An Overview of Diabetic Cardiomyopathy

Article ID: e121023222139 Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Diabetic cardiomyopathy (DCM) is a myocardial disorder that is characterised by structural and functional abnormalities of the heart muscle in the absence of hypertension, valvular heart disease, congenital heart defects, or coronary artery disease (CAD). After witnessing a particular form of cardiomyopathy in diabetic individuals, Rubler et al. came up with the moniker diabetic cardiomyopathy in 1972. Four stages of DCM are documented, and the American College of Cardiology/American Heart Association Stage and New York Heart Association Class for HF have some overlap. Diabetes is linked to several distinct forms of heart failure. Around 40% of people with heart failure with preserved ejection fraction (HFpEF) have diabetes, which is thought to be closely associated with the pathophysiology of HFpEF. Diabetes and HF are uniquely associated in a bidirectional manner. When compared to the general population without diabetes, those with diabetes have a risk of heart failure that is up to four times higher. A biomarker is a trait that is reliably measured and assessed as a predictor of healthy biological activities, pathological processes, or pharmacologic responses to a clinical treatment. Several biomarker values have been discovered to be greater in patients with diabetes than in control subjects among those who have recently developed heart failure. Myocardial fibrosis and hypertrophy are the primary characteristics of DCM, and structural alterations in the diabetic myocardium are often examined by non-invasive, reliable, and reproducible procedures. An invasive method called endomyocardial biopsy (EMB) is most often used to diagnose many cardiac illnesses.

[1]
De Geest B, Mishra M. Role of oxidative stress in diabetic cardiomyopathy. Antioxidants 2022; 11(4): 784.
[http://dx.doi.org/10.3390/antiox11040784] [PMID: 35453469]
[2]
Salvatore T, Pafundi PC, Galiero R, et al. The diabetic cardiomyopathy: The contributing pathophysiological mechanisms. Front Med 2021; 8: 695792.
[http://dx.doi.org/10.3389/fmed.2021.695792] [PMID: 34277669]
[3]
Wei J, Zhao Y, Liang H, Du W, Wang L. Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy. Acta Pharm Sin B 2022; 12(1): 1-17.
[http://dx.doi.org/10.1016/j.apsb.2021.08.026] [PMID: 35127369]
[4]
Dillmann WH. Diabetic cardiomyopathy. Circ Res 2019; 124(8): 1160-2.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314665] [PMID: 30973809]
[5]
Ramesh P, Yeo JL, Brady EM, McCann GP. Role of inflammation in diabetic cardiomyopathy. Ther Adv Endocrinol Metab 2022; 13
[http://dx.doi.org/10.1177/20420188221083530] [PMID: 35308180]
[6]
Phang RJ, Ritchie RH, Hausenloy DJ, Lees JG, Lim SY. Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy. Cardiovasc Res 2023; May 2; 119(3): 668-90.
[http://dx.doi.org/10.1093/cvr/cvac049] [PMID: 35388880]
[7]
Nakamura M, Sadoshima J. Cardiomyopathy in obesity, insulin resistance and diabetes. J Physiol 2020; 598(14): 2977-93.
[http://dx.doi.org/10.1113/JP276747] [PMID: 30869158]
[8]
El-Azab MF, Wakiel AE, Nafea YK, Youssef ME. Role of cannabinoids and the endocannabinoid system in modulation of diabetic cardiomyopathy. World J Diabetes 2022; 13(5): 387-407.
[http://dx.doi.org/10.4239/wjd.v13.i5.387] [PMID: 35664549]
[9]
Jubaidi FF, Zainalabidin S, Taib IS, Hamid ZA, Budin SB. The potential role of flavonoids in ameliorating diabetic cardiomyopathy via alleviation of cardiac oxidative stress, inflammation and apoptosis. Int J Mol Sci 2021; 22(10): 5094.
[http://dx.doi.org/10.3390/ijms22105094] [PMID: 34065781]
[10]
Kanamori H, Naruse G, Yoshida A, et al. Morphological characteristics in diabetic cardiomyopathy associated with autophagy. J Cardiol 2021; 77(1): 30-40.
[http://dx.doi.org/10.1016/j.jjcc.2020.05.009] [PMID: 32907780]
[11]
Longo M, Scappaticcio L, Cirillo P, et al. Glycemic control and the heart: The tale of diabetic cardiomyopathy continues. Biomolecules 2022; 12(2): 272.
[http://dx.doi.org/10.3390/biom12020272] [PMID: 35204778]
[12]
Evangelista I, Nuti R, Picchioni T, Dotta F, Palazzuoli A. Molecular dysfunction and phenotypic derangement in diabetic cardiomyopathy. Int J Mol Sci 2019; 20(13): 3264.
[http://dx.doi.org/10.3390/ijms20133264] [PMID: 31269778]
[13]
Gulsin GS, Athithan L, McCann GP. Diabetic cardiomyopathy: Prevalence, determinants and potential treatments. Ther Adv Endocrinol Metab 2019; 10
[http://dx.doi.org/10.1177/2042018819834869] [PMID: 30944723]
[14]
Qu X, Zhai B, Hu W, et al. Pyrroloquinoline quinone ameliorates diabetic cardiomyopathy by inhibiting the pyroptosis signaling pathway in C57BL/6 mice and AC16 cells. Eur J Nutr 2022; 61(4): 1823-36.
[http://dx.doi.org/10.1007/s00394-021-02768-w] [PMID: 34997266]
[15]
Wang J, Huang X, Liu H, et al. Empagliflozin ameliorates diabetic cardiomyopathy via attenuating oxidative stress and improving mitochondrial function. Oxid Med Cell Longev 2022; 2022: 1-16.
[http://dx.doi.org/10.1155/2022/1122494] [PMID: 35585884]
[16]
Belali OM, Ahmed MM, Mohany M, et al. LCZ696 protects against diabetic cardiomyopathy-induced myocardial inflammation, ER stress, and apoptosis through inhibiting AGEs/NF-κB and PERK/CHOP signaling pathways. Int J Mol Sci 2022; 23(3): 1288.
[http://dx.doi.org/10.3390/ijms23031288] [PMID: 35163209]
[17]
da Silva JS, Gonçalves RGJ, Vasques JF, et al. Mesenchymal stem cell therapy in diabetic cardiomyopathy. Cells 2022; 11(2): 240.
[http://dx.doi.org/10.3390/cells11020240] [PMID: 35053356]
[18]
Zou R, Nie C, Pan S, et al. Co-administration of hydrogen and metformin exerts cardioprotective effects by inhibiting pyroptosis and fibrosis in diabetic cardiomyopathy. Free Radic Biol Med 2022; 183: 35-50.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.03.010] [PMID: 35304269]
[19]
Johnson R, Nxele X, Cour M, et al. Identification of potential biomarkers for predicting the early onset of diabetic cardiomyopathy in a mouse model. Sci Rep 2020; 10(1): 12352.
[http://dx.doi.org/10.1038/s41598-020-69254-x] [PMID: 32703998]
[20]
Randhawa VK, Dhanvantari S, Connelly KA. How diabetes and heart failure modulate each other and condition management. Can J Cardiol 2021; 37(4): 595-608.
[http://dx.doi.org/10.1016/j.cjca.2020.11.014] [PMID: 33276047]
[21]
Marwick TH, Ritchie R, Shaw JE, Kaye D. Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. J Am Coll Cardiol 2018; 71(3): 339-51.
[http://dx.doi.org/10.1016/j.jacc.2017.11.019] [PMID: 29348027]
[22]
Lee WS, Kim J. Application of animal models in diabetic cardiomyopathy. Diabetes Metab J 2021; 45(2): 129-45.
[http://dx.doi.org/10.4093/dmj.2020.0285] [PMID: 33813812]
[23]
Nakamura K, Miyoshi T, Yoshida M, et al. Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus. Int J Mol Sci 2022; 23(7): 3587.
[http://dx.doi.org/10.3390/ijms23073587] [PMID: 35408946]
[24]
Heather LC, Hafstad AD, Halade GV, et al. Guidelines on models of diabetic heart disease. Am J Physiol Heart Circ Physiol 2022; 323(1): H176-200.
[http://dx.doi.org/10.1152/ajpheart.00058.2022] [PMID: 35657616]
[25]
Yang B, Zhu Y, Lu X, Shen C. A novel composite indicator of predicting mortality risk for heart failure patients with diabetes admitted to intensive care unit based on machine learning. Front Endocrinol 2022; 13: 917838.
[http://dx.doi.org/10.3389/fendo.2022.917838] [PMID: 35846312]
[26]
Mehta A, Bhattacharya S, Estep J, Faiman C. Diabetes and Heart Failure. Clin Geriatr Med 2020; 36(3): 447-55.
[http://dx.doi.org/10.1016/j.cger.2020.04.005] [PMID: 32586474]
[27]
Peng M, Fu Y, Wu C, Zhang Y, Ren H, Zhou S. Signaling pathways related to oxidative stress in diabetic cardiomyopathy. Front Endocrinol 2022; 13: 907757.
[http://dx.doi.org/10.3389/fendo.2022.907757] [PMID: 35784531]
[28]
García-Díez E, López-Oliva ME, Caro-Vadillo A, et al. Supplementation with a Cocoa–Carob blend, alone or in combination with metformin, attenuates diabetic cardiomyopathy, cardiac oxidative stress and inflammation in Zucker diabetic rats. Antioxidants 2022; 11(2): 432.
[http://dx.doi.org/10.3390/antiox11020432] [PMID: 35204314]
[29]
Shah AK, Bhullar SK, Elimban V, Dhalla NS. Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants 2021; 10(6): 931.
[http://dx.doi.org/10.3390/antiox10060931] [PMID: 34201261]
[30]
Tan Y, Cheong MS, Cheang WS. Roles of reactive oxygen species in vascular complications of diabetes: Therapeutic properties of medicinal plants and food. Oxygen 2022; 2(3): 246-68.
[http://dx.doi.org/10.3390/oxygen2030018]
[31]
Atale N, Yadav D, Rani V, Jin JO. Pathophysiology, clinical characteristics of diabetic cardiomyopathy: Therapeutic potential of natural polyphenols. Front Nutr 2020; 7: 564352.
[http://dx.doi.org/10.3389/fnut.2020.564352] [PMID: 33344490]
[32]
Čater M, Križančić BLK. Protective role of mitochondrial uncoupling proteins against age-related oxidative stress in type 2 diabetes mellitus. Antioxidants 2022; 11(8): 1473.
[http://dx.doi.org/10.3390/antiox11081473] [PMID: 36009191]
[33]
Wang M, Li Y, Li S, Lv J. Endothelial dysfunction and diabetic cardiomyopathy. Front Endocrinol 2022; 13: 851941.
[http://dx.doi.org/10.3389/fendo.2022.851941] [PMID: 35464057]
[34]
Cavati G, Pirrotta F, Merlotti D, et al. Role of advanced glycation end-products and oxidative stress in type-2-diabetes-induced bone fragility and implications on fracture risk stratification. Antioxidants 2023; 12(4): 928.
[http://dx.doi.org/10.3390/antiox12040928] [PMID: 37107303]
[35]
Kenny HC, Abel ED. Heart failure in type 2 diabetes mellitus. Circ Res 2019; 124(1): 121-41.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311371] [PMID: 30605420]
[36]
Zhan J, Chen C, Wang DW, Li H. Hyperglycemic memory in diabetic cardiomyopathy. Front Med 2022; 16(1): 25-38.
[http://dx.doi.org/10.1007/s11684-021-0881-2] [PMID: 34921674]
[37]
Ritchie RH, Abel ED. Basic mechanisms of diabetic heart Disease. Circ Res 2020; 126(11): 1501-25.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.315913] [PMID: 32437308]
[38]
Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy. Circ Res 2018; 122(4): 624-38.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311586] [PMID: 29449364]
[39]
Entezari M, Hashemi D, Taheriazam A, et al. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed Pharmacother 2022; 146: 112563.
[http://dx.doi.org/10.1016/j.biopha.2021.112563] [PMID: 35062059]
[40]
Nibali L, Gkranias N, Mainas G, Di Pino A. Periodontitis and implant complications in diabetes. Periodontol 2000 2022; 90(1): 88-105.
[http://dx.doi.org/10.1111/prd.12451] [PMID: 35913467]
[41]
Ciarambino T, Crispino P, Leto G, Mastrolorenzo E, Para O, Giordano M. Influence of gender in diabetes mellitus and its complication. Int J Mol Sci 2022; 23(16): 8850.
[http://dx.doi.org/10.3390/ijms23168850] [PMID: 36012115]
[42]
Liu J, Zhang Y, Tian Y, Huang W, Tong N, Fu X. Integrative biology of extracellular vesicles in diabetes mellitus and diabetic complications. Theranostics 2022; 12(3): 1342-72.
[http://dx.doi.org/10.7150/thno.65778] [PMID: 35154494]
[43]
Ren Y, Li Z, Li W, et al. Arginase: Biological and therapeutic implications in diabetes mellitus and its complications. Oxid Med Cell Longev 2022; 2022: 1-20.
[http://dx.doi.org/10.1155/2022/2419412] [PMID: 36338341]
[44]
Tomic D, Shaw JE, Magliano DJ. The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol 2022; 18(9): 525-39.
[http://dx.doi.org/10.1038/s41574-022-00690-7] [PMID: 35668219]
[45]
Verhulst MJL, Loos BG, Gerdes VEA, Teeuw WJ. Evaluating all potential oral complications of diabetes mellitus. Front Endocrinol 2019; 10: 56.
[http://dx.doi.org/10.3389/fendo.2019.00056] [PMID: 30962800]
[46]
Shafqat A, Abdul Rab S, Ammar O, et al. Emerging role of neutrophil extracellular traps in the complications of diabetes mellitus. Front Med 2022; 9: 995993.
[http://dx.doi.org/10.3389/fmed.2022.995993] [PMID: 36082273]
[47]
Zbaar SA, Sarhat ER, Khalaf SJ. Association of C-reactive protein with risk of complications of diabetic nephropathy. Egypt J Chem 2022; 65(8): 483-7.
[http://dx.doi.org/10.21608/ejchem.2021.99957.4868]
[48]
Pelle MC, Provenzano M, Busutti M, et al. Up-date on diabetic nephropathy. Life 2022; 12(8): 1202.
[http://dx.doi.org/10.3390/life12081202] [PMID: 36013381]
[49]
Hu Q, Jiang L, Yan Q, Zeng J, Ma X, Zhao Y. A natural products solution to diabetic nephropathy therapy. Pharmacol Ther 2022; 108314.
[http://dx.doi.org/10.1016/j.pharmthera.2022.108314] [PMID: 36427568]
[50]
Geng X, Li Z, Yang Y. Emerging role of epitranscriptomics in diabetes mellitus and its complications. Front Endocrinol 2022; 13: 907060.
[http://dx.doi.org/10.3389/fendo.2022.907060] [PMID: 35692393]
[51]
Sheng B, Chen X, Li T, et al. An overview of artificial intelligence in diabetic retinopathy and other ocular diseases. Front Public Health 2022; 10: 971943.
[http://dx.doi.org/10.3389/fpubh.2022.971943] [PMID: 36388304]
[52]
Grauslund J. Diabetic retinopathy screening in the emerging era of artificial intelligence. Diabetologia 2022; 65(9): 1415-23.
[http://dx.doi.org/10.1007/s00125-022-05727-0] [PMID: 35639120]
[53]
Smith S, Normahani P, Lane T, Hohenschurz-Schmidt D, Oliver N, Davies AH. Prevention and management strategies for diabetic neuropathy. Life 2022; 12(8): 1185.
[http://dx.doi.org/10.3390/life12081185] [PMID: 36013364]
[54]
Dludla PV, Nkambule BB, Cirilli I, et al. Capsaicin, its clinical significance in patients with painful diabetic neuropathy. Biomed Pharmacother 2022; 153: 113439.
[http://dx.doi.org/10.1016/j.biopha.2022.113439] [PMID: 36076554]
[55]
Khatune NA. A comparative effects of some selected medicinal plants on blood sugar level, lipid profile and oral glucose tolerance test in normal and alloxan-induced diabetic rats. Doctoral dissertation, University of Rajshahi
[56]
Pop-Busui R, Januzzi JL, Bruemmer D, et al. Heart failure: An underappreciated complication of diabetes. A consensus report of the American Diabetes Association. Diabetes Care 2022; 45(7): 1670-90.
[http://dx.doi.org/10.2337/dci22-0014] [PMID: 35796765]
[57]
Zhong Z, Zhang H, Xu T, et al. Identification and verification of immune-related biomarkers and immune infiltration in diabetic heart failure. Front Cardiovasc Med 2022; 9: 931066.
[http://dx.doi.org/10.3389/fcvm.2022.931066] [PMID: 36465455]
[58]
Muscoli S, Barillà F, Tajmir R, et al. The new role of SGLT2 inhibitors in the management of heart failure: Current evidence and future perspective. Pharmaceutics 2022; 14(8): 1730.
[http://dx.doi.org/10.3390/pharmaceutics14081730] [PMID: 36015359]
[59]
Bueno Junior CR, Bano A, Tang Y, et al. Rapid kidney function decline and increased risk of heart failure in patients with type 2 diabetes: Findings from the ACCORD cohort. Cardiovasc Diabetol 2023; 22(1): 131.
[http://dx.doi.org/10.1186/s12933-023-01869-6] [PMID: 37365586]
[60]
Zareini B, Rørth R, Holt A, et al. Heart failure and the prognostic impact and incidence of new-onset of diabetes mellitus: A nationwide cohort study. Cardiovasc Diabetol 2019; 18(1): 79.
[http://dx.doi.org/10.1186/s12933-019-0883-4] [PMID: 31189473]
[61]
Bowes CD, Lien LF, Butler J. Clinical aspects of heart failure in individuals with diabetes. Diabetologia 2019; 62(9): 1529-38.
[http://dx.doi.org/10.1007/s00125-019-4958-2] [PMID: 31342083]
[62]
Rajbhandari J, Fernandez CJ, Agarwal M, Yeap BXY, Pappachan JM. Diabetic heart disease: A clinical update. World J Diabetes 2021; 12(4): 383-406.
[http://dx.doi.org/10.4239/wjd.v12.i4.383] [PMID: 33889286]
[63]
Dunlay SM, Givertz MM, Aguilar D, et al. Type 2 diabetes mellitus and heart failure: A scientific statement from the American Heart Association and the Heart Failure Society of America: This statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation 2019; 140(7): e294-324.
[http://dx.doi.org/10.1161/CIR.0000000000000691] [PMID: 31167558]
[64]
Ho KL, Karwi QG, Connolly D, et al. Metabolic, structural and biochemical changes in diabetes and the development of heart failure. Diabetologia 2022; 65(3): 411-23.
[http://dx.doi.org/10.1007/s00125-021-05637-7] [PMID: 34994805]
[65]
Paolillo S, Marsico F, Prastaro M, et al. Diabetic cardiomyopathy. Heart Fail Clin 2019; 15(3): 341-7.
[http://dx.doi.org/10.1016/j.hfc.2019.02.003] [PMID: 31079692]
[66]
Moura B, Aimo A, Al-Mohammad A, et al. Integration of imaging and circulating biomarkers in heart failure: A consensus document by the biomarkers and imaging study groups of the heart failure association of the european society of cardiology. Eur J Heart Fail 2021; 23(10): 1577-96.
[http://dx.doi.org/10.1002/ejhf.2339] [PMID: 34482622]
[67]
Castiglione V, Aimo A, Vergaro G, Saccaro L, Passino C, Emdin M. Biomarkers for the diagnosis and management of heart failure. Heart Fail Rev 2022; 27(2): 625-43.
[http://dx.doi.org/10.1007/s10741-021-10105-w] [PMID: 33852110]
[68]
Lee MMY, McMurray JJV, Lorenzo-Almorós A, et al. Diabetic cardiomyopathy. Heart 2019; 105(4): 337-45.
[http://dx.doi.org/10.1136/heartjnl-2016-310342] [PMID: 30337334]
[69]
Lorenzo-Almorós A, Cepeda-Rodrigo JM, Lorenzo O. Diabetic cardiomyopathy. Rev Clin Esp 2020; 222(2): 100-11.
[http://dx.doi.org/10.1016/j.rceng.2019.10.012] [PMID: 35115137]
[70]
Seo DY, Ko JR, Jang JE, et al. Exercise as a potential therapeutic target for diabetic cardiomyopathy: Insight into the underlying mechanisms. Int J Mol Sci 2019; 20(24): 6284.
[http://dx.doi.org/10.3390/ijms20246284] [PMID: 31842522]
[71]
Fiedorczuk P, Olszewska E, Rogalska J, Brzóska MM. Osteoprotegerin, chitinase 3-like protein 1, and cardiotrophin-1 as potential biomarkers of obstructive sleep apnea in adults—a case-control study. Int J Mol Sci 2023; 24(3): 2607.
[http://dx.doi.org/10.3390/ijms24032607] [PMID: 36768925]
[72]
Deng J, Yan F, Tian J, Qiao A, Yan D. Potential clinical biomarkers and perspectives in diabetic cardiomyopathy. Diabetol Metab Syndr 2023; 15(1): 35.
[http://dx.doi.org/10.1186/s13098-023-00998-y] [PMID: 36871006]
[73]
Zeller J, Krüger C, Lamounier-Zepter V, et al. The adipo‐fibrokine activin A is associated with metabolic abnormalities and left ventricular diastolic dysfunction in obese patients. ESC Heart Fail 2019; 6(2): 362-70.
[http://dx.doi.org/10.1002/ehf2.12409] [PMID: 30729712]
[74]
Goel H, Melot J, Krinock MD, Kumar A, Nadar SK, Lip GYH. Heart-type fatty acid-binding protein: An overlooked cardiac biomarker. Ann Med 2020; 52(8): 444-61.
[http://dx.doi.org/10.1080/07853890.2020.1800075] [PMID: 32697102]
[75]
Ponikowska B, Iwanek G, Zdanowicz A, et al. Biomarkers of myocardial injury and remodeling in heart failure. J Pers Med 2022; 12(5): 799.
[http://dx.doi.org/10.3390/jpm12050799] [PMID: 35629221]
[76]
Kalayci A, Peacock WF, Nagurney JT, et al. Echocardiographic assessment of insulin‐like growth factor binding protein‐7 and early identification of acute heart failure. ESC Heart Fail 2020; 7(4): 1664-75.
[http://dx.doi.org/10.1002/ehf2.12722] [PMID: 32406612]
[77]
Bracun V, van Essen B, Voors AA, et al. Insulin‐like growth factor binding protein 7 (IGFBP7), a link between heart failure and senescence. ESC Heart Fail 2022; 9(6): 4167-76.
[http://dx.doi.org/10.1002/ehf2.14120] [PMID: 36088651]
[78]
Januzzi JL Jr, Butler J, Sattar N, et al. Insulin-like growth factor binding protein 7 predicts renal and cardiovascular outcomes in the Canagliflozin Cardiovascular Assessment Study. Diabetes Care 2021; 44(1): 210-6.
[http://dx.doi.org/10.2337/dc20-1889] [PMID: 33158949]
[79]
Frangogiannis NG. Cardiac fibrosis. Cardiovasc Res 2021; 117(6): 1450-88.
[http://dx.doi.org/10.1093/cvr/cvaa324] [PMID: 33135058]
[80]
Kumric M, Ticinovic Kurir T, Borovac JA, Bozic J. Role of novel biomarkers in diabetic cardiomyopathy. World J Diabetes 2021; 12(6): 685-705.
[http://dx.doi.org/10.4239/wjd.v12.i6.685] [PMID: 34168722]
[81]
Chaulin A. Cardiac troponins: Contemporary biological data and new methods of determination. Vasc Health Risk Manag 2021; 17: 299-316.
[http://dx.doi.org/10.2147/VHRM.S300002] [PMID: 34113117]
[82]
Chaulin AM, Duplyakov DV. On the potential effect of circadian rhythms of cardiac troponins on the diagnosis of acute myocardial infarction. Signa Vitae 2021; 17(3): 79-84.
[http://dx.doi.org/10.22514/sv.2021.050]
[83]
Cao J, Zheng Y, Luo Z, et al. Myocardial injury and COVID-19: Serum hs-cTnI level in risk stratification and the prediction of 30-day fatality in COVID-19 patients with no prior cardiovascular disease. Theranostics 2020; 10(21): 9663-73.
[http://dx.doi.org/10.7150/thno.47980] [PMID: 32863952]
[84]
Mitani S, Okumura K, Matsui H, et al. Insulin alters cardiac muscle creatine kinase activity. Heart Vessels 2000; 15(1): 23-9.
[http://dx.doi.org/10.1007/s003800070044] [PMID: 11001482]
[85]
Ion A, Stafie C, Mitu O, et al. Biomarkers utility: At the borderline between cardiology and neurology. J Cardiovasc Dev Dis 2021; 8(11): 139.
[http://dx.doi.org/10.3390/jcdd8110139] [PMID: 34821692]
[86]
Anwar AW, Khan HA, Hafeez SA, Firdous K. A comparative study of creatine kinase-MB and Troponin levels among diabetic and non diabetic patients with acute MI. Pak J Med Health Sci 2016; 10: 296-8.
[87]
Wu S, Zhou Y, Xuan Z, et al. Repeated use of SSRIs potentially associated with an increase on serum CK and CK-MB in patients with major depressive disorder: A retrospective study. Sci Rep 2021; 11(1): 13365.
[http://dx.doi.org/10.1038/s41598-021-92807-7] [PMID: 34183728]
[88]
Dabravolski SA, Sadykhov NK, Kartuesov AG, Borisov EE, Sukhorukov VN, Orekhov AN. The role of mitochondrial abnormalities in diabetic cardiomyopathy. Int J Mol Sci 2022; 23(14): 7863.
[http://dx.doi.org/10.3390/ijms23147863] [PMID: 35887211]
[89]
Seferović PM, Tsutsui H, Mcnamara DM. et al.Heart failure association, heart failure society of America, and Japanese heart failure society position statement on endomyocardial biopsy. J Card Fail 2021; 27(7): 727-43.
[http://dx.doi.org/10.1016/j.cardfail.2021.04.010] [PMID: 34022400]
[90]
Wamil M, Goncalves M, Rutherford A, Borlotti A, Pellikka PA. Multi-modality cardiac imaging in the management of diabetic heart disease. Front Cardiovasc Med 2022; 9: 1043711.
[http://dx.doi.org/10.3389/fcvm.2022.1043711] [PMID: 36407437]
[91]
Monda E, Palmiero G, Lioncino M, et al. Multimodality imaging in cardiomyopathies with hypertrophic phenotypes. J Clin Med 2022; 11(3): 868.
[http://dx.doi.org/10.3390/jcm11030868] [PMID: 35160323]
[92]
Lorenzo-Almorós A, Tuñón J, Orejas M, Cortés M, Egido J, Lorenzo Ó. Diagnostic approaches for diabetic cardiomyopathy. Cardiovasc Diabetol 2017; 16(1): 28.
[http://dx.doi.org/10.1186/s12933-017-0506-x] [PMID: 28231848]
[93]
Zhao X, Liu S, Wang X, et al. Diabetic cardiomyopathy: Clinical phenotype and practice. Front Endocrinol 2022; 13: 1032268.
[http://dx.doi.org/10.3389/fendo.2022.1032268] [PMID: 36568097]
[94]
Dockerill C, Gill H, Fernandes JF, Nio AQX, Rajani R, Lamata P. Blood speckle imaging compared with conventional Doppler ultrasound for transvalvular pressure drop estimation in an aortic flow phantom. Cardiovasc Ultrasound 2022; 20(1): 18.
[http://dx.doi.org/10.1186/s12947-022-00286-1] [PMID: 35840940]
[95]
Pan KL, Hsu YC, Chang ST, Chung CM, Lin CL. The role of cardiac fibrosis in diabetic cardiomyopathy: From pathophysiology to clinical diagnostic tools. Int J Mol Sci 2023; 24(10): 8604.
[http://dx.doi.org/10.3390/ijms24108604] [PMID: 37239956]
[96]
Nashnoush M, Chopra C, Sheikh M. Tissue doppler imaging: An overview. immunology and allergy 2021.
[http://dx.doi.org/10.20944/preprints202106.0652.v1]
[97]
Poupore NS, Gudipudi R, Nguyen SA, Pecha PP, Pecha TJ, Carroll WW. Tissue Doppler echocardiography in children with OSA before and after tonsillectomy and adenoidectomy: A systematic review and meta-analysis. Int J Pediatr Otorhinolaryngol 2022; 152: 111002.
[http://dx.doi.org/10.1016/j.ijporl.2021.111002] [PMID: 34894539]
[98]
Nehgme V, Rios P, Acevedo V, Alvarez P. Cardiac abnormalities determined by tissue Doppler imaging and arrhythmias in adolescents with anorexia nervosa. Cardiol Young 2022; 32(2): 266-9.
[http://dx.doi.org/10.1017/S1047951121001852] [PMID: 34092268]
[99]
Pastore MC, Mandoli GE, Dokollari A, et al. Speckle tracking echocardiography in primary mitral regurgitation: Should we reconsider the time for intervention? Heart Fail Rev 2022; 27(4): 1247-60.
[http://dx.doi.org/10.1007/s10741-021-10100-1] [PMID: 33829389]
[100]
Zhang X, Ruan B, Qiao Z, et al. The balance between the left and right ventricular deformation evaluated by speckle tracking echocardiography is a great predictor of the major adverse cardiac event in patients with pulmonary hypertension. Diagnostics 2022; 12(9): 2266.
[http://dx.doi.org/10.3390/diagnostics12092266] [PMID: 36140667]
[101]
Gao L, Lin Y, Ji M, et al. Clinical utility of three-dimensional speckle-tracking echocardiography in heart failure. J Clin Med 2022; 11(21): 6307.
[http://dx.doi.org/10.3390/jcm11216307] [PMID: 36362533]
[102]
Luo S, Dou WQ, Schoepf UJ, Varga-Szemes A, Pridgen WT, Zhang LJ. Cardiovascular magnetic resonance imaging in myocardial involvement of systemic lupus erythematosus. Trends Cardiovasc Med 2022; 33(6): 346-54.
[http://dx.doi.org/10.1016/j.tcm.2022.02.002] [PMID: 35150849]
[103]
Sivalokanathan S. The role of cardiovascular magnetic resonance imaging in the evaluation of hypertrophic cardiomyopathy. Diagnostics 2022; 12(2): 314.
[http://dx.doi.org/10.3390/diagnostics12020314] [PMID: 35204405]
[104]
Wymer DT, Patel KP, Burke WF III, Bhatia VK. Phase-contrast MRI: Physics, techniques, and clinical applications. Radiographics 2020; 40(1): 122-40.
[http://dx.doi.org/10.1148/rg.2020190039] [PMID: 31917664]
[105]
Xu K, Wang XD, Yang ZG, et al. Quantification of peak blood flow velocity at the cardiac valve and great thoracic vessels by four-dimensional flow and two-dimensional phase-contrast MRI compared with echocardiography: a systematic review and meta-analysis. Clin Radiol 2021; 76(11): 863.e1-863.e10.
[http://dx.doi.org/10.1016/j.crad.2021.07.011] [PMID: 34404516]
[106]
Petronio AS, Angelillis M, De Backer O, et al. Bicuspid aortic valve sizing for transcatheter aortic valve implantation: Development and validation of an algorithm based on multi-slice computed tomography. J Cardiovasc Comput Tomogr 2020; 14(5): 452-61.
[http://dx.doi.org/10.1016/j.jcct.2020.01.007] [PMID: 32001214]
[107]
Hedeer F, Akil S, Oddstig J, et al. Diagnostic accuracy for CZT gamma camera compared to conventional gamma camera technique with myocardial perfusion single-photon emission computed tomography: Assessment of myocardial infarction and function. J Nucl Cardiol 2023; 1-2.
[http://dx.doi.org/10.1007/s12350-022-03185-0] [PMID: 36913172]
[108]
Yao Y, Wei TJ, Wang DW. The feasibility of 18F-FDG gated positron emission tomography (PET) for left ventricular dyssynchrony assessment in comparison with 99mTc-MIBI gated single-photon emission computed tomography (SPECT) among patients with prior myocardial infarction. Quant Imaging Med Surg 2022; 12(4): 2454-63.
[http://dx.doi.org/10.21037/qims-21-822] [PMID: 35371936]
[109]
Li T, Dou J, Yao Q, et al. Prognostic significance of myocardial salvage obtained by gated SPECT myocardial perfusion imaging using scoring evaluation method early after primary percutaneous coronary intervention in ST-segment-elevation myocardial infarction
[http://dx.doi.org/10.21203/rs.3.rs-2228018/v1]
[110]
Rastgou F, Soltanabadi M, Firoozabadi H, et al. Correlation between ventricular perfusion ischemia and left ventricular dyssynchrony in phase analysis by gated SPECT MPI. Indian Heart J 2022; 23(1): 184-91.
[111]
Tarkin JM, Ćorović A, Wall C, Gopalan D, Rudd JHF. Positron emission tomography imaging in cardiovascular disease. Heart 2020; 106(22): 1712-8.
[http://dx.doi.org/10.1136/heartjnl-2019-315183] [PMID: 32571959]
[112]
de Almeida J, Martinho S, Gonçalves L, Ferreira M. Positron emission tomography in coronary heart disease. Appl Sci 2022; 12(9): 4704.
[http://dx.doi.org/10.3390/app12094704]
[113]
Fadhil OQ, Ali SA, Hatef ZS, Allak W, Yeisen R. Detection of subclinical diabetic cardiomyopathy before being overt heart failure. Heart Fail Clin 2022; 18(1)