Cellulose Acetate-Based Wound Dressings Loaded with Bioactive Agents: Potential Scaffolds for Wound Dressing and Skin Regeneration

Page: [1226 - 1240] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Wound healing and skin regeneration are major challenges in chronic wounds. Among the types of wound dressing products currently available in the market, each wound dressing material is designed for a specific wound type. Some of these products suffer from various shortcomings, such as poor antibacterial efficacy and mechanical performance, inability to provide a moist environment, poor permeability to oxygen and capability to induce cell migration and proliferation during the wound healing process. Hydrogels and nanofibers are widely reported wound dressings that have demonstrated promising capability to overcome these shortcomings. Cellulose acetate is a semisynthetic polymer that has attracted great attention in the fabrication of hydrogels and nanofibers. Loading bioactive agents such as antibiotics, essential oils, metallic nanoparticles, plant extracts, and honey into cellulose acetate-based nanofibers and hydrogels enhanced their biological effects, including antibacterial, antioxidant, and wound healing. This review reports cellulose acetate-based hydrogels and nanofibers loaded with bioactive agents for wound dressing and skin regeneration.

Graphical Abstract

[1]
Gaspar-Pintiliescu, A.; Stanciuc, A.M.; Craciunescu, O. Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: A review. Int. J. Biol. Macromol., 2019, 138, 854-865.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.155] [PMID: 31351963]
[2]
Tudoroiu, E.E.; Dinu-Pîrvu, C.E.; Albu Kaya, M.G.; Popa, L.; Anuța, V.; Prisada, R.M.; Ghica, M.V. An overview of cellulose derivatives-based dressings for wound-healing management. Pharmaceuticals., 2021, 14(12), 1215.
[http://dx.doi.org/10.3390/ph14121215] [PMID: 34959615]
[3]
Gethin, G.; Grocott, P.; Probst, S.; Clarke, E. Current practice in the management of wound odour: An international survey. Int. J. Nurs. Stud., 2014, 51(6), 865-874.
[http://dx.doi.org/10.1016/j.ijnurstu.2013.10.013] [PMID: 24238490]
[4]
Li, A.; Han, Z.; Li, Z.; Li, J.; Li, X.; Zhang, Z.A. PTHrP-2 loaded adhesive cellulose acetate nanofiber mat as wound dressing accelerates wound healing. Mater. Des., 2021, 212, 110241.
[http://dx.doi.org/10.1016/j.matdes.2021.110241]
[5]
Samadian, H.; Salehi, M.; Farzamfar, S.; Vaez, A.; Ehterami, A.; Sahrapeyma, H.; Goodarzi, A.; Ghorbani, S. In vitro and in vivo evaluation of electrospun cellulose acetate/gelatin/hydroxyapatite nanocomposite mats for wound dressing applications. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 964-974.
[http://dx.doi.org/10.1080/21691401.2018.1439842] [PMID: 29458271 ]
[6]
Liao, N.; Unnithan, A.R.; Joshi, M.K.; Tiwari, A.P.; Hong, S.T.; Park, C-H.; Kim, C.S. Electrospun bioactive poly (ɛ-caprolactone)-cellulose acetate-dextran antibacterial composite mats for wound dressing applications. Colloids Surf. A Physicochem. Eng. Asp., 2015, 469, 194-201.
[http://dx.doi.org/10.1016/j.colsurfa.2015.01.022]
[7]
Gray, T.A.; Rhodes, S.; Atkinson, R.A.; Rothwell, K.; Wilson, P.; Dumville, J.C.; Cullum, N.A. Opportunities for better value wound care: A multiservice, cross-sectional survey of complex wounds and their care in a UK community population. BMJ Open, 2018, 8(3), e019440.
[http://dx.doi.org/10.1136/bmjopen-2017-019440] [PMID: 29572395]
[8]
Abazari, M.F.; Gholizadeh, S.; Karizi, S.Z.; Birgani, N.H.; Abazari, D.; Paknia, S.; Derakhshankhah, H.; Allahyari, Z.; Amini, S.M.; Hamidi, M.; Delattre, C. Recent advances in cellulose-based structures as the wound-healing biomaterials: A clinically oriented review. Appl. Sci., 2021, 11(17), 7769.
[http://dx.doi.org/10.3390/app11177769]
[9]
Minsart, M.; Van Vlierberghe, S.; Dubruel, P.; Mignon, A. Commercial wound dressings for the treatment of exuding wounds: An in-depth physico-chemical comparative study. Burns Trauma, 2022, 10, tkac024.
[http://dx.doi.org/10.1093/burnst/tkac024] [PMID: 35733649]
[10]
Jones, V.; Grey, J.E.; Harding, K.G. Wound dressings. BMJ, 2006, 332(7544), 777-780.
[http://dx.doi.org/10.1136/bmj.332.7544.777] [PMID: 16575081]
[11]
Jiang, T.; Li, Q.; Qiu, J.; Chen, J.; Du, S.; Xu, X.; Wu, Z.; Yang, X.; Chen, Z.; Chen, T. Nanobiotechnology: Applications in chronic wound healing. Int. J. Nanomedicine, 2022, 2022, 3125-3145.
[12]
Shi, C.; Wang, C.; Liu, H.; Li, Q.; Li, R.; Zhang, Y.; Liu, Y.; Shao, Y.; Wang, J. Selection of appropriate wound dressing for various wounds. Front. Bioeng. Biotechnol., 2020, 8(3), 182.
[http://dx.doi.org/10.3389/fbioe.2020.00182] [PMID: 32266224]
[13]
Nuutila, K.; Eriksson, E. Moist wound healing with commonly available dressings. Adv. Wound Care, 2021, 10(12), 685-698.
[http://dx.doi.org/10.1089/wound.2020.1232] [PMID: 32870777]
[14]
Vatankhah, E.; Prabhakaran, M.P.; Jin, G.; Mobarakeh, L.G.; Ramakrishna, S. Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. J. Biomater. Appl., 2014, 28(6), 909-921.
[http://dx.doi.org/10.1177/0885328213486527] [PMID: 23640859]
[15]
Akturk, A. Enrichment of cellulose acetate nanofibrous scaffolds with retinyl palmitate and clove essential oil for wound healing applications. ACS Omega, 2023, 8(6), 5553-5560.
[http://dx.doi.org/10.1021/acsomega.2c06881] [PMID: 36816664]
[16]
Shoueir, K.R. Morphological, antibacterial, and cell attachment of cellulose acetate nanofibers containing modified hydroxyapatite for wound healing utilizations. Integr. Med. Res., 2020, 9(6), 13927-13936.
[17]
Farahani, H.; Barati, A.; Arjomandzadegan, M.; Vatankhah, E. Nanofibrous cellulose acetate/gelatin wound dressing endowed with antibacterial and healing efficacy using nanoemulsion of Zataria multiflora. Int. J. Biol. Macromol., 2020, 162, 762-773.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.175] [PMID: 32590085]
[18]
Husnaini, S.; Hanisah, N.; Suhaili, N.; Hannan, F.; Mat, A.; Othaman, R. Preparation of cellulose-based hydrogel: A review. J. Mater. Res. Technol., 2020, 10, 935-952.
[19]
Boateng, J.S.; Matthews, K.H.; Stevens, H.N.E.; Eccleston, G.M. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci., 2008, 97(8), 2892-2923.
[http://dx.doi.org/10.1002/jps.21210] [PMID: 17963217]
[20]
Jain, S.; Domb, A.J.; Kumar, N.; Khan, W. Drug delivery to wounds, burns, and diabetes-related ulcers. Focal Control. Drug Deliv., 2014, 585-605.
[21]
Varaprasad, K.; Mohan, Y.M.; Vimala, K.; Mohana Raju, K. Synthesis and characterization of hydrogel-silver nanoparticle-curcumin composites for wound dressing and antibacterial application. J. Appl. Polym. Sci., 2011, 121(2), 784-796.
[http://dx.doi.org/10.1002/app.33508]
[22]
Kajzar, F.; Pearce, E.M.; Turovskij, N.A.; Mukbaniani, O.V. Key Engineering Materials. Interdisciplinary Concepts and Research, 2014, 2014, 2.
[23]
Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Kharaziha, M.; Ismail, A.F.; Sharif, S.; Razzaghi, M. RamaKrishna, S.; Berto, F. Antimicrobial synthetic and natural polymeric nanofibers as wound dressing: A review. Adv. Eng. Mater., 2022, 24(6), 2101460.
[http://dx.doi.org/10.1002/adem.202101460]
[24]
Queen, D.; Evans, J.H.; Gaylor, J.D.S.; Courtney, J.M.; Reid, W.H. Burn wound dressings—a review. Burns, 1987, 13(3), 218-228.
[http://dx.doi.org/10.1016/0305-4179(87)90170-7] [PMID: 3607565]
[25]
Xu, W.; Ma, C.; Ma, J.; Gan, T.; Zhang, G.; Xu, W.; Ma, C.; Ma, J.; Gan, T.; Zhang, G. Marine biofouling resistance of polyurethane with biodegradation and hydrolyzation. ACS Appl. Mater. Interfaces, 2014, 6(6), 4017-4024.
[http://dx.doi.org/10.1021/am4054578] [PMID: 24576063]
[26]
Xu, R.; Xia, H.; He, W.; Li, Z.; Zhao, J.; Liu, B.; Wang, Y.; Lei, Q.; Kong, Y.; Bai, Y.; Yao, Z.; Yan, R.; Li, H.; Zhan, R.; Yang, S.; Luo, G.; Wu, J. Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Sci. Rep., 2016, 6(1), 24596.
[http://dx.doi.org/10.1038/srep24596] [PMID: 27086569]
[27]
Sahraro, M.; Yeganeh, H.; Sorayya, M. Guanidine hydrochloride embedded polyurethanes as antimicrobial and absorptive wound dressing membranes with promising cytocompatibility. Mater. Sci. Eng. C, 2016, 59, 1025-1037.
[http://dx.doi.org/10.1016/j.msec.2015.11.038] [PMID: 26652461]
[28]
Bahrami, N.; Nouri Khorasani, S.; Mahdavi, H.; Ghiaci, M.; Mokhtari, R. Low-pressure plasma surface modification of polyurethane films with chitosan and collagen biomolecules. J. Appl. Polym. Sci., 2019, 136(21), 47567.
[http://dx.doi.org/10.1002/app.47567]
[29]
Kokabi, M.; Sirousazar, M.; Hassan, Z.M. PVA-clay nanocomposite hydrogels for wound dressing. Eur. Polym. J., 2007, 43(3), 773-781.
[http://dx.doi.org/10.1016/j.eurpolymj.2006.11.030]
[30]
O’Donnell, T.F., Jr; Lau, J. A systematic review of randomized controlled trials of wound dressings for chronic venous ulcer. J. Vasc. Surg., 2006, 44(5), 1118-1125.
[http://dx.doi.org/10.1016/j.jvs.2006.08.004] [PMID: 17098555]
[31]
Stoica, A.E.; Chircov, C.; Grumezescu, A.M. Nanomaterials for wound dressings: An up-to-date overview. Molecules, 2020, 25(11), 2699.
[http://dx.doi.org/10.3390/molecules25112699] [PMID: 32532089]
[32]
Moeini, A.; Pedram, P.; Makvandi, P.; Malinconico, M.; Gomez d’Ayala, G. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydr. Polym., 2020, 233, 115839.
[http://dx.doi.org/10.1016/j.carbpol.2020.115839] [PMID: 32059889]
[33]
Paul, W.; Sharma, C.P. Chitosan and alginate wound dressings: A short review. Trends Biomater. Artif. Organs, 2004, 18, 18-23.
[34]
Buchanan, P.J.; Kung, T.A.; Cederna, P.S. Evidence-Based Medicine. Plast. Reconstr. Surg., 2016, 138(3)(Suppl.), 257S-270S.
[http://dx.doi.org/10.1097/PRS.0000000000002775] [PMID: 27556770]
[35]
Sheikh, Z.; Hamdan, N.; Ikeda, Y.; Grynpas, M.; Ganss, B.; Glogauer, M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: A review. Biomater. Res., 2017, 21(1), 9.
[http://dx.doi.org/10.1186/s40824-017-0095-5] [PMID: 28593053]
[36]
Marin, M.M.; Albu Kaya, M.; Kaya, D.A.; Constantinescu, R.; Trica, B.; Gifu, I.C.; Alexandrescu, E.; Nistor, C.L.; Alexa, R.L.; Ianchis, R. Novel nanocomposite hydrogels based on crosslinked microbial polysaccharide as potential bioactive wound dressings. Materials, 2023, 16(3), 982.
[http://dx.doi.org/10.3390/ma16030982] [PMID: 36769988]
[37]
Elsherbiny, D.A.; Abdelgawad, A.M.; Shaheen, T.I.; Abdelwahed, N.A.M.; Jockenhoevel, S.; Ghazanfari, S. Thermoresponsive nanofibers loaded with antimicrobial α-aminophosphonate-o/w emulsion supported by cellulose nanocrystals for smart wound care patches. Int. J. Biol. Macromol., 2023, 233, 123655.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123655] [PMID: 36780965]
[38]
Jiang, M.; Li, S.; Ming, P.; Guo, Y.; Yuan, L.; Jiang, X.; Liu, Y.; Chen, J.; Xia, D.; He, Y.; Tao, G. Rational design of porous structure-based sodium alginate/chitosan sponges loaded with green synthesized hybrid antibacterial agents for infected wound healing. Int. J. Biol. Macromol., 2023, 237, 123944.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123944] [PMID: 36898466]
[39]
Lei, D.; Zhao, J.; Zhu, C.; Jiang, M.; Ma, P.; Mi, Y.; Fan, D. Multifunctional oxidized dextran cross-linked alkylated chitosan/drug-loaded and silver-doped mesoporous bioactive glass cryogel for hemostasis of noncompressible wounds. Gels, 2023, 9(6), 455.
[http://dx.doi.org/10.3390/gels9060455] [PMID: 37367126]
[40]
Hussain, Z.; Hnin, E.T.; Ahmad, N.S.; Haliza, K.; Fahad, H. Recent advances in polymer-based wound dressings for the treatment of diabetic foot ulcer : An overview of state-of-the-art. Curr. Drug Targets, 2017, 18, 527-550.
[41]
Khoshnevisan, K.; Maleki, H.; Samadian, H.; Shahsavari, S.; Sarrafzadeh, M.H.; Larijani, B.; Dorkoosh, F.A.; Haghpanah, V.; Khorramizadeh, M.R. Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances. Carbohydr. Polym., 2018, 198, 131-141.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.072] [PMID: 30092983]
[42]
Li, C.; Liu, Z.; Liu, S.; Tiwari, S.K.; Thummavichai, K.; Ola, O.; Ma, Z.; Zhang, S.; Wang, N.; Zhu, Y. Antibacterial properties and drug release study of cellulose acetate nanofibers containing ear-like Ag-NPs and Dimethyloxallyl Glycine/beta-cyclodextrin. Appl. Surf. Sci., 2022, 590, 153132.
[http://dx.doi.org/10.1016/j.apsusc.2022.153132]
[43]
Li, W.; Li, T.; Li, G.; An, L.; Li, F.; Zhang, Z. Electrospun H 4 SiW 12 O 40/cellulose acetate composite nanofibrous membrane for photocatalytic degradation of tetracycline and methyl orange with different mechanism. Carbohydr. Polym., 2017, 168, 153-162.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.079] [PMID: 28457436]
[44]
Teixeira, M.A.; Paiva, M.C.; Amorim, M.T.P.; Felgueiras, H.P. Electrospun nanocomposites containing cellulose and its derivatives modified with specialized biomolecules for an enhanced wound healing. Nanomaterials, 2020, 10(3), 557.
[http://dx.doi.org/10.3390/nano10030557] [PMID: 32204521]
[45]
Bifari, E.N.; Bahadar Khan, S.; Alamry, K.A.; Asiri, A.M.; Akhtar, K. Cellulose acetate based nanocomposites for biomedical applications: A review. Curr. Pharm. Des., 2016, 22(20), 3007-3019.
[http://dx.doi.org/10.2174/1381612822666160316160016] [PMID: 26979093]
[46]
Wsoo, M.A.; Shahir, S.; Mohd Bohari, S.P.; Nayan, N.H.M.; Razak, S.I.A. A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: A new perspective. Carbohydr. Res., 2020, 491, 107978.
[http://dx.doi.org/10.1016/j.carres.2020.107978] [PMID: 32163784]
[47]
Atila, D.; Keskin, D.; Tezcaner, A. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications. Carbohydr. Polym., 2015, 133, 251-261.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.109] [PMID: 26344279]
[48]
Srivastava, P.; Lakshmi, G.B.V.S.; Sri, S.; Chauhan, D.; Chakraborty, A.; Singh, S.; Solanki, P.R. Potential of electrospun cellulose acetate nanofiber mat integrated with silver nanoparticles from Azadirachta indica as antimicrobial agent. J. Polym. Res., 2020, 27(11), 350.
[http://dx.doi.org/10.1007/s10965-020-02308-w]
[49]
Aldossary, H.A.; Khalaf, M.M.; Gouda, M.; Elmushyakhi, A.; Abou Taleb, M.F.; Abd El-Lateef, H.M. Wound dressing candidate materials based on casted films of cellulose acetate modified with zirconium oxide (ZrO2), and gallium oxide (Ga2O3). Mater. Today Commun., 2023, 34, 105299.
[http://dx.doi.org/10.1016/j.mtcomm.2022.105299]
[50]
Elsherbiny, D.A.; Abdelgawad, A.M.; Hemdan, B.A.; Montaser, A.S.; El-Sayed, I.E.T.; Jockenhoevel, S.; Ghazanfari, S. Self-crosslinked polyvinyl alcohol/cellulose nanofibril cryogels loaded with synthesized aminophosphonates as antimicrobial wound dressings. J. Mater. Chem. B Mater. Biol. Med., 2023, 11(30), 7144-7159.
[http://dx.doi.org/10.1039/D3TB00926B] [PMID: 37403540]
[51]
Kiti, K.; Suwantong, O. The potential use of curcumin-β-cyclodextrin inclusion complex/chitosan-loaded cellulose sponges for the treatment of chronic wound. Int. J. Biol. Macromol., 2020, 164, 3250-3258.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.190] [PMID: 32860794]
[52]
Ng, S.F.; Jumaat, N. Carboxymethyl cellulose wafers containing antimicrobials: A modern drug delivery system for wound infections. Eur. J. Pharm. Sci., 2014, 51, 173-179.
[http://dx.doi.org/10.1016/j.ejps.2013.09.015] [PMID: 24076463]
[53]
Hawthorne, B.; Simmons, J.K.; Stuart, B.; Tung, R.; Zamierowski, D.S.; Mellott, A.J. Enhancing wound healing dressing development through interdisciplinary collaboration. J. Biomed. Mater. Res. B Appl. Biomater., 2021, 109(12), 1967-1985.
[http://dx.doi.org/10.1002/jbm.b.34861] [PMID: 34002476]
[54]
Ndlovu, S.P.; Ngece, K.; Alven, S.; Aderibigbe, B.A. Gelatin-based hybrid scaffolds: Promising wound dressings. Polymers, 2021, 13(17), 2959.
[http://dx.doi.org/10.3390/polym13172959] [PMID: 34502997]
[55]
Alven, S.; Peter, S.; Aderibigbe, B.A. Polymer-based hydrogels enriched with essential oils: A promising approach for the treatment of infected wounds. Polymers, 2022, 14(18), 3772.
[http://dx.doi.org/10.3390/polym14183772] [PMID: 36145917]
[56]
Aderibigbe, B.; Buyana, B. Alginate in wound dressings. Pharmaceutics, 2018, 10(2), 42.
[http://dx.doi.org/10.3390/pharmaceutics10020042] [PMID: 29614804]
[57]
Lu, L.; Yuan, S.; Wang, J.; Shen, Y.; Deng, S.; Xie, L.; Yang, Q. The formation mechanism of hydrogels. Curr. Stem Cell Res. Ther., 2018, 13(7), 490-496.
[http://dx.doi.org/10.2174/1574888X12666170612102706] [PMID: 28606044]
[58]
Graça, M.F.P.; Melo, B.L.; Lima-Sousa, R.; Ferreira, P.; Moreira, A.F.; Correia, I.J. Reduced graphene oxide-enriched chitosan hydrogel/cellulose acetate-based nanofibers application in mild hyperthermia and skin regeneration. Int. J. Biol. Macromol., 2023, 229, 224-235.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.12.291] [PMID: 36586651]
[59]
Onyianta, A.J.; Castellano, M.; Dorris, M.; Williams, R.L.; Vicini, S. The effects of morpholine pre-treated and carboxymethylated cellulose nanofibrils on the properties of alginate-based hydrogels. Carbohydr. Polym., 2018, 198, 320-327.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.084] [PMID: 30093005]
[60]
Chen, S.; Huang, R.; Ravi-Chandar, K. Linear and nonlinear poroelastic analysis of swelling and drying behavior of gelatin-based hydrogels. Int. J. Solids Struct., 2020, 195, 43-56.
[http://dx.doi.org/10.1016/j.ijsolstr.2020.03.017]
[61]
Umar, M.; Ullah, A.; Nawaz, H.; Areeb, T.; Hashmi, M.; Kharaghani, D.; Kim, K.O.; Kim, I.S. Wet-spun bi-component alginate based hydrogel fibers: Development and in-vitro evaluation as a potential moist wound care dressing. Int. J. Biol. Macromol., 2021, 168, 601-610.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.088] [PMID: 33338524]
[62]
Onofrei, M.; Filimon, A. Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. Polymer Science: Research Advances; Practical Applications And Educational Aspects, 2016, pp. 108-120.
[63]
Jose, J.; Pai, A.R.; Gopakumar, D.A.; Dalvi, Y.; Ruby, V.; Bhat, S.G.; Pasquini, D.; Kalarikkal, N.; Thomas, S. Novel 3D porous aerogels engineered at nano scale from cellulose nano fibers and curcumin: An effective treatment for chronic wounds. Carbohydr. Polym., 2022, 287, 119338.
[http://dx.doi.org/10.1016/j.carbpol.2022.119338] [PMID: 35422297]
[64]
Kalaycıoğlu, Z.; Kahya, N.; Adımcılar, V.; Kaygusuz, H.; Torlak, E.; Akın-Evingür, G.; Erim, F.B. Antibacterial nano cerium oxide/chitosan/cellulose acetate composite films as potential wound dressing. Eur. Polym. J., 2020, 133, 109777.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109777]
[65]
Liu, J.; Zhang, R.; Ci, M.; Sui, S.; Zhu, P. Sodium alginate/ cellulose nanocrystal fibers with enhanced mechanical strength prepared by wet spinning. J. Eng. Fibers Fabrics, 2019, 14
[http://dx.doi.org/10.1177/1558925019847553]
[66]
Abd El-Mohdy, H.L. Radiation synthesis of nanosilver/poly vinyl alcohol/cellulose acetate/gelatin hydrogels for wound dressing. J. Polym. Res., 2013, 20(6), 177.
[http://dx.doi.org/10.1007/s10965-013-0177-6]
[67]
Wang, L.; Yang, T.; Zhao, G. An injectable cellulose acetate/sodium alginate hydrogels-loaded laponite microsphere as a potential wound healing in nursing care in perioperative period. Mater. Res. Express, 2022, 9(3), 035402.
[http://dx.doi.org/10.1088/2053-1591/ac565f]
[68]
Alven, S.; Buyana, B.; Feketshane, Z.; Aderibigbe, B.A. Electrospun nanofibers/nanofibrous scaffolds loaded with silver nanoparticles as effective antibacterial wound dressing materials. Pharmaceutics, 2021, 13(7), 964.
[http://dx.doi.org/10.3390/pharmaceutics13070964] [PMID: 34206857]
[69]
Aduba, D., Jr; Yang, H. Polysaccharide fabrication platforms and biocompatibility assessment as candidate wound dressing materials. Bioengineering, 2017, 4(4), 1.
[http://dx.doi.org/10.3390/bioengineering4010001] [PMID: 28952482]
[70]
Feketshane, Z.; Alven, S.; Aderibigbe, B.A. Gellan gum in wound dressing scaffolds. Polymers, 2022, 14(19), 4098.
[http://dx.doi.org/10.3390/polym14194098] [PMID: 36236046]
[71]
Abrigo, M.; McArthur, S.L.; Kingshott, P. Electrospun nanofibers as dressings for chronic wound care: Advances, challenges, and future prospects. Macromol. Biosci., 2014, 14(6), 772-792.
[http://dx.doi.org/10.1002/mabi.201300561] [PMID: 24678050]
[72]
Alven, S.; Aderibigbe, B.A. Fabrication of hybrid nanofibers from biopolymers and poly (Vinyl Alcohol)/Poly (ε-Caprolactone) for wound dressing applications. Polymers, 2021, 13(13), 2104.
[http://dx.doi.org/10.3390/polym13132104] [PMID: 34206747]
[73]
Prakash, J.; Venkataprasanna, K.S.; Bharath, G.; Banat, F.; Niranjan, R.; Venkatasubbu, G.D. In-vitro evaluation of electrospun cellulose acetate nanofiber containing Graphene oxide/TiO2/Curcumin for wound healing application. Colloids Surf. A Physicochem. Eng. Asp., 2021, 627, 127166.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127166]
[74]
Aly, A.A.; Ahmed, M.K. Nanofibers of cellulose acetate containing ZnO nanoparticles/graphene oxide for wound healing applications. Int. J. Pharm., 2021, 598, 120325.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120325] [PMID: 33539995]
[75]
Suteris, N.N.; Yasin, A.; Misnon, I.I.; Roslan, R.; Zulkifli, F.H.; Rahim, M.H.A.; Venugopal, J.R.; Jose, R. Curcumin loaded waste biomass resourced cellulosic nanofiber cloth as a potential scaffold for regenerative medicine: An in-vitro assessment. Int. J. Biol. Macromol., 2022, 198, 147-156.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.12.006] [PMID: 34971642]
[76]
Gaydhane, M.K.; Kanuganti, J.S.; Sharma, C.S. Honey and curcumin loaded multilayered polyvinylalcohol/cellulose acetate electrospun nanofibrous mat for wound healing. J. Mater. Res., 2020, 35(6), 600-609.
[http://dx.doi.org/10.1557/jmr.2020.52]
[77]
Tsekova, P.B.; Spasova, M.G.; Manolova, N.E.; Markova, N.D.; Rashkov, I.B. Electrospun curcumin-loaded cellulose acetate/polyvinylpyrrolidone fibrous materials with complex architecture and antibacterial activity. Mater. Sci. Eng. C, 2017, 73, 206-214.
[http://dx.doi.org/10.1016/j.msec.2016.12.086] [PMID: 28183599]
[78]
Bie, X.; Khan, M.Q.; Ullah, A.; Ullah, S.; Kharaghani, D.; Phan, D.N.; Tamada, Y.; Kim, I.S. Fabrication and characterization of wound dressings containing gentamicin/silver for wounds in diabetes mellitus patients. Mater. Res. Express, 2020, 7(4), 045004.
[http://dx.doi.org/10.1088/2053-1591/ab8337]
[79]
Wang, M.; Yu, D.G.; Williams, G.R.; Bligh, S.W.A. Co-loading of inorganic nanoparticles and natural oil in the electrospun janus nanofibers for a synergetic antibacterial effect. Pharmaceutics, 2022, 14(6), 1208.
[http://dx.doi.org/10.3390/pharmaceutics14061208] [PMID: 35745781]
[80]
Aldalbahi, A.; El-Naggar, M.E.; Ahmed, M.K.; Periyasami, G.; Rahaman, M.; Menazea, A.A. Core-shell Au@Se nanoparticles embedded in cellulose acetate/polyvinylidene fluoride scaffold for wound healing. J. Mater. Res. Technol., 2020, 9(6), 15045-15056.
[http://dx.doi.org/10.1016/j.jmrt.2020.10.079]
[81]
Khan, M.Q.; Kharaghani, D. Sanaullah; Shahzad, A.; Saito, Y.; Yamamoto, T.; Ogasawara, H.; Kim, I.S. Fabrication of antibacterial electrospun cellulose acetate/silver-sulfadiazine nanofibers composites for wound dressings applications. Polym. Test., 2019, 74, 39-44.
[http://dx.doi.org/10.1016/j.polymertesting.2018.12.015]
[82]
Al-Saeedi, S.I.; Al-Kadhi, N.S.; Al-Senani, G.M.; Almaghrabi, O.A.; Nafady, A. Antibacterial potency, cell viability and morphological implications of copper oxide nanoparticles encapsulated into cellulose acetate nanofibrous scaffolds. Int. J. Biol. Macromol., 2021, 182, 464-471.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.013] [PMID: 33838197]
[83]
Gouda, M.; Hebeish, A.A.; Aljafari, A.I. Synthesis and characterization of novel drug delivery system based on cellulose acetate electrospun nanofiber mats. J. Ind. Text., 2014, 43(3), 319-329.
[http://dx.doi.org/10.1177/1528083713495250]
[84]
Abdel Khalek, M.A.; Abdel Gaber, S.A.; El-Domany, R.A.; El-Kemary, M.A. Photoactive electrospun cellulose acetate/ polyethylene oxide/methylene blue and trilayered cellulose acetate/ polyethylene oxide/silk fibroin/ciprofloxacin nanofibers for chronic wound healing. Int. J. Biol. Macromol., 2021, 193(Pt B), 1752-1766.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.11.012] [PMID: 34774864 ]
[85]
Gomaa, S.F.; Madkour, T.M.; Moghannem, S.; El-Sherbiny, I.M. New polylactic acid/cellulose acetate-based antimicrobial interactive single dose nanofibrous wound dressing mats. Int. J. Biol. Macromol., 2017, 105(Pt 1), 1148-1160.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.145] [PMID: 28751051]
[86]
Youdhestar; Mahar, F.K.; Das, G.; Tajammul, A.; Ahmed, F.; Khatri, M.; Khan, S.; Khatri, Z. Fabrication of ceftriaxone-loaded cellulose acetate and polyvinyl alcohol nanofibers and their antibacterial evaluation. Antibiotics, 2022, 11(3), 352.
[http://dx.doi.org/10.3390/antibiotics11030352] [PMID: 35326815]
[87]
Sharaf, S.S.; El-Shafei, A.M.; Refaie, R.; Gibriel, A.A.; Abdel-Sattar, R. Antibacterial and wound healing properties of cellulose acetate electrospun nanofibers loaded with bioactive glass nanoparticles; in-vivo study. Cellulose, 2022, 29(8), 4565-4577.
[http://dx.doi.org/10.1007/s10570-022-04570-1]
[88]
Wutticharoenmongkol, P.; Hannirojram, P.; Nuthong, P. Gallic acid-loaded electrospun cellulose acetate nanofibers as potential wound dressing materials. Polym. Adv. Technol., 2019, 30(4), 1135-1147.
[http://dx.doi.org/10.1002/pat.4547]
[89]
Lei, L.; Huang, W.; Liu, K.; Liu, X.; Dai, M.; Liu, Z.; Zhiao, Y. Trilazad mesylate-loaded electrospun cellulose acetate nanofibrous wound dressings promote diabetic wound healing by modulation of immune response and protection against oxidative damage. J. Drug Deliv. Sci. Technol., 2022, 69, 102863.
[http://dx.doi.org/10.1016/j.jddst.2021.102863]
[90]
Li, B.; Yang, X. Rutin-loaded cellulose acetate/poly(ethylene oxide) fiber membrane fabricated by electrospinning: A bioactive material. Mater. Sci. Eng. C, 2020, 109, 110601.
[http://dx.doi.org/10.1016/j.msec.2019.110601] [PMID: 32228961]
[91]
Elsayed, R.E.; Madkour, T.M.; Azzam, R.A. Tailored-design of electrospun nanofiber cellulose acetate/poly(lactic acid) dressing mats loaded with a newly synthesized sulfonamide analog exhibiting superior wound healing. Int. J. Biol. Macromol., 2020, 164, 1984-1999.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.316] [PMID: 32771511]
[92]
Liu, F.; Li, X.; Wang, L.; Yan, X.; Ma, D.; Liu, Z.; Liu, X. Sesamol incorporated cellulose acetate-zein composite nanofiber membrane: An efficient strategy to accelerate diabetic wound healing. Int. J. Biol. Macromol., 2020, 149, 627-638.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.277] [PMID: 32004602]
[93]
Ullah, A.; Saito, Y.; Ullah, S.; Haider, M.K.; Nawaz, H.; Duy-Nam, P.; Kharaghani, D.; Kim, I.S. Bioactive Sambong oil-loaded electrospun cellulose acetate nanofibers: Preparation, characterization, and in-vitro biocompatibility. Int. J. Biol. Macromol., 2021, 166, 1009-1021.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.257] [PMID: 33152363]
[94]
Ullah, A.; Ullah, S.; Khan, M.Q.; Hashmi, M.; Nam, P.D.; Kato, Y.; Tamada, Y.; Kim, I.S. Manuka honey incorporated cellulose acetate nanofibrous mats: Fabrication and in vitro evaluation as a potential wound dressing. Int. J. Biol. Macromol., 2020, 155, 479-489.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.237] [PMID: 32240741]
[95]
Rather, A.H.; Khan, R.S.; Wani, T.U.; Rafiq, M.; Jadhav, A.H.; Srinivasappa, P.M.; Abdal-hay, A.; Sultan, P.; Rather, S.; Macossay, J.; Sheikh, F.A. Polyurethane and cellulose acetate micro-nanofibers containing rosemary essential oil, and decorated with silver nanoparticles for wound healing application. Int. J. Biol. Macromol., 2023, 226, 690-705.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.12.048] [PMID: 36513179]
[96]
Kumar, G.; Khan, F.G.; Abro, M.I.; Aftab, U.; Jatoi, A.W. Development of cellulose acetate/CuO/AgNP nanofibers based effective antimicrobial wound dressing. Composites Communications, 2023, 39, 101550.
[http://dx.doi.org/10.1016/j.coco.2023.101550]
[97]
Elbhnsawi, N.A.; Elwakil, B.H.; Hassanin, A.H.; Shehata, N.; Elshewemi, S.S.; Hagar, M.; Olama, Z.A. Nano-chitosan/Eucalyptus oil/cellulose acetate nanofibers: Manufacturing, antibacterial and wound healing activities. Membranes, 2023, 13(6), 604.
[http://dx.doi.org/10.3390/membranes13060604] [PMID: 37367808]
[98]
Napavichayanun, S.; Yamdech, R.; Aramwit, P. The safety and efficacy of bacterial nanocellulose wound dressing incorporating sericin and polyhexamethylene biguanide: In vitro, in vivo and clinical studies. Arch. Dermatol. Res., 2016, 308(2), 123-132.
[http://dx.doi.org/10.1007/s00403-016-1621-3] [PMID: 26796543]
[99]
Portela, R.; Leal, C.R.; Almeida, P.L.; Sobral, R.G. Bacterial cellulose: A versatile biopolymer for wound dressing applications. Microb. Biotechnol., 2019, 12(4), 586-610.
[http://dx.doi.org/10.1111/1751-7915.13392] [PMID: 30838788]
[100]
Wild, T.; Bruckner, M.; Payrich, M.; Schwarz, C.; Eberlein, T.; Andriessen, A. Eradication of methicillin-resistant Staphylococcus aureus in pressure ulcers comparing a polyhexanide-containing cellulose dressing with polyhexanide swabs in a prospective randomized study. Adv. Skin Wound Care, 2012, 25(1), 17-22.
[http://dx.doi.org/10.1097/01.ASW.0000410686.14363.ea] [PMID: 22218066]
[101]
Picheth, G.F.; Pirich, C.L.; Sierakowski, M.R.; Woehl, M.A.; Sakakibara, C.N.; de Souza, C.F.; Martin, A.A.; da Silva, R.; de Freitas, R.A. Bacterial cellulose in biomedical applications: A review. Int. J. Biol. Macromol., 2017, 104(Pt A), 97-106.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.171] [PMID: 28587970]
[102]
Fontana, J.D.; De Souza, A.M.; Fontana, C.K.; Torriani, I.L.; Moreschi, J.C.; Gallotti, B.J.; De Souza, S.J.; Narcisco, G.P.; Bichara, J.A.; Farah, L.F.X. Acetobacter cellulose pellicle as a temporary skin substitute. Appl. Biochem. Biotechnol., 1990, 24-25(1), 253-264.
[http://dx.doi.org/10.1007/BF02920250] [PMID: 2353811]
[103]
Czaja, W.K.; Young, D.J.; Kawecki, M.; Brown, R.M., Jr The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 2007, 8(1), 1-12.
[http://dx.doi.org/10.1021/bm060620d] [PMID: 17206781]
[104]
Aboelnaga, A.; Elmasry, M.; Adly, O.A.; Elbadawy, M.A.; Abbas, A.H.; Abdelrahman, I.; Salah, O.; Steinvall, I. Microbial cellulose dressing compared with silver sulphadiazine for the treatment of partial thickness burns: A prospective, randomised, clinical trial. Burns, 2018, 44(8), 1982-1988.
[http://dx.doi.org/10.1016/j.burns.2018.06.007] [PMID: 30005989]
[105]
Duteille, F.; Jeffery, S.L.A. A phase II prospective, non-comparative assessment of a new silver sodium carboxymethylcellulose (AQUACEL® Ag BURN) glove in the management of partial thickness hand burns. Burns, 2012, 38(7), 1041-1050.
[http://dx.doi.org/10.1016/j.burns.2012.05.001] [PMID: 22677163]
[106]
Bacakova, M.; Pajorova, J.; Sopuch, T.; Bacakova, L. Fibrin-modified cellulose as a promising dressing for accelerated wound healing. Materials, 2018, 11(11), 2314.
[http://dx.doi.org/10.3390/ma11112314] [PMID: 30453657]
[107]
Maver, T.; Hribernik, S.; Mohan, T.; Smrke, D.M.; Maver, U.; Stana-Kleinschek, K. Functional wound dressing materials with highly tunable drug release properties. RSC Advances, 2015, 5(95), 77873-77884.
[http://dx.doi.org/10.1039/C5RA11972C]
[108]
Czaja, W.; Krystynowicz, A.; Bielecki, S.; Brown, R. Jr Microbial cellulose—the natural power to heal wounds. Biomaterials, 2006, 27(2), 145-151.
[http://dx.doi.org/10.1016/j.biomaterials.2005.07.035] [PMID: 16099034]
[109]
Sulaeva, I.; Henniges, U.; Rosenau, T.; Potthast, A. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnol. Adv., 2015, 33(8), 1547-1571.
[http://dx.doi.org/10.1016/j.biotechadv.2015.07.009] [PMID: 26253857]
[110]
Kucińska-Lipka, J.; Gubanska, I.; Janik, H. Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospectives. Polym. Bull., 2015, 72(9), 2399-2419.
[http://dx.doi.org/10.1007/s00289-015-1407-3]
[111]
Bhattarai, P.; Thapa, K.B.; Basnet, R.B.; Sharma, S. Electrospinning: How to produce nanofibers using most inexpensive technique? An insight into the real challenges of electrospinning such nanofibers and its application areas. Int. J. Biol. Adv. Res., 2014, 5(9), 401-405.
[http://dx.doi.org/10.7439/ijbar.v5i9.854]
[112]
Kus, K.J.B.; Ruiz, E.S. Wound dressings-a practical review. Curr. Dermatol. Rep., 2020, 9(4), 298-308.
[http://dx.doi.org/10.1007/s13671-020-00319-w]
[113]
Synthetic wound dressings available in the market and approved by the FDA. Available from: https://clinmedjournals.org/articles/cmrcr/cmrcr-3-131table1.html (Accessed on: 19 August 2023).