Fluorescent Materials for Latent Fingerprint Detection

Page: [693 - 703] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

This review provides a comprehensive examination of the application of fluorescence materials for the detection of latent fingerprints in forensic sciences. Traditional methods like powder dusting, cyanoacrylate fuming, chemical methods, and small particle reagent techniques have shown limitations due to issues like low contrast, sensitivity, selectivity, and high toxicity. To overcome these drawbacks, recent focus has shifted towards using fluorescent materials, owing to their unique optical and chemical properties. This review underscores the importance of latent fingerprint development employing metal nanoparticles, semiconductor nanoparticles, and organic fluorescence compounds. These advanced materials not only provide heightened contrast, sensitivity, and selectivity compared to traditional methods but also manifest diminished toxicity. In essence, the review delivers a methodical survey of these pioneering techniques.

Graphical Abstract

[1]
Frick, A.A.; Fritz, P.; Lewis, S.W. Chemical methods for the detection of latent fingermarks.In:Forensic Chem; Wiley-Blackwell, 2015, pp. 354-399.
[http://dx.doi.org/10.1002/9781118897768.ch9]
[2]
Bleay, S.M.; Bailey, M.J.; Croxton, R.S.; Francese, S. The forensic exploitation of fingermark chemistry: A review. WIREs Forensic Sci., 2021, 3(4), e1403.
[http://dx.doi.org/10.1002/wfs2.1403]
[3]
Dessimoz, D.; Champod, C. Linkages between biometrics and forensic science. Handb. Biometrics, 2007, 425-459.
[http://dx.doi.org/10.1007/978-0-387-71041-9_21]
[4]
Gelb, A.; Clark, J. Identification for development: The biometrics revolution. SSRN, 2013, 2013, 1-85.
[http://dx.doi.org/10.2139/ssrn.2226594]
[5]
Rasin, P.; Prabhakaran, P.; Basheer, S.M.; Manakkadan, V. Vadakkedathu Palakkeezhill am, V.N.; Sreekanth, A. Pilot study on the visualization of latent fingerprints and naked eye detection of Hg2+ and Zn2+ ions in aqueous media using ninhydrin-based thiosemicarbazone. Anal. Chem., 2023, 95(15), 6448-6457.
[http://dx.doi.org/10.1021/acs.analchem.3c00579] [PMID: 37022968]
[6]
Chen, H.; Ma, R.; Zhang, M. Recent progress in visualization and analysis of fingerprint level 3 features. ChemistryOpen, 2022, 11(11), e202200091.
[http://dx.doi.org/10.1002/open.202200091] [PMID: 35896949]
[7]
Ansari, A.A.; Aldajani, K.M.; AlHazaa, A.N.; Albrithen, H.A. Recent progress of fluorescent materials for fingermarks detection in forensic science and anti-counterfeiting. Coord. Chem. Rev., 2022, 462, 214523.
[http://dx.doi.org/10.1016/j.ccr.2022.214523]
[8]
Sharma, V.; Choudhary, S.; Mankotia, P.; Kumari, A.; Sharma, K.; Sehgal, R.; Kumar, V. Nanoparticles as fingermark sensors. Trends Analyt. Chem., 2021, 143, 116378.
[http://dx.doi.org/10.1016/j.trac.2021.116378]
[9]
Ewing, A.V.; Kazarian, S.G. Infrared spectroscopy and spectroscopic imaging in forensic science. Analyst (Lond.), 2017, 142(2), 257-272.
[http://dx.doi.org/10.1039/C6AN02244H] [PMID: 27905577]
[10]
González, M.; Gorziza, R.P.; de Cássia Mariotti, K.; Pereira Limberger, R. Methodologies applied to fingerprint analysis. J. Forensic Sci., 2020, 65(4), 1040-1048.
[http://dx.doi.org/10.1111/1556-4029.14313] [PMID: 32176818]
[11]
Bailey, M.J.; Bradshaw, R.; Francese, S.; Salter, T.L.; Costa, C.; Ismail, M.P.; Webb, R.; Bosman, I.; Wolff, K.; de Puit, M. Rapid detection of cocaine, benzoylecgonine and methylecgonine in fingerprints using surface mass spectrometry. Analyst (Lond.), 2015, 140(18), 6254-6259.
[http://dx.doi.org/10.1039/C5AN00112A] [PMID: 25977942]
[12]
Hazarika, P.; Russell, D.A. Advances in Fingerprint Analysis, International Edition; Angewandte Chemie, 2012, pp. 3524-3531.
[http://dx.doi.org/10.1002/anie.201104313]
[13]
Gaw, A. Powders for fingerprint development.In: Lee Gaensslen’s Adv. Fingerpr. Technol, 3rd Edition; CRC Press: Boca Raton, 2012, pp. 208-235.
[http://dx.doi.org/10.1201/b12882-13]
[14]
Mi, Y.; Chen, Y.; Tan, W.; Zhang, J.; Li, Q.; Guo, Z. The influence of bioactive glyoxylate bearing Schiff base on antifungal and antioxidant activities to chitosan quaternary ammonium salts. Carbohydr. Polym., 2022, 278(278), 118970.
[http://dx.doi.org/10.1016/j.carbpol.2021.118970] [PMID: 34973785]
[15]
Malhotra, A.; Vatsa, M.; Singh, R.; Morris, K.B.; Noore, A. Multi-Surface Multi-Technique (MUST) Latent Fingerprint Database. IEEE Trans; Inf; Forensics Secur, 2023.
[http://dx.doi.org/10.1109/TIFS.2023.3280742]
[16]
Kaushal, N.; Kaushal, P. Human identification and fingerprints: A review. J. Biom. Biostat., 2011, 2(4), 1-5.
[http://dx.doi.org/10.4172/2155-6180.1000123]
[17]
Monson, K.L.; Roberts, M.A.; Knorr, K.B.; Ali, S.; Meagher, S.B.; Biggs, K.; Blume, P.; Brandelli, D.; Marzioli, A.; Reneau, R.; Tarasi, F. The permanence of friction ridge skin and persistence of friction ridge skin and impressions: A comprehensive review and new results. Forensic Sci. Int., 2019, 297, 111-131.
[http://dx.doi.org/10.1016/j.forsciint.2019.01.046] [PMID: 30784948]
[18]
Rao, P.K.; Singh, S.; Dey, A.; Rawtani, D.; Parikh, G. Automated fingerprint identification system; In:Mod. Forensic Tools Devices, 2023, pp. 107-124.
[http://dx.doi.org/10.1002/9781119763406.ch6]
[19]
Patil, V.; Ingle, D.R. An Association between Fingerprint Patterns with Blood Group and Lifestyle Based Diseases: A Review; Springer Netherlands, 2021, p. 54.
[http://dx.doi.org/10.1007/s10462-020-09891-w]
[20]
Zhu, Y.; Yin, X.; Hu, J. FingerGAN: A constrained fingerprint generation scheme for latent fingerprint enhancement. IEEE Trans. Pattern Anal. Mach. Intell., 2023, 45(7), 1-14.
[http://dx.doi.org/10.1109/TPAMI.2023.3236876] [PMID: 37018679]
[21]
Srinivasa, P.R.; Krushna, B.R.R.; Malleshappa, J.; Sharma, S.C.; Manjunatha, K.; Wu, S.Y.; Prasad, B.D.; Karthikeyan, P.F.; Komahal, F.; Nagabhushana, H. Blue light emitting Sr2MgSi2O7:Eu2+ nanophosphor for latent fingerprint, anti-counterfeiting and near UV-LED applications. Colloids Surf. A Physicochem. Eng. Asp., 2023, 674, 131857.
[http://dx.doi.org/10.1016/j.colsurfa.2023.131857]
[22]
Sullivan, M.D.; Pinson, W.; Eberhardt, T.; Ross, J.J.; Wood, T.W. Deposition order and physicochemical process visualization of ink intersections using XPS imaging for forensic analysis. Surf. Interface Anal., 2023, 55(11), 808-821.
[http://dx.doi.org/10.1002/sia.7246]
[23]
Assis, A.M.L.; Costa, C.V.; Alves, M.S.; Melo, J.C.S.; de Oliveira, V.R.; Tonholo, J.; Hillman, A.R.; Ribeiro, A.S. From nanomaterials to macromolecules: Innovative technologies for latent fingerprint development. WIREs Forensic Sci., 2023, 5(2), e1475.
[http://dx.doi.org/10.1002/wfs2.1475]
[24]
Shaba, E.Y.; Jacob, J.O.; Tijani, J.O.; Suleiman, M.A.T. A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Appl. Water Sci., 2021, 11(2), 48.
[http://dx.doi.org/10.1007/s13201-021-01370-z]
[25]
Rajan, S.; Venugopal, A.; Kozhikkalathil, H.; Valappil, S.; Kale, M.; Mann, M.; Ahuja, P.; Munjal, S. Synthesis of ZnO nanoparticles by precipitation method: Characterizations and applications in decipherment of latent fingerprints. Mater. Today Proc., 2022, 69(7)
[http://dx.doi.org/10.1016/j.matpr.2023.05.680]
[26]
Hu, Q.; Zhang, Q.Y.; Hu, B.C.; Zhou, N.; Yan, P.P.; Chen, J. Structured green luminescence band of ZnO nanorods-The optical emissions coming from the sample surface. J. Lumin., 2022, 252, 119433.
[http://dx.doi.org/10.1016/j.jlumin.2022.119433]
[27]
Pramanik, S.; Mukherjee, S.; Dey, S.; Mukherjee, S.; Das, S.; Ghosh, T.; Ghosh, P.; Nath, R.; Kuiri, P.K. Cooperative effects of zinc interstitials and oxygen vacancies on violet-blue photoluminescence of ZnO nanoparticles: UV radiation induced enhanced latent fingerprint detection. J. Lumin., 2022, 251, 119156.
[http://dx.doi.org/10.1016/j.jlumin.2022.119156]
[28]
Han, Y.; Cheng, X.; Cui, B.B. Factors influencing self-trapped exciton emission of low-dimensional metal halides. Mater. Adv., 2023, 4(2), 355-373.
[http://dx.doi.org/10.1039/D2MA00676F]
[29]
Tamboli, S.; Nair, G.B.; Xia, Z.; Dhoble, S.J.; Swart, H.C. Blue-light pumped NIR emission of LaOF:Pr3+ nanorods for highly sensitive nanothermometry. Ceram. Int., 2023, 49(14), 23579-23590.
[http://dx.doi.org/10.1016/j.ceramint.2023.04.192]
[30]
Suresh, C.; Darshan, G.P.; Sharma, S.C.; Venkataravanappa, M.; Premkumar, H.B.; Shanthi, S.; Venkatachalaiah, K.N.; Nagabhushana, H. Imaging sweat pore structures in latent fingerprints and unclonable anti-counterfeiting patterns by sensitizers blended LaOF:Pr3+ nanophosphors. Opt. Mater., 2020, 100(100), 109625.
[http://dx.doi.org/10.1016/j.optmat.2019.109625]
[31]
Wang, J.; Li, Y.; Deng, L.; Wei, N.; Weng, Y.; Dong, S.; Qi, D.; Qiu, J.; Chen, X.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater., 2017, 29(3), 1603730.
[http://dx.doi.org/10.1002/adma.201603730] [PMID: 27862379]
[32]
Tominaka, S. Topotactic reduction yielding black titanium oxide nanostructures as metallic electronic conductors. Inorg. Chem., 2012, 51(19), 10136-10140.
[http://dx.doi.org/10.1021/ic300557u] [PMID: 22671142]
[33]
Zhou, H.; Chen, H.; Ma, R.; Li, X.; Du, X.; Zhang, M. Use of conductive Ti2O3 nanoparticles for optical and electrochemical imaging of latent fingerprints on various substrates. J. Electroanal. Chem. (Lausanne), 2023, 936(March), 117387.
[http://dx.doi.org/10.1016/j.jelechem.2023.117387]
[34]
Zhang, M.; Girault, H.H. SECM for imaging and detection of latent fingerprints. Analyst (Lond.), 2009, 134(1), 25-30.
[http://dx.doi.org/10.1039/B815336A] [PMID: 19082169]
[35]
Kovalenko, M.V.; Protesescu, L.; Bodnarchuk, M.I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 2017, 358(6364), 745-750.
[http://dx.doi.org/10.1126/science.aam7093]
[36]
Jung, H.S.; Cho, J.; Neuman, K.C. Highly stable cesium lead bromide perovskite nanocrystals for ultra-sensitive and selective latent fingerprint detection. Anal. Chim. Acta, 2021, 1181, 338850.
[http://dx.doi.org/10.1016/j.aca.2021.338850] [PMID: 34556215]
[37]
Chen, X.; Li, R.; Liu, Z.; Sun, K.; Sun, Z.; Chen, D.; Xu, G.; Xi, P.; Wu, C.; Sun, Y. Small photoblinking semiconductor polymer dots for fluorescence nanoscopy. Adv. Mater., 2017, 29(5), 1604850.
[http://dx.doi.org/10.1002/adma.201604850] [PMID: 27882627]
[38]
Chen, H.; Chang, K.; Men, X.; Sun, K.; Fang, X.; Ma, C.; Zhao, Y.; Yin, S.; Qin, W.; Wu, C. Covalent patterning and rapid visualization of latent fingerprints with photo-cross-linkable semiconductor polymer dots. ACS Appl. Mater. Interfaces, 2015, 7(26), 14477-14484.
[http://dx.doi.org/10.1021/acsami.5b03749] [PMID: 26077019]
[39]
Banerjee, D.; Popy, D.A.; Leininger, B.C.; Creason, T.D.; Mapara, V.N.; Furis, M.; Borunda, M.F.; Saparov, B. Zero-Dimensional Broadband Yellow Light Emitter (TMS)3 Cu2I5 for latent fingerprint detection and solid-state lighting. ACS Appl. Mater. Interfaces, 2023, 15(25), 30455-30468.
[http://dx.doi.org/10.1021/acsami.3c04077] [PMID: 37307198]
[40]
Jin, P.; Guo, C.; Li, J.; Zhou, D.; Xu, G.; Peng, Y. Aggregation-induced emission of a two-dimensional covalent organic framework for molecular recognition in quantitative metrics. ACS Appl. Polym. Mater., 2023, 5(5), 3762-3767.
[http://dx.doi.org/10.1021/acsapm.3c00388]
[41]
Quan, X.; Yan, B. Post-synthetic modification of a fluorescent covalent organic framework as a multifunctional sensor for efficient detection of 5-hydroxytryptamine and its metabolite and latent fingerprint identification. ACS Sustain. Chem.& Eng., 2023, 11(19), 7466-7474.
[http://dx.doi.org/10.1021/acssuschemeng.3c00438]
[42]
Xing, L.B.; Wang, Y.; Li, X.L.; Han, N.; Ma, C.Q.; Liu, H.; Yu, S.; Wang, R.; Zhuo, S. A novel strategy to construct artificial light‐harvesting system based on aggregation‐induced emission surfactants for photocatalysis. Adv. Opt. Mater., 2023, 11(2), 2201710.
[http://dx.doi.org/10.1002/adom.202201710]
[43]
Xiao, T.; Zhang, L.; Chen, D.; Zhang, Q.; Wang, Q.; Li, Z.Y.; Sun, X.Q. A pillar[5]arene-based artificial light-harvesting system with red emission for high-resolution imaging of latent fingerprints. Org. Chem. Front., 2023, 10(13), 3245-3251.
[http://dx.doi.org/10.1039/D3QO00584D]
[44]
Alam, M.Z. Alimuddin; Khan, S.A. A review on schiff base as a versatile fluorescent chemo-sensors tool for detection of Cu2+ and Fe3+ metal ion. J. Fluoresc., 2023, 1, 1-32.
[http://dx.doi.org/10.1007/S10895-022-03102-1/SCHEMES/3]
[45]
Srinivas, M.; Vijayakumar, G.R.; Mahadevan, K.M.; Nagabhushana, H.; Bhojya Naik, H.S. Synthesis, photoluminescence and forensic applications of blue light emitting azomethine-zinc (II) complexes of bis(salicylidene)cyclohexyl-1,2-diamino based organic ligands. J. Sci. Adv. Mater. Devices, 2017, 2(2), 156-164.
[http://dx.doi.org/10.1016/j.jsamd.2017.02.008]
[46]
Bhardwaj, V.; Ashok Kumar, S.K.; Sahoo, S.K. Fluorescent sensing (Cu2+ and pH) and visualization of latent fingerprints using an AIE-active naphthaldehyde-pyridoxal conjugated Schiff base. Microchem. J., 2022, 178, 107404.
[http://dx.doi.org/10.1016/j.microc.2022.107404]
[47]
Umare, M.; Patel, D.A.; Bhardwaj, V.; Sk, A.K.; Sahoo, S.K. Pyridoxal derived aiegen for fluorescence turn-off sensing of Cu2+ and Fe2+ ions and fluorescence imaging of latent fingerprints. J. Fluoresc., 2023, 33(2), 601-611.
[http://dx.doi.org/10.1007/s10895-022-03109-8] [PMID: 36469208]
[48]
Singh, H.; Sharma, R.; Bhargava, G. AIE + ESIPT based red fluorescent aggregates for visualization of latent fingerprints. New J. Chem., 2018, 42(15), 12900-12907.
[http://dx.doi.org/10.1039/C8NJ02646G]