Current Cancer Therapy Reviews

Author(s): Israel Lara-Vega*

DOI: 10.2174/0115733947263244231002042219

Upgrading Melanoma Treatment: Promising Immunotherapies Combinations in the Preclinical Mouse Model

Page: [489 - 509] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Background: Melanoma, known for its high metastatic potential, does not respond well to existing treatments in advanced stages. As a solution, immunotherapy-based treatments, including anti-PD-1/L1 and anti-CTLA-4, have been developed and evaluated in preclinical mouse models to overcome resistance. Although these treatments display the potential to suppress tumor growth, there remains a crucial requirement for a thorough assessment of long-term efficacy in preventing metastasis or recurrence and improving survival rates.

Methods: From 2016 onwards, a thorough examination of combined immunotherapies for the treatment of cutaneous melanoma in preclinical mouse models was conducted. The search was conducted using MeSH Terms algorithms in PubMed®, resulting in the identification of forty-five studies that met the rigorous inclusion criteria for screening.

Results: The C57 mouse model bearing B16-melanoma has been widely utilized to assess the efficacy of immunotherapies. The combination of therapies has demonstrated a synergistic impact, leading to potent antitumor activity. One extensively studied method for establishing metastatic models involves the intravenous administration of malignant cells, with several combined therapies under investigation. The primary focus of evaluation has been on combined immunotherapies utilizing PD- 1/L1 and CTLA-4 blockade, although alternative immunotherapies not involving PD-1/L1 and CTLA-4 blockade have also been identified. Additionally, the review provides detailed treatment regimens for each combined approach.

Conclusion: The identification of techniques for generating simulated models of metastatic melanoma and investigating various therapeutic combinations will greatly aid in evaluating the overall systemic efficacy of immunotherapy. This will be especially valuable for conducting short-term preclinical experiments that have the potential for clinical studies.

Graphical Abstract

[1]
Tímár, J.; Ladányi, A. Molecular pathology of skin melanoma: Epidemiology, differential diagnostics, prognosis and therapy prediction. Int. J. Mol. Sci., 2022, 23(10), 5384.
[http://dx.doi.org/10.3390/ijms23105384] [PMID: 35628196]
[2]
Seedor, R.S.; Orloff, M. Treatment of metastatic melanoma in the elderly. Curr. Oncol. Rep., 2022, 24(7), 825-833.
[http://dx.doi.org/10.1007/s11912-022-01257-5] [PMID: 35316844]
[3]
Alegre, M.L.; Noel, P.J.; Eisfelder, B.J. Regulation of surface and intracellular expression of CTLA4 on mouse T cells. J. Immunol., 1996, 157(11), 4762-4770.
[http://dx.doi.org/10.4049/jimmunol.157.11.4762] [PMID: 8943377]
[4]
Willsmore, Z.N.; Coumbe, B.G.T.; Crescioli, S. Combined anti‐PD‐1 and anti‐CTLA‐4 checkpoint blockade: Treatment of melanoma and immune mechanisms of action. Eur. J. Immunol., 2021, 51(3), 544-556.
[http://dx.doi.org/10.1002/eji.202048747] [PMID: 33450785]
[5]
Bagchi, S.; Yuan, R.; Engleman, E.G. Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol., 2021, 16(1), 223-249.
[http://dx.doi.org/10.1146/annurev-pathol-042020-042741] [PMID: 33197221]
[6]
Takahashi, T.; Tagami, T.; Yamazaki, S. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med., 2000, 192(2), 303-310.
[http://dx.doi.org/10.1084/jem.192.2.303] [PMID: 10899917]
[7]
Beyranvand Nejad, E.; van der Sluis, T.C.; van Duikeren, S. Tumor eradication by cisplatin is sustained by cd80/86-mediated costimulation of CD8+ T cells. Cancer Res., 2016, 76(20), 6017-6029.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0881] [PMID: 27569212]
[8]
Vanella, V.; Festino, L.; Vitale, M.G.; Alfano, B.; Ascierto, P.A. Emerging PD-1/PD-L1 antagonists for the treatment of malignant melanoma. Expert Opin. Emerg. Drugs, 2021, 26(2), 79-92.
[http://dx.doi.org/10.1080/14728214.2021.1901884] [PMID: 33686894]
[9]
Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 pathways. Am. J. Clin. Oncol., 2016, 39(1), 98-106.
[http://dx.doi.org/10.1097/COC.0000000000000239] [PMID: 26558876]
[10]
Rotte, A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 255.
[http://dx.doi.org/10.1186/s13046-019-1259-z] [PMID: 31196207]
[11]
Luke, J.J.; Flaherty, K.T.; Ribas, A.; Long, G.V. Targeted agents and immunotherapies: Optimizing outcomes in melanoma. Nat. Rev. Clin. Oncol., 2017, 14(8), 463-482.
[http://dx.doi.org/10.1038/nrclinonc.2017.43] [PMID: 28374786]
[12]
Mahoney, K.M.; Freeman, G.J.; McDermott, D.F. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin. Ther., 2015, 37(4), 764-782.
[http://dx.doi.org/10.1016/j.clinthera.2015.02.018] [PMID: 25823918]
[13]
Yi, M.; Zheng, X.; Niu, M.; Zhu, S.; Ge, H.; Wu, K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol. Cancer, 2022, 21(1), 28.
[http://dx.doi.org/10.1186/s12943-021-01489-2] [PMID: 35062949]
[14]
Yi, M.; Niu, M.; Xu, L.; Luo, S.; Wu, K. Regulation of PD-L1 expression in the tumor microenvironment. J. Hematol. Oncol., 2021, 14(1), 10.
[http://dx.doi.org/10.1186/s13045-020-01027-5] [PMID: 33413496]
[15]
Xu, Z.; Fisher, D.E. mRNA melanoma vaccine revolution spurred by the COVID-19 pandemic. Front. Immunol., 2023, 14, 1155728.
[http://dx.doi.org/10.3389/fimmu.2023.1155728] [PMID: 37063845]
[16]
Saleh, J. Murine models of melanoma. Pathol. Res. Pract., 2018, 214(9), 1235-1238.
[http://dx.doi.org/10.1016/j.prp.2018.07.008] [PMID: 30037646]
[17]
Kuzu, O.F.; Nguyen, F.D.; Noory, M.A.; Sharma, A. Current state of animal (Mouse) modeling in melanoma research. Cancer Growth Metastasis, 2015, 8(S1), 81-94.
[http://dx.doi.org/10.4137/CGM.S21214]
[18]
Ossio, R.; Roldán-Marín, R.; Martínez-Said, H.; Adams, D.J.; Robles-Espinoza, C.D. Melanoma: A global perspective. Nat. Rev. Cancer, 2017, 17(7), 393-394.
[http://dx.doi.org/10.1038/nrc.2017.43] [PMID: 28450704]
[19]
Lara-Vega, I.; Vega-López, A. Combinational photodynamic and photothermal - based therapies for melanoma in mouse models; Photodiagnosis Photodyn Ther, 2023, p. 103596.
[http://dx.doi.org/10.1016/j.pdpdt.2023.103596]
[20]
Lara-Vega, I.; Correa-Lara, M.V.M.; Vega-López, A. Effectiveness of radiotherapy and targeted radionuclide therapy for melanoma in preclinical mouse models: A combination treatments overview. Bull. Cancer, 2023, 110(9), 912-936.
[http://dx.doi.org/10.1016/j.bulcan.2023.05.002] [PMID: 37277266]
[21]
Vasanthakumar, A.; Kallies, A. Interleukin (IL)-33 and the IL-1 family of cytokines—regulators of inflammation and tissue homeostasis. Cold Spring Harb. Perspect. Biol., 2019, 11(3), a028506.
[http://dx.doi.org/10.1101/cshperspect.a028506] [PMID: 29101106]
[22]
Fournié, J.J.; Poupot, M. The Pro-tumorigenic IL-33 involved in antitumor immunity: A Yin and yang cytokine. Front. Immunol., 2018, 9, 2506.
[http://dx.doi.org/10.3389/fimmu.2018.02506] [PMID: 30416507]
[23]
Jiang, W.; Lian, J.; Yue, Y.; Zhang, Y. IL‐33/ST2 as a potential target for tumor immunotherapy. Eur. J. Immunol., 2021, 51(8), 1943-1955.
[http://dx.doi.org/10.1002/eji.202149175] [PMID: 34131922]
[24]
Yangngam, S.; Thongchot, S.; Pongpaibul, A. High level of interleukin-33 in cancer cells and cancer-associated fibroblasts correlates with good prognosis and suppressed migration in cholangiocarcinoma. J. Cancer, 2020, 11(22), 6571-6581.
[http://dx.doi.org/10.7150/jca.48327] [PMID: 33046978]
[25]
Hong, J.T.; Son, D.J.; Lee, C.K.; Yoon, D.Y.; Lee, D.H.; Park, M.H. Interleukin 32, inflammation and cancer. Pharmacol. Ther., 2017, 174, 127-137.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.025] [PMID: 28223235]
[26]
Han, S.; Yang, Y. Interleukin-32: Frenemy in cancer? BMB Rep., 2019, 52(3), 165-174.
[http://dx.doi.org/10.5483/BMBRep.2019.52.3.019] [PMID: 30638183]
[27]
Shim, S.; Lee, S.; Hisham, Y. A paradoxical effect of interleukin-32 isoforms on cancer. Front. Immunol., 2022, 13, 837590.
[http://dx.doi.org/10.3389/fimmu.2022.837590] [PMID: 35281008]
[28]
Jiang, T.; Zhou, C.; Ren, S. Role of IL-2 in cancer immunotherapy. OncoImmunology, 2016, 5(6), e1163462.
[http://dx.doi.org/10.1080/2162402X.2016.1163462] [PMID: 27471638]
[29]
Wrangle, J.M.; Patterson, A.; Johnson, C.B. IL-2 and beyond in cancer immunotherapy. J. Interferon Cytokine Res., 2018, 38(2), 45-68.
[http://dx.doi.org/10.1089/jir.2017.0101] [PMID: 29443657]
[30]
Tang, A.; Harding, F. The challenges and molecular approaches surrounding interleukin-2-based therapeutics in cancer. Cytokine X, 2019, 1(1), 100001.
[http://dx.doi.org/10.1016/j.cytox.2018.100001]
[31]
Zhong, Y.; Zhang, X.; Chong, W. Interleukin-24 immunobiology and its roles in inflammatory Diseases. Int. J. Mol. Sci., 2022, 23(2), 627.
[http://dx.doi.org/10.3390/ijms23020627] [PMID: 35054813]
[32]
Menezes, M.E.; Bhatia, S.; Bhoopathi, P. MDA-7/IL-24: Multifunctional cancer killing cytokine. Adv. Exp. Med. Biol., 2014, 818, 127-5.
[http://dx.doi.org/10.1007/978-1-4471-6458-6_6]
[33]
Deng, L.; Yang, X.; Fan, J. IL-24-armed oncolytic vaccinia virus exerts potent antitumor effects via multiple pathways in colorectal cancer. Oncol. Res., 2020, 28(6), 579-590.
[http://dx.doi.org/10.3727/096504020X15942028641011] [PMID: 32641200]
[34]
Jang, D.; Lee, A.H.; Shin, H.Y. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current tnf-α inhibitors in therapeutics. Int. J. Mol. Sci., 2021, 22(5), 2719.
[http://dx.doi.org/10.3390/ijms22052719] [PMID: 33800290]
[35]
Montfort, A.; Colacios, C.; Levade, T.; Andrieu-Abadie, N.; Meyer, N.; Ségui, B. The TNF paradox in cancer progression and immunotherapy. Front. Immunol., 2019, 10, 1818.
[http://dx.doi.org/10.3389/fimmu.2019.01818] [PMID: 31417576]
[36]
Fenton, S.E.; Saleiro, D.; Platanias, L.C. Type I and II interferons in the anti-tumor immune response. Cancers (Basel), 2021, 13(5), 1037.
[http://dx.doi.org/10.3390/cancers13051037] [PMID: 33801234]
[37]
Aricò, E.; Castiello, L.; Capone, I.; Gabriele, L.; Belardelli, F.; Type, I. Type I interferons and cancer: An evolving story demanding novel clinical applications. Cancers , 2019, 11(12), 1943.
[http://dx.doi.org/10.3390/cancers11121943] [PMID: 31817234]
[38]
Karlitepe, A.; Ozalp, O.; Avci, C.B. New approaches for cancer immunotherapy. Tumour Biol., 2015, 36(6), 4075-4078.
[http://dx.doi.org/10.1007/s13277-015-3491-2] [PMID: 25934338]
[39]
Alatrash, G.; Jakher, H.; Stafford, P.D.; Mittendorf, E.A. Cancer immunotherapies, their safety and toxicity. Expert Opin. Drug Saf., 2013, 12(5), 631-645.
[http://dx.doi.org/10.1517/14740338.2013.795944] [PMID: 23668362]
[40]
Rajani, K.; Parrish, C.; Kottke, T. Combination therapy with reovirus and anti-PD-1 blockade controls tumor growth through innate and adaptive immune responses. Mol. Ther., 2016, 24(1), 166-174.
[http://dx.doi.org/10.1038/mt.2015.156] [PMID: 26310630]
[41]
Fukuhara, H.; Ino, Y.; Todo, T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci., 2016, 107(10), 1373-1379.
[http://dx.doi.org/10.1111/cas.13027] [PMID: 27486853]
[42]
Cao, G.; He, X.; Sun, Q. The oncolytic virus in cancer diagnosis and treatment. Front. Oncol., 2020, 10, 1786.
[http://dx.doi.org/10.3389/fonc.2020.01786] [PMID: 33014876]
[43]
Rahman, M.M.; McFadden, G. Oncolytic viruses: Newest frontier for cancer immunotherapy. Cancers , 2021, 13(21), 5452.
[http://dx.doi.org/10.3390/cancers13215452] [PMID: 34771615]
[44]
Nava, S.; Lisini, D.; Frigerio, S.; Bersano, A. Dendritic cells and cancer immunotherapy: The adjuvant effect. Int. J. Mol. Sci., 2021, 22(22), 12339.
[http://dx.doi.org/10.3390/ijms222212339] [PMID: 34830221]
[45]
Palucka, K.; Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer, 2012, 12(4), 265-277.
[http://dx.doi.org/10.1038/nrc3258] [PMID: 22437871]
[46]
Lee, Y.S.; Radford, K.J. The role of dendritic cells in cancer. Int. Rev. Cell Mol. Biol., 2019, 348, 123-178.
[http://dx.doi.org/10.1016/bs.ircmb.2019.07.006]
[47]
Ventola, C.L. Cancer immunotherapy, part 1: Current strategies and agents. P&T, 2017, 42(6), 375-383.
[PMID: 28579724]
[48]
Qiu, H.; Zmina, P.M.; Huang, A.Y.; Askew, D.; Bedogni, B. Inhibiting Notch1 enhances immunotherapy efficacy in melanoma by preventing Notch1 dependent immune suppressive properties. Cancer Lett., 2018, 434, 144-151.
[http://dx.doi.org/10.1016/j.canlet.2018.07.024] [PMID: 30036609]
[49]
Sato, C.; Zhao, G.; Ilagan, M.X. An overview of notch signaling in adult tissue renewal and maintenance. Curr. Alzheimer Res., 2012, 9(2), 227-240.
[http://dx.doi.org/10.2174/156720512799361600] [PMID: 21605032]
[50]
Mi, Z.; Feng, Z.C.; Li, C.; Yang, X.; Ma, M.T.; Rong, P.F. Salmonella -mediated cancer therapy: An innovative therapeutic strategy. J. Cancer, 2019, 10(20), 4765-4776.
[http://dx.doi.org/10.7150/jca.32650] [PMID: 31598148]
[51]
Aganja, R.P.; Sivasankar, C.; Senevirathne, A.; Lee, J.H. Salmonella as a promising curative tool against cancer. Pharmaceutics, 2022, 14(10), 2100.
[http://dx.doi.org/10.3390/pharmaceutics14102100] [PMID: 36297535]
[52]
van der Laan, L.J.W.; Döpp, E.A.; Haworth, R. Regulation and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria in vivo. J. Immunol., 1999, 162(2), 939-947.
[http://dx.doi.org/10.4049/jimmunol.162.2.939] [PMID: 9916718]
[53]
Eisinger, S.; Sarhan, D.; Boura, V.F. Targeting a scavenger receptor on tumor-associated macrophages activates tumor cell killing by natural killer cells. Proc. Natl. Acad. Sci. , 2020, 117(50), 32005-32016.
[http://dx.doi.org/10.1073/pnas.2015343117] [PMID: 33229588]
[54]
Hagemann, T.; Wilson, J.; Burke, F. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J. Immunol., 2006, 176(8), 5023-5032.
[http://dx.doi.org/10.4049/jimmunol.176.8.5023] [PMID: 16585599]
[55]
Ruffo, E.; Wu, R.C.; Bruno, T.C.; Workman, C.J.; Vignali, D.A.A. Lymphocyte-activation gene 3 (LAG3): The next immune checkpoint receptor. Semin. Immunol., 2019, 42, 101305.
[http://dx.doi.org/10.1016/j.smim.2019.101305] [PMID: 31604537]
[56]
Kuehm, L.M.; Wolf, K.; Zahour, J.; DiPaolo, R.J.; Teague, R.M. Checkpoint blockade immunotherapy enhances the frequency and effector function of murine tumor-infiltrating T cells but does not alter TCRβ diversity. Cancer Immunol. Immunother., 2019, 68(7), 1095-1106.
[http://dx.doi.org/10.1007/s00262-019-02346-4] [PMID: 31104075]
[57]
Lacal, P.M.; Atzori, M.G.; Ruffini, F. Targeting the vascular endothelial growth factor receptor-1 by the monoclonal antibody D16F7 to increase the activity of immune checkpoint inhibitors against cutaneous melanoma. Pharmacol. Res., 2020, 159, 104957.
[http://dx.doi.org/10.1016/j.phrs.2020.104957] [PMID: 32485280]
[58]
Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci., 2020, 77(9), 1745-1770.
[http://dx.doi.org/10.1007/s00018-019-03351-7] [PMID: 31690961]
[59]
Ansari, M.J.; Bokov, D.; Markov, A. Cancer combination therapies by angiogenesis inhibitors; a comprehensive review. Cell Commun. Signal., 2022, 20(1), 49.
[http://dx.doi.org/10.1186/s12964-022-00838-y] [PMID: 35392964]
[60]
Vallabhapurapu, S.D.; Blanco, V.M.; Sulaiman, M.K. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium. Oncotarget, 2015, 6(33), 34375-34388.
[http://dx.doi.org/10.18632/oncotarget.6045] [PMID: 26462157]
[61]
Segawa, K.; Nagata, S. An apoptotic ‘eat me’ signal: Phosphatidylserine exposure. Trends Cell Biol., 2015, 25(11), 639-650.
[http://dx.doi.org/10.1016/j.tcb.2015.08.003] [PMID: 26437594]
[62]
Freimark, B.D.; Gong, J.; Ye, D. Antibody-mediated phosphatidylserine blockade enhances the antitumor responses to CTLA-4 and PD-1 antibodies in melanoma. Cancer Immunol. Res., 2016, 4(6), 531-540.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0250] [PMID: 27045021]
[63]
Shima, H.; Takatsu, H.; Fukuda, S. Identification of TOSO/FAIM3 as an Fc receptor for IgM. Int. Immunol., 2010, 22(3), 149-156.
[http://dx.doi.org/10.1093/intimm/dxp121] [PMID: 20042454]
[64]
Planells-Ferrer, L.; Urresti, J.; Coccia, E. Fas apoptosis inhibitory molecules: more than death-receptor antagonists in the nervous system. J. Neurochem., 2016, 139(1), 11-21.
[http://dx.doi.org/10.1111/jnc.13729] [PMID: 27385439]
[65]
Kubli, S.P.; Vornholz, L.; Duncan, G. Fcmr regulates mononuclear phagocyte control of anti-tumor immunity. Nat. Commun., 2019, 10(1), 2678.
[http://dx.doi.org/10.1038/s41467-019-10619-w] [PMID: 31213601]
[66]
Salomon, R.; Dahan, R. Next generation CD40 agonistic antibodies for cancer immunotherapy. Front. Immunol., 2022, 13, 940674.
[http://dx.doi.org/10.3389/fimmu.2022.940674] [PMID: 35911742]
[67]
Djureinovic, D.; Wang, M.; Kluger, H.M. Agonistic CD40 antibodies in cancer treatment. Cancers , 2021, 13(6), 1302.
[http://dx.doi.org/10.3390/cancers13061302] [PMID: 33804039]
[68]
Rankin, E.; Giaccia, A. The receptor tyrosine kinase AXL in cancer progression. Cancers , 2016, 8(11), 103.
[http://dx.doi.org/10.3390/cancers8110103] [PMID: 27834845]
[69]
Zhu, C.; Wei, Y.; Wei, X. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol. Cancer, 2019, 18(1), 153.
[http://dx.doi.org/10.1186/s12943-019-1090-3] [PMID: 31684958]
[70]
Klein, R.H.; Knoepfler, P.S. DPPA2, DPPA4, and other DPPA factor epigenomic functions in cell fate and cancer. Stem Cell Reports, 2021, 16(12), 2844-2851.
[http://dx.doi.org/10.1016/j.stemcr.2021.10.008] [PMID: 34767751]
[71]
Vinay, D.S.; Kwon, B.S. 4-1BB (CD137), an inducible costimulatory receptor, as a specific target for cancer therapy. BMB Rep., 2014, 47(3), 122-129.
[http://dx.doi.org/10.5483/BMBRep.2014.47.3.283] [PMID: 24499671]
[72]
Kim, A.M.J.; Nemeth, M.R.; Lim, S.O. 4-1BB: A promising target for cancer immunotherapy. Front. Oncol., 2022, 12, 968360.
[http://dx.doi.org/10.3389/fonc.2022.968360] [PMID: 36185242]
[73]
Ghanem, G.; Fabrice, J. Tyrosinase related protein 1 (TYRP1/gp75) in human cutaneous melanoma. Mol. Oncol., 2011, 5(2), 150-155.
[http://dx.doi.org/10.1016/j.molonc.2011.01.006] [PMID: 21324755]
[74]
Li, C.; Kuai, L.; Cui, R.; Miao, X. Melanogenesis and the targeted therapy of melanoma. Biomolecules, 2022, 12(12), 1874.
[http://dx.doi.org/10.3390/biom12121874] [PMID: 36551302]
[75]
Hu, T.; Pan, M.; Yin, Y.; Wang, C.; Cui, Y.; Wang, Q. The regulatory network of cyclic GMP-AMP synthase-stimulator of interferon genes pathway in viral evasion. Front. Microbiol., 2021, 12, 790714.
[http://dx.doi.org/10.3389/fmicb.2021.790714] [PMID: 34966372]
[76]
Wang, H.; Hu, S.; Chen, X. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc. Natl. Acad. Sci. USA, 2017, 114(7), 1637-1642.
[http://dx.doi.org/10.1073/pnas.1621363114] [PMID: 28137885]
[77]
Hoong, B.Y.D.; Gan, Y.H.; Liu, H.; Chen, E.S. cGAS-STING pathway in oncogenesis and cancer therapeutics. Oncotarget, 2020, 11(30), 2930-2955.
[http://dx.doi.org/10.18632/oncotarget.27673] [PMID: 32774773]
[78]
Grafone, T.; Palmisano, M.; Nicci, C.; Storti, S. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment. Oncol. Rev., 2012, 6(1), 8.
[http://dx.doi.org/10.4081/oncol.2012.e8] [PMID: 25992210]
[79]
Tecik, M.; Adan, A. Therapeutic targeting of FLT3 in acute myeloid leukemia: Current status and novel approaches. OncoTargets Ther., 2022, 15, 1449-1478.
[http://dx.doi.org/10.2147/OTT.S384293] [PMID: 36474506]
[80]
Lee, Y.S.; O’Brien, L.J.; Walpole, C.M. Human CD141 + dendritic cells (cDC1) are impaired in patients with advanced melanoma but can be targeted to enhance anti-PD-1 in a humanized mouse model. J. Immunother. Cancer, 2021, 9(3), e001963.
[http://dx.doi.org/10.1136/jitc-2020-001963] [PMID: 33737342]
[81]
Casella, C.R.; Mitchell, T.C. Putting endotoxin to work for us: Monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell. Mol. Life Sci., 2008, 65(20), 3231-3240.
[http://dx.doi.org/10.1007/s00018-008-8228-6] [PMID: 18668203]
[82]
Zhou, L.; Zou, M.; Xu, Y.; Lin, P.; Lei, C.; Xia, X. Nano drug delivery system for tumor immunotherapy: Next-generation therapeutics. Front. Oncol., 2022, 12, 864301.
[http://dx.doi.org/10.3389/fonc.2022.864301] [PMID: 35664731]
[83]
Bubna, A. Imiquimod - Its role in the treatment of cutaneous malignancies. Indian J. Pharmacol., 2015, 47(4), 354-359.
[http://dx.doi.org/10.4103/0253-7613.161249] [PMID: 26288465]
[84]
Fraser, C.K.; Lousberg, E.L.; Guerin, L.R. Dasatinib alters the metastatic phenotype of B16-OVA melanoma in vivo. Cancer Biol. Ther., 2010, 10(7), 715-727.
[http://dx.doi.org/10.4161/cbt.10.7.12926] [PMID: 20676039]
[85]
Sha, X.; Xu, X.; Liao, S.; Chen, H.; Rui, W. Evidence of immunogenic cancer cell death induced by honey-processed Astragalus polysaccharides in vitro and in vivo. Exp. Cell Res., 2022, 410(1), 112948.
[http://dx.doi.org/10.1016/j.yexcr.2021.112948] [PMID: 34826423]
[86]
Riley, R.S.; June, C.H.; Langer, R.; Mitchell, M.J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov., 2019, 18(3), 175-196.
[http://dx.doi.org/10.1038/s41573-018-0006-z] [PMID: 30622344]
[87]
Reda, M.; Ngamcherdtrakul, W.; Nelson, M.A. Development of a nanoparticle-based immunotherapy targeting PD-L1 and PLK1 for lung cancer treatment. Nat. Commun., 2022, 13(1), 4261.
[http://dx.doi.org/10.1038/s41467-022-31926-9] [PMID: 35871223]
[88]
Aljabali, A.A.; Obeid, M.A.; Bashatwah, R.M. Nanomaterials and their impact on the immune system. Int. J. Mol. Sci., 2023, 24(3), 2008.
[http://dx.doi.org/10.3390/ijms24032008] [PMID: 36768330]
[89]
Eschweiler, S.; Clarke, J.; Ramírez-Suástegui, C. Intratumoral follicular regulatory T cells curtail anti-PD-1 treatment efficacy. Nat. Immunol., 2021, 22(8), 1052-1063.
[http://dx.doi.org/10.1038/s41590-021-00958-6] [PMID: 34168370]
[90]
Lopes, A.; Bastiancich, C.; Bausart, M. New generation of DNA-based immunotherapy induces a potent immune response and increases the survival in different tumor models. J. Immunother. Cancer, 2021, 9(4), e001243.
[http://dx.doi.org/10.1136/jitc-2020-001243] [PMID: 33795383]
[91]
Lau, D.; Garçon, F.; Chandra, A. Intravital Imaging of Adoptive T-Cell Morphology, Mobility and Trafficking Following Immune Checkpoint Inhibition in a Mouse Melanoma Model. Front. Immunol., 2020, 11, 1514.
[http://dx.doi.org/10.3389/fimmu.2020.01514] [PMID: 32793206]
[92]
Shi, L.Z.; Goswami, S.; Fu, T. Blockade of CTLA-4 and PD-1 enhances adoptive t-cell therapy efficacy in an ICOS-mediated manner. Cancer Immunol. Res., 2019, 7(11), 1803-1812.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0873] [PMID: 31466995]
[93]
Kos, S.; Lopes, A.; Preat, V. Intradermal DNA vaccination combined with dual CTLA-4 and PD-1 blockade provides robust tumor immunity in murine melanoma. PLoS One, 2019, 14(5), e0217762.
[http://dx.doi.org/10.1371/journal.pone.0217762] [PMID: 31150505]
[94]
Zheng, F.; Dang, J.; Zhang, H. Cancer stem cell vaccination with PD-L1 and CTLA-4 blockades enhances the eradication of melanoma stem cells in a mouse tumor model. J. Immunother., 2018, 41(8), 361-368.
[http://dx.doi.org/10.1097/CJI.0000000000000242] [PMID: 30063587]
[95]
Elia, A.R.; Grioni, M.; Basso, V. Targeting tumor vasculature with tnf leads effector t cells to the tumor and enhances therapeutic efficacy of immune checkpoint blockers in combination with adoptive cell therapy. Clin. Cancer Res., 2018, 24(9), 2171-2181.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2210] [PMID: 29490991]
[96]
Huffaker, T.B.; Lee, S.H.; Tang, W.W. Antitumor immunity is defective in T cell–specific microRNA-155–deficient mice and is rescued by immune checkpoint blockade. J. Biol. Chem., 2017, 292(45), 18530-18541.
[http://dx.doi.org/10.1074/jbc.M117.808121] [PMID: 28912267]
[97]
Jacquelot, N.; Seillet, C.; Wang, M. Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nat. Immunol., 2021, 22(7), 851-864.
[http://dx.doi.org/10.1038/s41590-021-00943-z] [PMID: 34099918]
[98]
He, H.; Shi, L.; Meng, D. PD-1 blockade combined with IL-33 enhances the antitumor immune response in a type-1 lymphocyte-mediated manner. Cancer Treat. Res. Commun., 2021, 28, 100379.
[http://dx.doi.org/10.1016/j.ctarc.2021.100379] [PMID: 33951555]
[99]
Gruber, T.; Kremenovic, M.; Sadozai, H. IL-32γ potentiates tumor immunity in melanoma. JCI Insight, 2020, 5(18), e138772.
[http://dx.doi.org/10.1172/jci.insight.138772] [PMID: 32841222]
[100]
Zhu, W.; Lv, J.; Xie, X. The oncolytic virus VT09X optimizes immune checkpoint therapy in low immunogenic melanoma. Immunol. Lett., 2022, 241, 15-22.
[http://dx.doi.org/10.1016/j.imlet.2021.11.002] [PMID: 34774916]
[101]
Tian, C.; Liu, J.; Zhou, H. Enhanced anti-tumor response elicited by a novel oncolytic HSV-1 engineered with an anti-PD-1 antibody. Cancer Lett., 2021, 518, 49-58.
[http://dx.doi.org/10.1016/j.canlet.2021.06.005] [PMID: 34139284]
[102]
Kiffin, R.; Johansson, J.; Olofsson Bagge, R.; Martner, A. Anti-PD-1 checkpoint blockade improves the efficacy of a melphalan-based therapy in experimental melanoma. Eur. J. Surg. Oncol., 2021, 47(9), 2460-2464.
[http://dx.doi.org/10.1016/j.ejso.2021.04.038] [PMID: 33980416]
[103]
Hu, H.J.; Liang, X.; Li, H.L. Enhanced anti-melanoma efficacy through a combination of the armed oncolytic adenovirus ZD55-IL-24 and immune checkpoint blockade in B16-bearing immunocompetent mouse model. Cancer Immunol. Immunother., 2021, 70(12), 3541-3555.
[http://dx.doi.org/10.1007/s00262-021-02946-z] [PMID: 33903973]
[104]
Yazdani, M.; Nikpoor, A.R.; Gholizadeh, Z. Comparison of two routes of administration of a cationic liposome formulation for a prophylactic DC vaccination in a murine melanoma model. Int. Immunopharmacol., 2021, 98, 107833.
[http://dx.doi.org/10.1016/j.intimp.2021.107833] [PMID: 34352472]
[105]
Liu, W.; Liu, Y.; Hu, C. Cytotoxic T lymphocyte‐associated protein 4 antibody aggrandizes antitumor immune response of oncolytic virus M1via targeting regulatory T cells. Int. J. Cancer, 2021, 149(6), 1369-1384.
[http://dx.doi.org/10.1002/ijc.33703] [PMID: 34086978]
[106]
Jia, X.; Guo, J.; Guo, S. Antitumor effects and mechanisms of CpG ODN combined with attenuated Salmonella-delivered siRNAs against PD-1. Int. Immunopharmacol., 2021, 90, 107052.
[http://dx.doi.org/10.1016/j.intimp.2020.107052] [PMID: 33310296]
[107]
Ji, W.; Li, L.; Zhou, S. Combination immunotherapy of oncolytic virus nanovesicles and PD-1 blockade effectively enhances therapeutic effects and boosts antitumour immune response. J. Drug Target., 2020, 28(9), 982-990.
[http://dx.doi.org/10.1080/1061186X.2020.1766473] [PMID: 32379004]
[108]
Bunch, B.L.; Kodumudi, K.N.; Scott, E. Anti-tumor efficacy of plasmid encoding emm55 in a murine melanoma model. Cancer Immunol. Immunother., 2020, 69(12), 2465-2476.
[http://dx.doi.org/10.1007/s00262-020-02634-4] [PMID: 32556443]
[109]
Kuryk, L.; Møller, A.S.W.; Jaderberg, M. Abscopal effect when combining oncolytic adenovirus and checkpoint inhibitor in a humanized NOG mouse model of melanoma. J. Med. Virol., 2019, 91(9), 1702-1706.
[http://dx.doi.org/10.1002/jmv.25501] [PMID: 31081549]
[110]
Wu, C.; Wu, M.; Liang, M.; Xiong, S.; Dong, C. A novel oncolytic virus engineered with PD-L1 scFv effectively inhibits tumor growth in a mouse model. Cell. Mol. Immunol., 2019, 16(9), 780-782.
[http://dx.doi.org/10.1038/s41423-019-0264-7] [PMID: 31363172]
[111]
Cauwels, A.; Van Lint, S.; Paul, F. Delivering type i interferon to dendritic cells empowers tumor eradication and immune combination treatments. Cancer Res., 2018, 78(2), 463-474.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1980] [PMID: 29187401]
[112]
Cappuccini, F.; Pollock, E.; Stribbling, S.; Hill, A.V.S.; Redchenko, I. 5T4 oncofoetal glycoprotein: An old target for a novel prostate cancer immunotherapy. Oncotarget, 2017, 8(29), 47474-47489.
[http://dx.doi.org/10.18632/oncotarget.17666] [PMID: 28537896]
[113]
Durham, N.M.; Mulgrew, K.; McGlinchey, K. Oncolytic VSV primes differential responses to immuno-oncology therapy. Mol. Ther., 2017, 25(8), 1917-1932.
[http://dx.doi.org/10.1016/j.ymthe.2017.05.006] [PMID: 28578991]
[114]
Erkes, D.A.; Xu, G.; Daskalakis, C. Intratumoral infection with murine cytomegalovirus synergizes with PD-L1 blockade to clear melanoma lesions and induce long-term immunity. Mol. Ther., 2016, 24(8), 1444-1455.
[http://dx.doi.org/10.1038/mt.2016.121] [PMID: 27434584]
[115]
He, B.; Johansson-Percival, A.; Backhouse, J. Remodeling of metastatic vasculature reduces lung colonization and sensitizes overt metastases to immunotherapy. Cell Rep., 2020, 30(3), 714-724.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.12.013] [PMID: 31968248]
[116]
Li, Q.; Ren, J.; Liu, W.; Jiang, G.; Hu, R. CpG oligodeoxynucleotide developed to activate primate immune responses promotes antitumoral effects in combination with a neoantigen-based mrna cancer vaccine. Drug Des. Devel. Ther., 2021, 15, 3953-3963.
[http://dx.doi.org/10.2147/DDDT.S325790] [PMID: 34566407]
[117]
Hinterberger, M.; Giessel, R.; Fiore, G. Intratumoral virotherapy with 4-1BBL armed modified vaccinia Ankara eradicates solid tumors and promotes protective immune memory. J. Immunother. Cancer, 2021, 9(2), e001586.
[http://dx.doi.org/10.1136/jitc-2020-001586] [PMID: 33579736]
[118]
Hu, X.; Wu, T.; Qin, X. Tumor lysate-loaded lipid hybrid nanovaccine collaborated with an immune checkpoint antagonist for combination immunotherapy. Adv. Healthc. Mater., 2019, 8(1), 1800837.
[http://dx.doi.org/10.1002/adhm.201800837] [PMID: 30506847]
[119]
Lopes, A.; Feola, S.; Ligot, S. Oncolytic adenovirus drives specific immune response generated by a poly-epitope pDNA vaccine encoding melanoma neoantigens into the tumor site. J. Immunother. Cancer, 2019, 7(1), 174.
[http://dx.doi.org/10.1186/s40425-019-0644-7] [PMID: 31291991]
[120]
Koske, I.; Rössler, A.; Pipperger, L. Oncolytic virotherapy enhances the efficacy of a cancer vaccine by modulating the tumor microenvironment. Int. J. Cancer, 2019, 145(7), 1958-1969.
[http://dx.doi.org/10.1002/ijc.32325] [PMID: 30972741]
[121]
Vola, M.; Mónaco, A.; Bascuas, T. TLR7 agonist in combination with Salmonella as an effective antimelanoma immunotherapy. Immunotherapy, 2018, 10(8), 665-679.
[http://dx.doi.org/10.2217/imt-2017-0188] [PMID: 29562809]
[122]
Benonisson, H.; Sow, H.S.; Breukel, C. High FcγR expression on intratumoral macrophages enhances tumor-targeting antibody therapy. J. Immunol., 2018, 201(12), 3741-3749.
[http://dx.doi.org/10.4049/jimmunol.1800700] [PMID: 30397036]
[123]
Boshuizen, J.; Pencheva, N.; Krijgsman, O. Cooperative targeting of immunotherapy-resistant melanoma and lung cancer by an axl-targeting antibody–drug conjugate and immune checkpoint blockade. Cancer Res., 2021, 81(7), 1775-1787.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-0434] [PMID: 33531370]
[124]
Bartkowiak, T.; Jaiswal, A.R.; Ager, C.R. Activation of 4-1BB on liver myeloid cells triggers hepatitis via an interleukin-27–dependent pathway. Clin. Cancer Res., 2018, 24(5), 1138-1151.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1847] [PMID: 29301830]
[125]
Ebert, P.J.R.; Cheung, J.; Yang, Y. MAP kinase inhibition promotes t cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity, 2016, 44(3), 609-621.
[http://dx.doi.org/10.1016/j.immuni.2016.01.024] [PMID: 26944201]
[126]
Hegde, P.S.; Chen, D.S. Top 10 challenges in cancer immunotherapy. Immunity, 2020, 52(1), 17-35.
[http://dx.doi.org/10.1016/j.immuni.2019.12.011] [PMID: 31940268]
[127]
Kerbel, R.S. A decade of experience in developing preclinical models of advanced- or early-stage spontaneous metastasis to study antiangiogenic drugs, metronomic chemotherapy, and the tumor microenvironment. Cancer J., 2015, 21(4), 274-283.
[http://dx.doi.org/10.1097/PPO.0000000000000134] [PMID: 26222079]
[128]
Hou, X.; Du, C.; Lu, L. Opportunities and challenges of patient-derived models in cancer research: patient-derived xenografts, patient-derived organoid and patient-derived cells. World J. Surg. Oncol., 2022, 20(1), 37.
[http://dx.doi.org/10.1186/s12957-022-02510-8] [PMID: 35177071]
[129]
Wang, Y.; Qian, M.; Xie, Y.; Zhang, X.; Qin, Y.; Huang, R. Biodegradable nanoparticles-mediated targeted drug delivery achieves trans-spatial immunotherapy. In: In: Fundamental Research; In Press, 2022.
[http://dx.doi.org/10.1016/j.fmre.2022.11.003]
[130]
Yu, Z.; Zou, Y.; Han, S.; Sun, D.; Wang, L.; Yang, L. Lenalidomide promotes melarsoprol-activated cgas-sting-mediated immunotherapy for hepatocellular carcinoma via attenuating TNF-α activity. In: Fundamental Research. In Press; , 2023.
[http://dx.doi.org/10.1016/j.fmre.2023.05.013]
[131]
Liu, S.; Dharanipragada, P.; Lomeli, S.H. Multi-organ landscape of therapy-resistant melanoma. Nat. Med., 2023, 29(5), 1123-1134.
[http://dx.doi.org/10.1038/s41591-023-02304-9] [PMID: 37106167]
[132]
Alexandrov, L.B.; Kim, J.; Haradhvala, N.J. The repertoire of mutational signatures in human cancer. Nature, 2020, 578(7793), 94-101.
[http://dx.doi.org/10.1038/s41586-020-1943-3] [PMID: 32025018]
[133]
Kim, Y.S.; Shin, S.; Yin, J.H.; Park, J.; Jung, S.H.; Chung, Y.J. Single-cell RNA sequencing reveals the existence of pro-metastatic subpopulation within a parental B16 murine melanoma cell line. Biochem. Biophys. Res. Commun., 2022, 613, 120-126.
[http://dx.doi.org/10.1016/j.bbrc.2022.05.003] [PMID: 35550198]
[134]
National Cancer Institute Cancer Registration and Surveillance Modules - Treatment Combination; National Institutes of Health USA, 2000.
[135]
Kähler, K.C.; Hassel, J.C.; Heinzerling, L. Management of side effects of immune checkpoint blockade by anti-CTLA-4 and anti-PD-1 antibodies in metastatic melanoma. J. Dtsch. Dermatol. Ges., 2016, 14(7), 662-681.
[http://dx.doi.org/10.1111/ddg.13047] [PMID: 27373241]
[136]
Xiao, L.; Wu, Y.; Dai, J.; Zhang, W.; Cao, Y. Laser-activated nanoparticles for ultrasound/photoacoustic imaging-guided prostate cancer treatment. Front. Bioeng. Biotechnol., 2023, 11, 1141984.
[http://dx.doi.org/10.3389/fbioe.2023.1141984] [PMID: 37025361]
[137]
Lan, M.; Zhao, S.; Liu, W.; Lee, C.S.; Zhang, W.; Wang, P. Photosensitizers for photodynamic therapy. Adv. Healthc. Mater., 2019, 8(13), 1900132.
[http://dx.doi.org/10.1002/adhm.201900132] [PMID: 31067008]
[138]
Hu, Z.; Rong, Y.; Li, S.; Qu, S.; Huang, S. Upregulated histone deacetylase 6 associates with malignant progression of melanoma and predicts the prognosis of patients. Cancer Manag. Res., 2020, 12, 12993-13001.
[http://dx.doi.org/10.2147/CMAR.S284199] [PMID: 33364845]