.; Yang, Z.; Jia, W. 20(S)-protopanaxadiol, an active ginseng metabolite, exhibits strong antidepressant-like effects in animal tests. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34(8), 1402-1411.
[http://dx.doi.org/10.1016/j.pnpbp.2010.07.010] [PMID: 20647027]
[63]
Ali, S.S.; Abd El Wahab, M.G.; Ayuob, N.N.; Suliaman, M. The antidepressant-like effect of Ocimum basilicum in an animal model of depression. Biotech. Histochem., 2017, 92(6), 390-401.
[http://dx.doi.org/10.1080/10520295.2017.1323276] [PMID: 28800278]
[64]
Ayuob, N.N.; Balgoon, M.J.; Ali, S.; Alnoury, I.S. ALmohaimeed, H.M.; AbdElfattah, A.A. ALmohaimeed HM, AbdElfattah AA. Ocimum basilicum (basil) modulates apoptosis and neurogenesis in olfactory pulp of mice exposed to chronic unpredictable mild stress. Front. Psychiatry, 2020, 11, 569711.
[http://dx.doi.org/10.3389/fpsyt.2020.569711] [PMID: 33061923]
[65]
Borgonetti, V.; López, V.; Galeotti, N. Ylang-ylang (Cananga odorata (Lam.) Hook. f. & Thomson) essential oil reduced neuropathic-pain and associated anxiety symptoms in mice. J. Ethnopharmacol., 2022, 294, 115362.
[http://dx.doi.org/10.1016/j.jep.2022.115362] [PMID: 35551977]
[66]
Ji, W-W.; Li, R-P.; Li, M.; Wang, S-Y.; Zhang, X.; Niu, X-X.; Li, W.; Yan, L.; Wang, Y.; Fu, Q.; Ma, S-P. Antidepressant-like effect of essential oil of Perilla frutescens in a chronic, unpredictable, mild stress-induced depression model mice. Chin. J. Nat. Med., 2014, 12(10), 753-759.
[http://dx.doi.org/10.1016/S1875-5364(14)60115-1] [PMID: 25443368]
[67]
Hou, T.; Netala, V.R.; Zhang, H.; Xing, Y.; Li, H.; Zhang, Z. Perilla frutescens: a rich source of pharmacological active compounds. Molecules, 2022, 27(11), 3578.
[http://dx.doi.org/10.3390/molecules27113578] [PMID: 35684514]
[68]
Lin, Y.E.; Chou, S.T.; Lin, S.H.; Lu, K.H.; Panyod, S.; Lai, Y.S.; Ho, C.T.; Sheen, L.Y. Antidepressant-like effects of water extract of Gastrodia elata Blume on neurotrophic regulation in a chronic social defeat stress model. J. Ethnopharmacol., 2018, 215, 132-139.
[http://dx.doi.org/10.1016/j.jep.2017.12.044] [PMID: 29288827]
[69]
Chen, W.C.; Lai, Y-S.; Lin, S-H.; Lu, K-H.; Lin, Y-E.; Panyod, S.; Ho, C-T.; Sheen, L-Y. Anti-depressant effects of Gastrodia elata Blume and its compounds gastrodin and 4-hydroxybenzyl alcohol, via the monoaminergic system and neuronal cytoskeletal remodeling. J. Ethnopharmacol., 2016, 182, 190-199.
[http://dx.doi.org/10.1016/j.jep.2016.02.001] [PMID: 26899441]
[70]
Lange, K.W.; Nakamura, Y.; Lange, K.M.; Zhao, H. Tea and depression. Food Sci. Hum. Wellness, 2022, 11(3), 476-482.
[http://dx.doi.org/10.1016/j.fshw.2021.12.032]
[71]
Rothenberg, D.O.N.; Zhang, L. Mechanisms underlying the anti-depressive effects of regular tea consumption. Nutrients, 2019, 11(6), 1361.
[http://dx.doi.org/10.3390/nu11061361] [PMID: 31212946]
[72]
Hurley, L.L.; Akinfiresoye, L.; Kalejaiye, O.; Tizabi, Y. Antidepressant effects of resveratrol in an animal model of depression. Behav. Brain Res., 2014, 268, 1-7.
[http://dx.doi.org/10.1016/j.bbr.2014.03.052] [PMID: 24717328]
[73]
Jiang, C.; Sakakibara, E.; Lin, W.J.; Wang, J.; Pasinetti, G.M.; Salton, S.R. Grape-derived polyphenols produce antidepressant effects via VGF- and BDNF-dependent mechanisms. Ann. N. Y. Acad. Sci., 2019, 1455(1), 196-205.
[http://dx.doi.org/10.1111/nyas.14098] [PMID: 31074515]
[74]
Valdés-Sustaita, B.; Estrada-Camarena, E.; González-Trujano, M.E.; López-Rubalcava, C. Estrogen receptors-β and serotonin mediate the antidepressant-like effect of an aqueous extract of pomegranate in ovariectomized rats. Neurochem. Int., 2021, 142, 104904.
[http://dx.doi.org/10.1016/j.neuint.2020.104904] [PMID: 33220387]
[75]
Cervantes-Anaya, N.; Azpilcueta-Morales, G.; Estrada-Camarena, E.; Ramírez Ortega, D.; Pérez de la Cruz, V.; González-Trujano, M.E.; López-Rubalcava, C. Pomegranate and its components, punicalagin and ellagic acid, promote antidepressant, antioxidant, and free radical-scavenging activity in ovariectomized rats. Front. Behav. Neurosci., 2022, 16, 836681.
[http://dx.doi.org/10.3389/fnbeh.2022.836681] [PMID: 35600992]
[76]
Gu, L.; Liu, Y.J.; Wang, Y.B.; Yi, L.T. Role for monoaminergic systems in the antidepressant-like effect of ethanol extracts from Hemerocallis citrina. J. Ethnopharmacol., 2012, 139(3), 780-787.
[http://dx.doi.org/10.1016/j.jep.2011.11.059] [PMID: 22197914]
[77]
Xu, P.; Wang, K.Z.; Lu, C.; Dong, L.M.; Le Zhai, J.; Liao, Y.H.; Aibai, S.; Yang, Y.; Liu, X.M. Antidepressant-like effects and cognitive enhancement of the total phenols extract of Hemerocallis citrina Baroni in chronic unpredictable mild stress rats and its related mechanism. J. Ethnopharmacol., 2016, 194, 819-826.
[http://dx.doi.org/10.1016/j.jep.2016.09.023] [PMID: 27623554]
[78]
Alkahtani, J.; Elshikh, M.S.; Dwiningsih, Y.; Ahalliya Rathi, M.; Sathya, R.; Vijayaraghavan, P. In-vitro antidepressant property of methanol extract of Bacopa monnieri. J. King Saud Univ. Sci., 2022, 34(8), 102299.
[http://dx.doi.org/10.1016/j.jksus.2022.102299]
[79]
Brimson, J.M.; Brimson, S.; Prasanth, M.I.; Thitilertdecha, P.; Malar, D.S.; Tencomnao, T. The effectiveness of Bacopa monnieri (Linn.) Wettst. as a nootropic, neuroprotective, or antidepressant supplement: Analysis of the available clinical data. Sci. Rep., 2021, 11(1), 596.
[http://dx.doi.org/10.1038/s41598-020-80045-2] [PMID: 33436817]
[80]
Chong, P.S.; Fung, M.L.; Wong, K.H.; Lim, L.W. Therapeutic potential of Hericium erinaceus for depressive disorder. Int. J. Mol. Sci., 2019, 21(1), 163.
[http://dx.doi.org/10.3390/ijms21010163] [PMID: 31881712]
[81]
Chiu, C.H.; Chyau, C.C.; Chen, C.C.; Lee, L.Y.; Chen, W.P.; Liu, J.L.; Lin, W.H.; Mong, M.C. Erinacine A-enriched Hericium erinaceus mycelium produces antidepressant-like effects through modulating BDNF/PI3K/Akt/GSK-3β signaling in mice. Int. J. Mol. Sci., 2018, 19(2), 341.
[http://dx.doi.org/10.3390/ijms19020341] [PMID: 29364170]
[82]
Gupta, G.L.; Fernandes, J. Protective effect of Convolvulus pluricaulis against neuroinflammation associated depressive behavior induced by chronic unpredictable mild stress in rat. Biomed. Pharmacother., 2019, 109, 1698-1708.
[http://dx.doi.org/10.1016/j.biopha.2018.11.046] [PMID: 30551424]
[83]
Agarwa, P.; Sharma, B.; Fatima, A.; Jain, S.K. An update on ayurvedic herb Convolvulus pluricaulis choisy. Asian Pac. J. Trop. Biomed., 2014, 4(3), 245-252.
[http://dx.doi.org/10.1016/S2221-1691(14)60240-9] [PMID: 25182446]
[84]
González-Cortazar, M.; Maldonado-Abarca, A.M.; Jiménez-Ferrer, E.; Marquina, S.; Ventura-Zapata, E.; Zamilpa, A.; Tortoriello, J.; Herrera-Ruiz, M. Isosakuranetin-5-O-rutinoside: a new flavanone with antidepressant activity isolated from Salvia elegans Vahl. Molecules, 2013, 18(11), 13260-13270.
[http://dx.doi.org/10.3390/molecules181113260] [PMID: 24165584]
[85]
Martínez-Hernández, G.B.; Jiménez-Ferrer, E.; González-Cortazar, M.; Román-Ramos, R.; Tortoriello, J.; Vargas-Villa, G.; Herrera-Ruiz, M. Antidepressant and anxiolytic compounds isolated from Salvia elegans interact with serotonergic drugs. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(12), 2419-2428.
[http://dx.doi.org/10.1007/s00210-021-02155-6] [PMID: 34568977]
[86]
Kukula-Koch, W.; Koch, W.; Czernicka, L. Głowniak, K.; Asakawa, Y.; Umeyama, A.; Marzec, Z.; Kuzuhara, T. MAO-A inhibitory potential of terpene constituents from Ginger rhizomes-A bioactivity guided fractionation. Molecules, 2018, 23(6), 1301.
[http://dx.doi.org/10.3390/molecules23061301] [PMID: 29844252]
[87]
Martinez, D.M.; Barcellos, A.; Casaril, A.M.; Savegnago, L.; Lernardão, E.J. Antidepressant-like activity of dehydrozingerone: involvement of the serotonergic and noradrenergic systems. Pharmacol. Biochem. Behav., 2014, 127, 111-117.
[http://dx.doi.org/10.1016/j.pbb.2014.10.010] [PMID: 25449795]
[88]
Moorkoth, S.; Prathyusha, N.S.; Manandhar, S.; Xue, Y.; Sankhe, R.; Pai, K.S.R.; Kumar, N. Antidepressant-like effect of dehydrozingerone from Zingiber officinale by elevating monoamines in brain: In silico and in vivo studies. Pharmacol. Rep., 2021, 73(5), 1273-1286.
[http://dx.doi.org/10.1007/s43440-021-00252-0] [PMID: 34181212]
[89]
Sabrina Anzollin, G.; Zaki, L.; Perin, T.M.; Finger, B.; Perin, L.T.; Petry, F.; Sebulsqui Saraiva, T.; Lima da Costa Lopes, M.L.; Betti, A.H.; Scapinello, J.; Oliveira, J.V.; Magro, J.D.; Müller, L.G. Antidepressant-like effect of Campomanesia xanthocarpa seeds in mice: Involvement of the monoaminergic system. J. Tradit. Complement. Med., 2021, 12(4), 309-317.
[http://dx.doi.org/10.1016/j.jtcme.2021.08.013] [PMID: 35747347]
[90]
Rubnawaz, S.; Kayani, W.K.; Akhtar, N.; Mahmood, R.; Khan, A.; Okla, M.K.; Alamri, S.A.; Alaraidh, I.A.; Alwasel, Y.A.; Mirza, B. Polyphenol rich Ajuga bracteosa transgenic regenerants display better pharmacological potential. Molecules, 2021, 26(16), 4874.
[http://dx.doi.org/10.3390/molecules26164874] [PMID: 34443462]
[91]
Kayani, W.K.; Dilshad, E.; Ahmed, T.; Ismail, H.; Mirza, B. Evaluation of Ajuga bracteosa for antioxidant, anti-inflammatory, analgesic, antidepressant and anticoagulant activities. BMC Complement. Altern. Med., 2016, 16(1), 375.
[http://dx.doi.org/10.1186/s12906-016-1363-y] [PMID: 27677846]
[92]
Chandrasekhar, Y.; Ramya, E.M.; Navya, K.; Phani Kumar, G.; Anilakumar, K.R. Antidepressant like effects of hydrolysable tannins of Terminalia catappa leaf extract via modulation of hippocampal plasticity and regulation of monoamine neurotransmitters subjected to chronic mild stress (CMS). Biomed. Pharmacother., 2017, 86, 414-425.
[http://dx.doi.org/10.1016/j.biopha.2016.12.031] [PMID: 28012396]
[93]
Wu, Q.; Duan, W.Z.; Chen, J.B.; Zhao, X.P.; Li, X.J.; Liu, Y.Y.; Ma, Q.Y.; Xue, Z.; Chen, J.X. Extracellular vesicles: emerging roles in developing therapeutic approach and delivery tool of Chinese herbal medicine for the treatment of depressive disorder. Front. Pharmacol., 2022, 13, 843412.
[http://dx.doi.org/10.3389/fphar.2022.843412] [PMID: 35401216]
[94]
Li, C.; Huang, B.; Zhang, Y.W. Chinese herbal medicine for the treatment of depression: effects on the neuroendocrine-immune network. Pharmaceuticals (Basel), 2021, 14(1), 65.
[http://dx.doi.org/10.3390/ph14010065] [PMID: 33466877]
[95]
Wang, Y.; Shi, Y.H.; Xu, Z.; Fu, H.; Zeng, H.; Zheng, G.Q. Efficacy and safety of Chinese herbal medicine for depression: A systematic review and meta-analysis of randomized controlled trials. J. Psychiatr. Res., 2019, 117, 74-91.
[http://dx.doi.org/10.1016/j.jpsychires.2019.07.003] [PMID: 31326751]
[96]
Hashimoto, K. Application of R-ketamine and salt thereof as pharmaceuticals. United States patent US 10,406,121, 2019.
[97]
Kikuchi, T.; Iwamoto, T.; Hirose, T. Carbostyril derivatives and serotonin reuptake inhibitors for treatment of mood disorders. United States patent US 9387182, 2016.
[98]
Tabuteau, H. Combination of dextromethorphan and bupropion for treating depression. United States patent US 11,229,640, 2022.
[99]
Vitetta, L.; Coulson, S.M.; Hall, S. Treatment for depression and depressive disorders. United States patent US 11,135,181, 2021.
[100]
Yeh, S.T.; Chen, J.M.; Ho, S.L. Method and device for determining impedance of depression. United States patent US 8,633,717, 2014.
[101]
Palmer, M. Methods and compositions for inhibiting glyoxalase 1 (glo1). US20160038559A1, 2022.
[102]
Osvath, L.; Shapiro, C. Systems and methods for diagnosis of depression and other medical conditions. United States patent application US 14/894890,, 2016.
[103]
Wang, J.; Cannamela, M.; Yan, H.; Kleinberg, R. Delivery of esketamine for the treatment of depression., US20210196653A1, 2021.
[104]
Hoffman, R.; Decker, M.; Basso, A.; Rueter, L. Method of treating depression using a TNF-alpha antibody. United States patent application US 11/357,746, 2007.
[105]
Fava, M.; Papakostas, G.; Koch, H.O.; Kronlage, D. Assays and methods for selecting a treatment regimen for a subject with depression. United States patent US 9,540,691, 2017.
[106]
Lalji, K.; Barberich, T. J.; Caron, J.; Wessel, T. Combination of a sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression. WO2005060968A1, 2012.
[107]
García, A.M.; Prodanov, M.P.; Amanda, R.A.; Raymond, J.M. Saffron extract and its use for the prevention of mood disorders related to depression. United States patent US 10,933,110, 2021.
[108]
Fava, M; Papakostas, G; Koch, JH; Kronlage, D Assays and methods for selecting a treatment regimen for a subject with depression and methods for treatment. 2018.
[109]
Etkin, A.; Trivedi, M.; Wu, W. Treatment of depression using machine learning. United States patent application US 17/282,624, 2021.
[110]
Lederman, S Methods and compositions for treating depression using cyclobenzaprine. WO2012122193A1, 2022.
[111]
Xu, Y.; Wang, C.; Klabnik, J.J.; O’Donnell, J.M. Novel therapeutic targets in depression and anxiety: antioxidants as a candidate treatment. Curr. Neuropharmacol., 2014, 12(2), 108-119.
[http://dx.doi.org/10.2174/1570159X11666131120231448] [PMID: 24669206]