Therapeutic Effects of Berberine against Urological Cancers: Biological Potentials Based on Cellular Mechanisms

Page: [1282 - 1290] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Urological cancers, encompassing prostate, kidney, and bladder cancers, pose significant global health challenges. Current treatment modalities, including chemotherapy, radiotherapy, and surgery, individually or in combination, have limitations in efficacy and are associated with notable morbidity and mortality.

Methods: This review explores alternative therapeutic avenues, emphasizing the exploration of natural compounds, with a specific focus on berberine. Berberine's potential as a treatment for urological cancers is investigated through an extensive examination of cellular and molecular mechanisms.

Results: The comprehensive analysis reveals promising anticancer properties associated with berberine, substantiated by a wealth of experimental studies. The agent's impact on urological cancers is discussed, highlighting notable findings related to its efficacy and safety profile.

Conclusions: Given the high mortality rates and potential side effects associated with current standard treatments for urological cancers, the exploration of alternative, effective, and safer options is imperative. This review underscores berberine's therapeutic potential, shedding light on its anticancer effects and encouraging further research in the pursuit of enhanced treatment strategies.

[1]
Schulz WA, Sørensen KD. Epigenetics of urological cancers. In: MDPI. 2019; p. 4775.
[2]
Dy GW, Gore JL, Forouzanfar MH, Naghavi M, Fitzmaurice C. Global burden of urologic cancers, 1990-2013. Eur Urol 2017; 71(3): 437-46.
[http://dx.doi.org/10.1016/j.eururo.2016.10.008] [PMID: 28029399]
[3]
Laaksonen MA, MacInnis RJ, Canfell K, et al. The future burden of kidney and bladder cancers preventable by behavior modification in Australia: A pooled cohort study. Int J Cancer 2020; 146(3): 874-83.
[http://dx.doi.org/10.1002/ijc.32420] [PMID: 31107541]
[4]
Bazrafshani MS, Pardakhty A, Khandani BK, Tajadini H, Pour SG, Hashemi S, et al. The prevalence and predictors of herb-drug interactions among Iranian cancer patients during chemotherapy courses. Authorea 2022; 2022: 33790946.
[http://dx.doi.org/10.22541/au.165426303.33790946/v1]
[5]
Song D, Hao J, Fan D. Biological properties and clinical applications of berberine. Front Med 2020; 14(5): 564-82.
[http://dx.doi.org/10.1007/s11684-019-0724-6] [PMID: 32335802]
[6]
Cai Y, Xin Q, Lu J, et al. A new therapeutic candidate for cardiovascular diseases: Berberine. Front Pharmacol 2021; 12: 631100.
[http://dx.doi.org/10.3389/fphar.2021.631100] [PMID: 33815112]
[7]
Hu S, Zhao R, Liu Y, Chen J, Zheng Z, Wang S. Preventive and therapeutic roles of berberine in gastrointestinal cancers. Biomed Res Int 2019; 2019: 6831520.
[http://dx.doi.org/10.1155/2019/6831520]
[8]
Mortazavi H, Nikfar B, Esmaeili SA, et al. Potential cytotoxic and anti-metastatic effects of berberine on gynaecological cancers with drug-associated resistance. Eur J Med Chem 2020; 187: 111951.
[http://dx.doi.org/10.1016/j.ejmech.2019.111951] [PMID: 31821990]
[9]
Wang Y, Liu Y, Du X, Ma H, Yao J. The anti-cancer mechanisms of berberine: A review. Cancer Manag Res 2020; 12: 695-702.
[http://dx.doi.org/10.2147/CMAR.S242329] [PMID: 32099466]
[10]
Liu Y, Liu X, Zhang N, et al. Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity via inhibiting the deubiquitination activity of CSN5. Acta Pharm Sin B 2020; 10(12): 2299-312.
[http://dx.doi.org/10.1016/j.apsb.2020.06.014] [PMID: 33354502]
[11]
Zhang Q, Wang X, Cao S, et al. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways. Biomed Pharmacother 2020; 128: 110245.
[http://dx.doi.org/10.1016/j.biopha.2020.110245] [PMID: 32454290]
[12]
Hesari A, Ghasemi F, Cicero AFG, et al. Berberine: A potential adjunct for the treatment of gastrointestinal cancers? J Cell Biochem 2018; 119(12): 9655-63.
[http://dx.doi.org/10.1002/jcb.27392] [PMID: 30125974]
[13]
Palma TV, Bianchin NB, de Oliveira JS, et al. Berberine increases the expression of cytokines and proteins linked to apoptosis in human melanoma cells. Mol Biol Rep 2022; 49(3): 2037-46.
[http://dx.doi.org/10.1007/s11033-021-07022-4] [PMID: 34860319]
[14]
Ma W, Zhang Y, Yu M, et al. In-vitro and in-vivo anti-breast cancer activity of synergistic effect of berberine and exercise through promoting the apoptosis and immunomodulatory effects. Int Immunopharmacol 2020; 87: 106787.
[http://dx.doi.org/10.1016/j.intimp.2020.106787] [PMID: 32707493]
[15]
Liu L, Sun L, Zheng J, Cui L. Berberine modulates Keratin 17 to inhibit cervical cancer cell viability and metastasis. J Recept Signal Transduct Res 2021; 41(6): 521-31.
[http://dx.doi.org/10.1080/10799893.2020.1830110] [PMID: 33045871]
[16]
Liu L, Fan J, Ai G, et al. Berberine in combination with cisplatin induces necroptosis and apoptosis in ovarian cancer cells. Biol Res 2019; 52(1): 37.
[http://dx.doi.org/10.1186/s40659-019-0243-6] [PMID: 31319879]
[17]
Liu J, Liu P, Xu T, et al. Berberine induces autophagic cell death in acute lymphoblastic leukemia by inactivating AKT/mTORC1 signaling. Drug Des Devel Ther 2020; 14: 1813-23.
[http://dx.doi.org/10.2147/DDDT.S239247] [PMID: 32494123]
[18]
Li J, Liu F, Jiang S, et al. Berberine hydrochloride inhibits cell proliferation and promotes apoptosis of non-small cell lung cancer via the suppression of the MMP2 and Bcl-2/Bax signaling pathways. Oncol Lett 2018; 15(5): 7409-14.
[http://dx.doi.org/10.3892/ol.2018.8249] [PMID: 29725453]
[19]
Li L, Wang X, Sharvan R, Gao J, Qu S. Berberine could inhibit thyroid carcinoma cells by inducing mitochondrial apoptosis, G0/G1 cell cycle arrest and suppressing migration via PI3K-AKT and MAPK signaling pathways. Biomed Pharmacother 2017; 95: 1225-31.
[http://dx.doi.org/10.1016/j.biopha.2017.09.010] [PMID: 28931215]
[20]
Trindade de Paula M, Poetini Silva MR, Machado Araujo S, Cardoso Bortolotto V, Barreto Meichtry L, Zemolin APP, et al. High-fat diet induces oxidative stress and MPK2 and HSP83 gene expression in Drosophila melanogaster. Oxid Med Cell Longev 2016; 2016: 4018157.
[21]
Zhang M, Liu J, Yu C, et al. Berberine Regulation of cellular oxidative stress, apoptosis and autophagy by modulation of m6A mRNA methylation through targeting the Camk1db/ERK pathway in zebrafish-hepatocytes. Antioxidants 2022; 11(12): 2370.
[http://dx.doi.org/10.3390/antiox11122370] [PMID: 36552577]
[22]
Samarghandian S, Borji A, Hidar Tabasi S. Effects of Cichorium intybus linn on blood glucose, lipid constituents and selected oxidative stress parameters in streptozotocin-induced diabetic rats. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders) 2013; 13(3): 231-6.
[23]
Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther 2021; 221: 107753.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107753] [PMID: 33259885]
[24]
Hu J, Chen J, Ou Z, et al. Neoadjuvant immunotherapy, chemotherapy, and combination therapy in muscle-invasive bladder cancer: A multi-center real-world retrospective study. Cell Rep Med 2022; 3(11): 100785.
[http://dx.doi.org/10.1016/j.xcrm.2022.100785] [PMID: 36265483]
[25]
Jahanban-Esfahlan R, Seidi K, Monhemi H, et al. RGD delivery of truncated coagulase to tumor vasculature affords local thrombotic activity to induce infarction of tumors in mice. Sci Rep 2017; 7(1): 8126.
[http://dx.doi.org/10.1038/s41598-017-05326-9] [PMID: 28811469]
[26]
Arneth B. Tumor microenvironment. Medicina 2019; 56(1): 15.
[http://dx.doi.org/10.3390/medicina56010015] [PMID: 31906017]
[27]
Hu J, Yu A, Othmane B, et al. Siglec15 shapes a non-inflamed tumor microenvironment and predicts the molecular subtype in bladder cancer. Theranostics 2021; 11(7): 3089-108.
[http://dx.doi.org/10.7150/thno.53649] [PMID: 33537076]
[28]
Cai Z, Chen J, Yu Z, Li H, Liu Z, Deng D, et al. BCAT2 shapes a noninflamed tumor microenvironment and induces resistance to Anti-PD-1/PD-L1 immunotherapy by negatively regulating proinflammatory chemokines and anticancer immunity. 2023; 10(8): e2207155.
[29]
Jin H, Jin X, Cao B, Wang W. Berberine affects osteosarcoma via downregulating the caspase-1/IL-1β signaling axis. Oncol Rep 2017; 37(2): 729-36.
[http://dx.doi.org/10.3892/or.2016.5327] [PMID: 28000894]
[30]
Shah D, Challagundla N, Dave V, et al. Berberine mediates tumor cell death by skewing tumor-associated immunosuppressive macrophages to inflammatory macrophages. Phytomedicine 2022; 99: 153904.
[http://dx.doi.org/10.1016/j.phymed.2021.153904] [PMID: 35231825]
[31]
Litwin MS, Tan HJ. The diagnosis and treatment of prostate cancer: A review. JAMA 2017; 317(24): 2532-42.
[http://dx.doi.org/10.1001/jama.2017.7248] [PMID: 28655021]
[32]
Leitzmann M, Rohrmann S. Risk factors for the onset of prostatic cancer: Age, location, and behavioral correlates. Clin Epidemiol 2012; 4: 1-11.
[http://dx.doi.org/10.2147/CLEP.S16747] [PMID: 22291478]
[33]
Aurilio G, Cimadamore A, Mazzucchelli R, et al. Androgen receptor signaling pathway in prostate cancer: From genetics to clinical applications. Cells 2020; 9(12): 2653.
[http://dx.doi.org/10.3390/cells9122653] [PMID: 33321757]
[34]
Li J, Cao B, Liu X, et al. Berberine suppresses androgen receptor signaling in prostate cancer. Mol Cancer Ther 2011; 10(8): 1346-56.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0985] [PMID: 21613449]
[35]
Hamsa TP, Kuttan G. Antiangiogenic activity of berberine is mediated through the downregulation of hypoxia-inducible factor-1, VEGF, and proinflammatory mediators. Drug Chem Toxicol 2012; 35(1): 57-70.
[http://dx.doi.org/10.3109/01480545.2011.589437] [PMID: 22145808]
[36]
Ashrafizadeh M, Ahmadi Z, Kotla NG, et al. Nanoparticles targeting STATs in cancer therapy. Cells 2019; 8(10): 1158.
[37]
Aalinkeel R, Nair MPN, Sufrin G, et al. Gene expression of angiogenic factors correlates with metastatic potential of prostate cancer cells. Cancer Res 2004; 64(15): 5311-21.
[http://dx.doi.org/10.1158/0008-5472.CAN-2506-2] [PMID: 15289337]
[38]
Zhang Q, Zhang C, Yang X, et al. Berberine inhibits the expression of hypoxia induction factor-1alpha and increases the radiosensitivity of prostate cancer. Diagn Pathol 2014; 9(1): 98.
[http://dx.doi.org/10.1186/1746-1596-9-98] [PMID: 24886405]
[39]
Lu W, Du S, Wang J. Berberine inhibits the proliferation of prostate cancer cells and induces G0/G1 or G2/M phase arrest at different concentrations. Mol Med Rep 2015; 11(5): 3920-4.
[http://dx.doi.org/10.3892/mmr.2014.3139] [PMID: 25572870]
[40]
Zhang L, Wu Y, Gao X, Guo F. Mitochondrial protein cyclophilin-D-mediated programmed necrosis attributes to berberine-induced cytotoxicity in cultured prostate cancer cells. Biochem Biophys Res Commun 2014; 450(1): 697-703.
[http://dx.doi.org/10.1016/j.bbrc.2014.06.039] [PMID: 24946211]
[41]
Bray F, Ferlay J, Soerjomataram I, Siegel L, Torre A, Ahmedin D. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[42]
Cumberbatch MGK, Jubber I, Black PC, et al. Epidemiology of bladder cancer: A systematic review and contemporary update of risk factors in 2018. Eur Urol 2018; 74(6): 784-95.
[http://dx.doi.org/10.1016/j.eururo.2018.09.001] [PMID: 30268659]
[43]
Shelley MD, Mason MD, Kynaston H. Intravesical therapy for superficial bladder cancer: A systematic review of randomised trials and meta-analyses. Cancer Treat Rev 2010; 36(3): 195-205.
[http://dx.doi.org/10.1016/j.ctrv.2009.12.005] [PMID: 20079574]
[44]
Li Q, Qing L, Xu W, et al. Berberine affects the proliferation, migration, invasion, cell cycle, and apoptosis of bladder cancer cells T24 and 5637 by down-regulating the HER2/PI3K/AKT signaling pathway. Arch Esp Urol 2023; 76(2): 152-60.
[http://dx.doi.org/10.56434/j.arch.esp.urol.20237602.17] [PMID: 37139621]
[45]
Gao X, Liu J, Fan D, et al. Berberine enhances gemcitabine induced cytotoxicity in bladder cancer by downregulating Rad51 expression through inactivating the PI3K/Akt pathway. Oncol Rep 2021; 47(2): 33.
[http://dx.doi.org/10.3892/or.2021.8244] [PMID: 34935059]
[46]
Ho PL, Lay EJ, Jian W, Parra D, Chan KS. Stat3 activation in urothelial stem cells leads to direct progression to invasive bladder cancer. Cancer Res 2012; 72(13): 3135-42.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3195] [PMID: 22532166]
[47]
Chen Z, Chen X, Xie R, et al. DANCR promotes metastasis and proliferation in bladder cancer cells by enhancing IL-11-STAT3 signaling and CCND1 expression. Mol Ther 2019; 27(2): 326-41.
[http://dx.doi.org/10.1016/j.ymthe.2018.12.015] [PMID: 30660488]
[48]
Ojha R, Singh SK, Bhattacharyya S. JAK-mediated autophagy regulates stemness and cell survival in cisplatin resistant bladder cancer cells. Biochim Biophys Acta, Gen Subj 2016; 1860(11): 2484-97.
[http://dx.doi.org/10.1016/j.bbagen.2016.07.021] [PMID: 27474203]
[49]
Wang WJ, Li CF, Chu YY, et al. Inhibition of the EGFR/STAT3/CEBPD axis reverses cisplatin cross-resistance with paclitaxel in the urothelial carcinoma of the urinary bladder. Clin Cancer Res 2017; 23(2): 503-13.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1169] [PMID: 27435393]
[50]
Korac-Prlic J, Degoricija M, Vilović K, et al. Targeting Stat3 signaling impairs the progression of bladder cancer in a mouse model. Cancer Lett 2020; 490: 89-99.
[http://dx.doi.org/10.1016/j.canlet.2020.06.018] [PMID: 32659249]
[51]
van Kessel KEM, Zuiverloon TCM, Alberts AR, Boormans JL, Zwarthoff EC. Targeted therapies in bladder cancer: An overview of in vivo research. Nat Rev Urol 2015; 12(12): 681-94.
[http://dx.doi.org/10.1038/nrurol.2015.231] [PMID: 26390971]
[52]
Yan K, Zhang C, Feng J, et al. Induction of G1 cell cycle arrest and apoptosis by berberine in bladder cancer cells. Eur J Pharmacol 2011; 661(1-3): 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2011.04.021] [PMID: 21545798]
[53]
Yan L, Yan K, Kun W, et al. Berberine inhibits the migration and invasion of T24 bladder cancer cells via reducing the expression of heparanase. Tumour Biol 2013; 34(1): 215-21.
[http://dx.doi.org/10.1007/s13277-012-0531-z] [PMID: 23065570]
[54]
Xia Y, Chen S, Cui J, et al. Berberine suppresses bladder cancer cell proliferation by inhibiting JAK1-STAT3 signaling via upregulation of miR-17-5p. Biochem Pharmacol 2021; 188: 114575.
[http://dx.doi.org/10.1016/j.bcp.2021.114575] [PMID: 33887260]
[55]
Zhuo Y, Chen Q, Chen B, et al. Berberine promotes antiproliferative effects of epirubicin in T24 bladder cancer cells by enhancing apoptosis and cell cycle arrest. Int J Clin Pharmacol Ther 2017; 55(1): 32-40.
[http://dx.doi.org/10.5414/CP202534] [PMID: 27719740]
[56]
Jiang X, Hu Y, Peng J, Su L, Wu T. Berberine hydrochloride inhibits bladder cancer cells and induces apoptosis by inhibiting the PI3k/Akt signal route. Trop J Pharm Res 2023; 22(6): 1161-6.
[57]
Bhatt JR, Finelli A. Landmarks in the diagnosis and treatment of renal cell carcinoma. Nat Rev Urol 2014; 11(9): 517-25.
[http://dx.doi.org/10.1038/nrurol.2014.194] [PMID: 25112856]
[58]
Rossi SH, Klatte T, Usher-Smith J, Stewart GD. Epidemiology and screening for renal cancer. World J Urol 2018; 36(9): 1341-53.
[http://dx.doi.org/10.1007/s00345-018-2286-7] [PMID: 29610964]
[59]
Shaterzadeh-Yazdi H, Noorbakhsh MF, Hayati F, Samarghandian S, Farkhondeh T. Immunomodulatory and anti-inflammatory effects of thymoquinone. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders) 2018; 18(1): 52-60.
[60]
Capitanio U, Bensalah K, Bex A, et al. Epidemiology of renal cell carcinoma. Eur Urol 2019; 75(1): 74-84.
[http://dx.doi.org/10.1016/j.eururo.2018.08.036] [PMID: 30243799]
[61]
Li Z, Hao P, Wu Q, et al. Genetic mutations associated with metastatic clear cell renal cell carcinoma. Oncotarget 2016; 7(13): 16172-9.
[http://dx.doi.org/10.18632/oncotarget.7473] [PMID: 26908440]
[62]
Nguyen DP, Vertosick EA, Corradi RB, Vilaseca A, Benfante NE, Touijer KA, et al. Histological subtype of renal cell carcinoma significantly affects survival in the era of partial nephrectomy. In: Urologic Oncology: Seminars and Original Investigations. Elsevier 2016; 34: pp. (6)259.e1-8.
[63]
Soulières D. Side-effects associated with targeted therapies in renal cell carcinoma. Curr Opin Support Palliat Care 2013; 7(3): 254-7.
[http://dx.doi.org/10.1097/SPC.0b013e3283644c30] [PMID: 23912383]
[64]
Farkhondeh T, Samarghandian S, Azimin-Nezhad M, Samini F. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats. Int J Clin Exp Med 2015; 8(2): 2465.
[65]
Zheng Z, Li X, Nie K, et al. Identification of berberine as a potential therapeutic strategy for kidney clear cell carcinoma and COVID-19 based on analysis of large-scale datasets. Front Immunol 2023; 14: 1038651.
[http://dx.doi.org/10.3389/fimmu.2023.1038651] [PMID: 37033923]
[66]
Jantová S, Letašiová S, Brezová V, Čipák L, Lábaj J. Photochemical and phototoxic activity of berberine on murine fibroblast NIH-3T3 and Ehrlich ascites carcinoma cells. J Photochem Photobiol B 2006; 85(3): 163-76.
[http://dx.doi.org/10.1016/j.jphotobiol.2006.07.001] [PMID: 16905326]
[67]
Inbaraj JJ, Kukielczak BM, Bilski P, Sandvik SL, Chignell CF. Photochemistry and photocytotoxicity of alkaloids from Goldenseal (Hydrastis canadensis L.) 1. Berberine. Chem Res Toxicol 2001; 14(11): 1529-34.
[http://dx.doi.org/10.1021/tx0155247] [PMID: 11712911]
[68]
Castilho-Fernandes A, Lopes TG, Primo FL, Pinto MR, Tedesco AC. Photodynamic process induced by chloro-aluminum phthalocyanine nanoemulsion in glioblastoma. Photodiagn Photodyn Ther 2017; 19: 221-8.
[http://dx.doi.org/10.1016/j.pdpdt.2017.05.003] [PMID: 28599959]
[69]
Samarghandian S, Azimi-Nezhad M, Samini F. Preventive effect of safranal against oxidative damage in aged male rat brain. Exp Anim 2015; 64(1): 65-71.
[70]
Lopes TZ, de Moraes FR, Tedesco AC, Arni RK, Rahal P, Calmon MF. Berberine associated photodynamic therapy promotes autophagy and apoptosis via ROS generation in renal carcinoma cells. Biomed Pharmacother 2020; 123: 109794.
[http://dx.doi.org/10.1016/j.biopha.2019.109794] [PMID: 31874443]
[71]
Lee S-J, Noh H-J, Sung E-G, et al. Berberine sensitizes TRAIL-induced apoptosis through proteasome-mediated downregulation of c-FLIP and Mcl-1 proteins. Int J Oncol 2011; 38(2): 485-92.
[http://dx.doi.org/10.3892/ijo.2010.878] [PMID: 21170508]
[72]
Kessel D, Oleinick NL. Cell death pathways associated with photodynamic therapy: An update. Photochem Photobiol 2018; 94(2): 213-8.
[http://dx.doi.org/10.1111/php.12857] [PMID: 29143339]
[73]
Zhao Y, Lin X, Zeng W, et al. Berberine inhibits the progression of renal cell carcinoma cells by regulating reactive oxygen species generation and inducing DNA damage. Mol Biol Rep 2023; 50(7): 5697-707.
[http://dx.doi.org/10.1007/s11033-023-08381-w] [PMID: 37217616]
[74]
Huang ZH, Zheng HF, Wang WL, et al. Berberine targets epidermal growth factor receptor signaling to suppress prostate cancer proliferation in vitro. Mol Med Rep 2015; 11(3): 2125-8.
[http://dx.doi.org/10.3892/mmr.2014.2929] [PMID: 25394789]
[75]
Hur JM, Kim DH. Berberine inhibited radioresistant effects and enhanced anti-tumor effects in the irradiated-human prostate cancer cells. Toxicol Res 2010; 26(2): 109-15.
[http://dx.doi.org/10.5487/TR.2010.26.2.109] [PMID: 24278513]
[76]
Choi MS, Oh JH, Kim SM, et al. Berberine inhibits p53-dependent cell growth through induction of apoptosis of prostate cancer cells. Int J Oncol 2009; 34(5): 1221-30.
[PMID: 19360335]
[77]
Li X, Zhang A, Sun H, et al. Metabolic characterization and pathway analysis of berberine protects against prostate cancer. Oncotarget 2017; 8(39): 65022-41.
[http://dx.doi.org/10.18632/oncotarget.17531] [PMID: 29029409]
[78]
Liu CH, Tang WC, Sia P, et al. Berberine inhibits the metastatic ability of prostate cancer cells by suppressing epithelial-to-mesenchymal transition (EMT)-associated genes with predictive and prognostic relevance. Int J Med Sci 2015; 12(1): 63-71.
[http://dx.doi.org/10.7150/ijms.9982] [PMID: 25552920]
[79]
Meeran SM, Katiyar S, Katiyar SK. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation. Toxicol Appl Pharmacol 2008; 229(1): 33-43.
[http://dx.doi.org/10.1016/j.taap.2007.12.027] [PMID: 18275980]
[80]
Wang Y, Liu Q, Liu Z, et al. Berberine, a genotoxic alkaloid, induces ATM-Chk1 mediated G2 arrest in prostate cancer cells. Mutat Res 2012; 734(1-2): 20-9.
[http://dx.doi.org/10.1016/j.mrfmmm.2012.04.005] [PMID: 22561209]
[81]
Qin QP, Wang ZF, Huang XL, Tan MX, Luo ZH, Wang SL, et al. Two telomerase-targeting Pt(ii) complexes of jatrorrhizine and berberine derivatives induce apoptosis in human bladder tumor cells. Dalton Transac 2019; 48(40): 1527-54.
[82]
Liu Y, Liu S. Berberine inhibits Wilms’ tumor cell progression through upregulation of Wilms’ tumor gene on the X chromosome. Mol Med Rep 2013; 8(5): 1537-41.
[http://dx.doi.org/10.3892/mmr.2013.1665] [PMID: 24002362]