Finding Integrative Medication for Neuroblastoma and Glioblastoma through Zebrafish as A Model of Organism

Page: [2807 - 2820] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

As far as malignant tumors of the central nervous system are concerned, glioblastoma (GB) and neuroblastoma (NB) are the most prevalent, aggressive, and fatal forms in adult and pediatric populations, respectively. NB is the most prominent childhood extracranial compact neoplasm in pediatrics when the embryo develops from undifferentiated neural crest cells. Regarding malignant primary brain tumors, GB is the most lethal and difficult to treat. Currently, there are few effective treatments available for either condition. Research using zebrafish is relatively new in the field of animal cancer studies, and the first results show promise. In particular, integrated genomic investigations of NB and GB have revealed the potential of the zebrafish model in elucidating the roles of specific genetic changes in the development of this fatal childhood malignancy. Hence, this study examines the possibility of zebrafish as a model organism for discovering integrative medicines for these types of cancer. This model is an excellent animal model for study due to its transparency, ease of genetic modification, ethics and financial benefits, and preservation of the primary brain areas andbloodbrain barrier (BBB). This review provides recent developments in the zebrafish model of NB and GB to illustrate the benefits of using them in cancer studies as a model of the organism. This approach provides novel insights into delivering individualized treatment and enhancing outcomes for people coping with central nervous system malignancies.

Graphical Abstract

[1]
Ferrada, L.; Barahona, M.J.; Salazar, K.; Godoy, A.S.; Vera, M.; Nualart, F. Pharmacological targets for the induction of ferroptosis: Focus on Neuroblastoma and Glioblastoma. Front. Oncol., 2022, 12, 858480.
[http://dx.doi.org/10.3389/fonc.2022.858480] [PMID: 35898880]
[2]
Wirsching, H.G.; Galanis, E.; Weller, M. Glioblastoma. Handb. Clin. Neurol., 2016, 134, 381-397.
[http://dx.doi.org/10.1016/B978-0-12-802997-8.00023-2] [PMID: 26948367]
[3]
Reimunde, P.; Pensado-López, A.; Carreira Crende, M.; Lombao Iglesias, V.; Sánchez, L.; Torrecilla-Parra, M.; Ramírez, C.M.; Anfray, C.; Torres Andón, F. Cellular and molecular mechanisms underlying glioblastoma and zebrafish models for the discovery of new treatments. Cancers (Basel), 2021, 13(5), 1087.
[http://dx.doi.org/10.3390/cancers13051087] [PMID: 33802571]
[4]
Corallo, D.; Candiani, S.; Ori, M.; Aveic, S.; Tonini, G.P. The zebrafish as a model for studying neuroblastoma. Cancer Cell Int., 2016, 16(1), 82.
[http://dx.doi.org/10.1186/s12935-016-0360-z] [PMID: 27822138]
[5]
Casey, M.J.; Stewart, R.A. Zebrafish as a model to study neuroblastoma development. Cell Tissue Res., 2018, 372(2), 223-232.
[http://dx.doi.org/10.1007/s00441-017-2702-0] [PMID: 29027617]
[6]
Liu, Z.; Thiele, C.J. When LMO1 meets MYCN, Neuroblastoma is metastatic. Cancer Cell, 2017, 32(3), 273-275.
[http://dx.doi.org/10.1016/j.ccell.2017.08.014] [PMID: 28898690]
[7]
Smith, M.A.; Seibel, N.L.; Altekruse, S.F.; Ries, L.A.G.; Melbert, D.L.; O’Leary, M.; Smith, F.O.; Reaman, G.H. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J. Clin. Oncol., 2010, 28(15), 2625-2634.
[http://dx.doi.org/10.1200/JCO.2009.27.0421] [PMID: 20404250]
[8]
Maris, J.M. Recent advances in neuroblastoma. N. Engl. J. Med., 2010, 362(23), 2202-2211.
[http://dx.doi.org/10.1056/NEJMra0804577] [PMID: 20558371]
[9]
Yan, P.; Qi, F.; Bian, L.; Xu, Y.; Zhou, J.; Hu, J.; Ren, L.; Li, M.; Tang, W. Comparison of incidence and outcomes of neuroblastoma in children, adolescents, and adults in the United States: A surveillance, epidemiology, and end results (SEER) program population study. Med. Sci. Monit., 2020, 26, e927218.
[http://dx.doi.org/10.12659/MSM.927218] [PMID: 33249420]
[10]
Forouzani-Moghaddam, M.J. A review of neuroblastoma: prevalence, diagnosis, related genetic factors, and treatment. Iran. J. Ped. Hematol. Oncol., 2018, 8(4), 237-246.
[11]
Zafar, A.; Wang, W.; Liu, G.; Wang, X.; Xian, W.; McKeon, F.; Foster, J.; Zhou, J.; Zhang, R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med. Res. Rev., 2021, 41(2), 961-1021.
[http://dx.doi.org/10.1002/med.21750] [PMID: 33155698]
[12]
Li, S.; Yeo, K.S.; Levee, T.M.; Howe, C.J.; Her, Z.P.; Zhu, S. Zebrafish as a neuroblastoma model: Progress made, promise for the future. Cells, 2021, 10(3), 580.
[http://dx.doi.org/10.3390/cells10030580] [PMID: 33800887]
[13]
Whittle, S.B.; Smith, V.; Doherty, E.; Zhao, S.; McCarty, S.; Zage, P.E. Overview and recent advances in the treatment of neuroblastoma. Expert Rev. Anticancer Ther., 2017, 17(4), 369-386.
[http://dx.doi.org/10.1080/14737140.2017.1285230] [PMID: 28142287]
[14]
Cao, Y.; Jin, Y.; Yu, J.; Wang, J.; Yan, J.; Zhao, Q. Research progress of neuroblastoma related gene variations. Oncotarget, 2017, 8(11), 18444-18455.
[http://dx.doi.org/10.18632/oncotarget.14408] [PMID: 28055978]
[15]
Navalkele, P.; O’Dorisio, M.S.; O’Dorisio, T.M.; Zamba, G.K.D.; Lynch, C.F. Incidence, survival, and prevalence of neuroendocrine tumors versus neuroblastoma in children and young adults: nine standard SEER registries, 1975-2006. Pediatr. Blood Cancer, 2011, 56(1), 50-57.
[http://dx.doi.org/10.1002/pbc.22559] [PMID: 21108439]
[16]
Stewart, R.A.; Lee, J.S.; Lachnit, M.; Look, A.T.; Kanki, J.P.; Henion, P.D. Studying peripheral sympathetic nervous system development and neuroblastoma in zebrafish. Methods Cell Biol., 2010, 100, 127-152.
[http://dx.doi.org/10.1016/B978-0-12-384892-5.00005-0] [PMID: 21111216]
[17]
Zhang, X.; Dong, Z.; Zhang, C.; Ung, C.Y.; He, S.; Tao, T.; Oliveira, A.M.; Meves, A.; Ji, B.; Look, A.T.; Li, H.; Neel, B.G.; Zhu, S. Critical role for GAB2 in neuroblastoma pathogenesis through the promotion of SHP2/MYCN cooperation. Cell Rep., 2017, 18(12), 2932-2942.
[http://dx.doi.org/10.1016/j.celrep.2017.02.065] [PMID: 28329685]
[18]
Tamimi, A.; Juweid, M. Chapter 8 Epidemiology and outcome of glioblastoma. In: Glioblastoma; De Vleeschouwer, S., Ed.; Codon Publications: Brisbane, QLD, Australia, 2017.
[19]
Mullassery, D.; Sharma, V.; Salim, A.; Jawaid, W.B.; Pizer, B.L.; Abernethy, L.J.; Losty, P.D. Open versus needle biopsy in diagnosing neuroblastoma. J. Pediatr. Surg., 2014, 49(10), 1505-1507.
[http://dx.doi.org/10.1016/j.jpedsurg.2014.05.015] [PMID: 25280656]
[20]
Cohn, S.L.; Pearson, A.D.J.; London, W.B.; Monclair, T.; Ambros, P.F.; Brodeur, G.M.; Faldum, A.; Hero, B.; Iehara, T.; Machin, D.; Mosseri, V.; Simon, T.; Garaventa, A.; Castel, V.; Matthay, K.K. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J. Clin. Oncol., 2009, 27(2), 289-297.
[http://dx.doi.org/10.1200/JCO.2008.16.6785] [PMID: 19047291]
[21]
Casey, M.J.; Stewart, R.A. Pediatric cancer models in zebrafish. Trends Cancer, 2020, 6(5), 407-418.
[http://dx.doi.org/10.1016/j.trecan.2020.02.006] [PMID: 32348736]
[22]
Zhu, S.; Zhang, X.; Weichert-Leahey, N.; Dong, Z.; Zhang, C.; Lopez, G.; Tao, T.; He, S.; Wood, A.C.; Oldridge, D.; Ung, C.Y.; van Ree, J.H.; Khan, A.; Salazar, B.M.; da Rocha, E.L.; Zimmerman, M.W.; Guo, F.; Cao, H.; Hou, X.; Weroha, S.J.; Perez-Atayde, A.R.; Neuberg, D. S.; Meves, A.; McNiven, M.A.; van Deursen, J.M.; Li, H.; Maris, J.M.; Look, A.T. LMO1 synergizes with MYCN to promote neuroblastoma initiation and metastasis. Cancer cell, 2017, 32(3), 310-23.
[23]
Zhao, S.; Huang, J.; Ye, J. A fresh look at zebrafish from the perspective of cancer research. J. Exp. Clin. Cancer Res., 2015, 34(1), 80.
[http://dx.doi.org/10.1186/s13046-015-0196-8] [PMID: 26260237]
[24]
Chahardehi, A.M.; Arsad, H.; Lim, V. Zebrafish as a successful animal model for screening toxicity of medicinal plants. Plants, 2020, 9(10), 1345.
[http://dx.doi.org/10.3390/plants9101345] [PMID: 33053800]
[25]
Zebrafish a new development in the pharmaceutical industry for the treatment of anxiety. The 3rd National Conference on Knowledge and Technology of Psychology, Educational Sciences and Sociology of Iran, 2019. Available from: https://civilica.com/doc/929667/
[26]
Dankert, E.N.; Look, A.T.; Zhu, S. Unraveling neuroblastoma pathogenesis with the zebrafish. Cell Cycle, 2018, 17(4), 395-396.
[http://dx.doi.org/10.1080/15384101.2017.1414683] [PMID: 29231124]
[27]
Zhu, S.; Thomas Look, A. Neuroblastoma and its zebrafish model. Adv. Exp. Med. Biol., 2016, 916, 451-478.
[http://dx.doi.org/10.1007/978-3-319-30654-4_20] [PMID: 27165366]
[28]
Hason, M.; Bartůněk, P. Zebrafish models of cancer-new insights on modeling human cancer in a non-mammalian vertebrate. Genes (Basel), 2019, 10(11), 935.
[http://dx.doi.org/10.3390/genes10110935] [PMID: 31731811]
[29]
Modarresi Chahardehi, A.; Arsad, H.; Ismail, N.Z.; Lim, V. Low cytotoxicity, and antiproliferative activity on cancer cells, of the plant Senna alata (Fabaceae). Rev. Biol. Trop., 2020, 69(1), 317-330.
[30]
Fan, Y.; Zhang, X.; Gao, C.; Jiang, S.; Wu, H.; Liu, Z.; Dou, T. Burden and trends of brain and central nervous system cancer from 1990 to 2019 at the global, regional, and country levels. Arch. Public Health, 2022, 80(1), 209.
[http://dx.doi.org/10.1186/s13690-022-00965-5] [PMID: 36115969]
[31]
Rodriguez, F.J. The WHO classification of tumors of the central nervous system-finally here, and welcome! Brain Pathol., 2022, 32(4), e13077.
[http://dx.doi.org/10.1111/bpa.13077] [PMID: 35754178]
[32]
Sarmiento, B.E.; Callegari, S.; Ghotme, K.A.; Akle, V. Patient-derived xenotransplant of CNS neoplasms in zebrafish: A Systematic Review. Cells, 2022, 11(7), 1204.
[http://dx.doi.org/10.3390/cells11071204] [PMID: 35406768]
[33]
Tsubota, S.; Kadomatsu, K. Origin and initiation mechanisms of neuroblastoma. Cell Tissue Res., 2018, 372(2), 211-221.
[http://dx.doi.org/10.1007/s00441-018-2796-z] [PMID: 29445860]
[34]
Omuro, A.; DeAngelis, L.M. Glioblastoma and other malignant gliomas: a clinical review. JAMA, 2013, 310(17), 1842-1850.
[http://dx.doi.org/10.1001/jama.2013.280319] [PMID: 24193082]
[35]
Idilli, A.I.; Precazzini, F.; Mione, M.C.; Anelli, V. Zebrafish in translational cancer research: insight into leukemia, melanoma, glioma and endocrine tumor biology. Genes (Basel), 2017, 8(9), 236.
[http://dx.doi.org/10.3390/genes8090236] [PMID: 28930163]
[36]
Le Rhun, E.; Preusser, M.; Roth, P.; Reardon, D.A.; van den Bent, M.; Wen, P.; Reifenberger, G.; Weller, M. Molecular targeted therapy of glioblastoma. Cancer Treat. Rev., 2019, 80, 101896.
[http://dx.doi.org/10.1016/j.ctrv.2019.101896] [PMID: 31541850]
[37]
Han, S.J.; Yang, I.; Tihan, T.; Prados, M.D.; Parsa, A.T. Primary gliosarcoma: key clinical and pathologic distinctions from glioblastoma with implications as a unique oncologic entity. J. Neurooncol., 2010, 96(3), 313-320.
[http://dx.doi.org/10.1007/s11060-009-9973-6] [PMID: 19618114]
[38]
Mossé, Y.P.; Laudenslager, M.; Longo, L.; Cole, K.A.; Wood, A.; Attiyeh, E.F.; Laquaglia, M.J.; Sennett, R.; Lynch, J.E.; Perri, P.; Laureys, G.; Speleman, F.; Kim, C.; Hou, C.; Hakonarson, H.; Torkamani, A.; Schork, N.J.; Brodeur, G.M.; Tonini, G.P.; Rappaport, E.; Devoto, M.; Maris, J.M. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature, 2008, 455(7215), 930-935.
[http://dx.doi.org/10.1038/nature07261] [PMID: 18724359]
[39]
Cheung, N.K.V.; Dyer, M.A. Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat. Rev. Cancer, 2013, 13(6), 397-411.
[http://dx.doi.org/10.1038/nrc3526] [PMID: 23702928]
[40]
Degoutin, J.; Brunet-de Carvalho, N.; Cifuentes-Diaz, C.; Vigny, M. ALK (Anaplastic Lymphoma Kinase) expression in DRG neurons and its involvement in neuron-Schwann cells interaction. Eur. J. Neurosci., 2009, 29(2), 275-286.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06593.x] [PMID: 19200234]
[41]
Zhu, S.; Lee, J.S.; Guo, F.; Shin, J.; Perez-Atayde, A.R.; Kutok, J.L.; Rodig, S.J.; Neuberg, D.S.; Helman, D.; Feng, H.; Stewart, R.A.; Wang, W.; George, R.E.; Kanki, J.P.; Look, A.T. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell, 2012, 21(3), 362-373.
[http://dx.doi.org/10.1016/j.ccr.2012.02.010] [PMID: 22439933]
[42]
Deyell, R.J.; Attiyeh, E.F. Advances in the understanding of constitutional and somatic genomic alterations in neuroblastoma. Cancer Genet., 2011, 204(3), 113-121.
[http://dx.doi.org/10.1016/j.cancergen.2011.03.001] [PMID: 21504710]
[43]
Man, J.; Shoemake, J.; Zhou, W.; Fang, X.; Wu, Q.; Rizzo, A.; Prayson, R.; Bao, S.; Rich, J.N.; Yu, J.S. Sema3C promotes the survival and tumorigenicity of glioma stem cells through Rac1 activation. Cell Rep., 2014, 9(5), 1812-1826.
[http://dx.doi.org/10.1016/j.celrep.2014.10.055] [PMID: 25464848]
[44]
Hao, J.; Han, X.; Huang, H.; yu; Bao, S.; Prayson, R.; Yu, J. DDRE-15. Sema3C signaling confers resistance to WNT inhibition in glioblastoma. Neuro-oncol., 2021, 23(Suppl. 6), vi77-vi.
[http://dx.doi.org/10.1093/neuonc/noab196.299]
[45]
Neubauer, H.A.; Tea, M.N.; Zebol, J.R.; Gliddon, B.L.; Stefanidis, C.; Moretti, P.A.B.; Pitman, M.R.; Costabile, M.; Kular, J.; Stringer, B.W.; Day, B.W.; Samuel, M.S.; Bonder, C.S.; Powell, J.A.; Pitson, S.M. Cytoplasmic dynein regulates the subcellular localization of sphingosine kinase 2 to elicit tumor-suppressive functions in glioblastoma. Oncogene, 2019, 38(8), 1151-1165.
[http://dx.doi.org/10.1038/s41388-018-0504-9] [PMID: 30250299]
[46]
Sakthikumar, S.; Roy, A.; Haseeb, L.; Pettersson, M.E.; Sundström, E.; Marinescu, V.D.; Lindblad-Toh, K.; Forsberg-Nilsson, K. Whole-genome sequencing of glioblastoma reveals enrichment of non-coding constraint mutations in known and novel genes. Genome Biol., 2020, 21(1), 127.
[http://dx.doi.org/10.1186/s13059-020-02035-x] [PMID: 32513296]
[47]
Zhou, J.; Zhu, Y.; Ma, S.; Li, Y.; Liu, K.; Xu, S.; Li, X.; Li, L.; Hu, J.; Liu, Y. Bioinformatics analysis identifies DYNC1I1 as prognosis marker in male patients with liver hepatocellular carcinoma. PLoS One, 2021, 16(10), e0258797.
[http://dx.doi.org/10.1371/journal.pone.0258797] [PMID: 34679093]
[48]
Lybaek, H.; Robson, M.; de Leeuw, N.; Hehir-Kwa, J.Y.; Jeffries, A.; Haukanes, B.I.; Berland, S.; de Bruijn, D.; Mundlos, S.; Spielmann, M.; Houge, G. LRFN5 locus structure is associated with autism and influenced by the sex of the individual and locus conversions. Autism Res., 2022, 15(3), 421-433.
[http://dx.doi.org/10.1002/aur.2677] [PMID: 35088940]
[49]
Rautajoki, K.J.; Jaatinen, S.; Tiihonen, A.M.; Annala, M.; Vuorinen, E.M.; Kivinen, A.; Rauhala, M.J.; Maass, K.K.; Pajtler, K.W.; Yli-Harja, O.; Helén, P.; Haapasalo, J.; Haapasalo, H.; Zhang, W.; Nykter, M. PTPRD and CNTNAP2 as markers of tumor aggressiveness in oligodendrogliomas. Sci. Rep., 2022, 12(1), 14083.
[http://dx.doi.org/10.1038/s41598-022-14977-2] [PMID: 35982066]
[50]
Vittori, M.; Motaln, H.; Turnšek, T.L. The study of glioma by xenotransplantation in zebrafish early life stages. J. Histochem. Cytochem., 2015, 63(10), 749-761.
[http://dx.doi.org/10.1369/0022155415595670] [PMID: 26109632]
[51]
Chahardehi, A.M.; Hosseini, Y.; Mahdavi, S.M.; Naseh, I. Zebrafish, a biological model for pharmaceutical research for the management of anxiety. Mol. Biol. Rep., 2023, 50(4), 3863-3872.
[PMID: 36757551]
[52]
Stoletov, K.; Klemke, R. Catch of the day: zebrafish as a human cancer model. Oncogene, 2008, 27(33), 4509-4520.
[http://dx.doi.org/10.1038/onc.2008.95] [PMID: 18372910]
[53]
Letrado, P.; de Miguel, I.; Lamberto, I.; Díez-Martínez, R.; Oyarzabal, J. Zebrafish: Speeding up the cancer drug discovery process. Cancer Res., 2018, 78(21), 6048-6058.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1029] [PMID: 30327381]
[54]
Amatruda, J.F.; Shepard, J.L.; Stern, H.M.; Zon, L.I. Zebrafish as a cancer model system. Cancer Cell, 2002, 1(3), 229-231.
[http://dx.doi.org/10.1016/S1535-6108(02)00052-1] [PMID: 12086858]
[55]
Spence, R.; Gerlach, G.; Lawrence, C.; Smith, C. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. Camb. Philos. Soc., 2008, 83(1), 13-34.
[http://dx.doi.org/10.1111/j.1469-185X.2007.00030.x] [PMID: 18093234]
[56]
Stanton, M.F. Diethylnitrosamine-induced hepatic degeneration and neoplasia in the aquarium fish, Brachydanio rerio. J. Natl. Cancer Inst., 1965, 34(1), 117-130.
[http://dx.doi.org/10.1093/jnci/34.1.117] [PMID: 14287275]
[57]
Her, Z.P.; Yeo, K.S.; Howe, C.; Levee, T.; Zhu, S. Zebrafish model of neuroblastoma metastasis. J Vis Exp, 2021, (169), 10.3791/62416.
[http://dx.doi.org/10.3791/62416] [PMID: 33779609]
[58]
Khan, I.; Steeg, P.S. Metastasis suppressors: functional pathways. Lab. Invest., 2018, 98(2), 198-210.
[http://dx.doi.org/10.1038/labinvest.2017.104] [PMID: 28967874]
[59]
He, S.; Mansour, M.R.; Zimmerman, M.W.; Ki, D.H.; Layden, H.M.; Akahane, K.; Gjini, E.; de Groh, E.D.; Perez-Atayde, A.R.; Zhu, S.; Epstein, J.A.; Look, A.T. Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain. eLife, 2016, 5, 5.
[PMID: 27130733]
[60]
Laut, A.K.; Dorneburg, C.; Fürstberger, A.; Barth, T.F.E.; Kestler, H.A.; Debatin, K.M.; Beltinger, C. CHD5 inhibits metastasis of neuroblastoma. Oncogene, 2022, 41(5), 622-633.
[http://dx.doi.org/10.1038/s41388-021-02081-0] [PMID: 34789839]
[61]
Astone, M.; Dankert, E.N.; Alam, S.K.; Hoeppner, L.H. Fishing for cures: The alLURE of using zebrafish to develop precision oncology therapies. NPJ Precis. Oncol., 2017, 1(1), 39.
[http://dx.doi.org/10.1038/s41698-017-0043-9] [PMID: 29376139]
[62]
Astell, K.R.; Sieger, D. Investigating microglia-brain tumor cell interactions in vivo in the larval zebrafish brain. Methods Cell Biol, 2017, 138, 593-626.
[http://dx.doi.org/10.1016/bs.mcb.2016.10.001]
[63]
Wrobel, J.K.; Najafi, S.; Ayhan, S.; Gatzweiler, C.; Krunic, D.; Ridinger, J.; Milde, T.; Westermann, F.; Peterziel, H.; Meder, B.; Distel, M.; Witt, O.; Oehme, I. Rapid in vivo validation of HDAC inhibitor-based treatments in neuroblastoma zebrafish xenografts. Pharmaceuticals (Basel), 2020, 13(11), 345.
[http://dx.doi.org/10.3390/ph13110345] [PMID: 33121173]
[64]
Ai, X.; Ye, Z.; Xiao, C.; Zhong, J.; Lancman, J.J.; Chen, X.; Pan, X.; Yang, Y.; Zhou, L.; Wang, X.; Shi, H.; Zhang, D.; Yao, Y.; Cao, D.; Zhao, C. Clinically relevant orthotopic xenograft models of patient-derived glioblastoma in zebrafish. Dis. Model. Mech., 2022, 15(4), dmm049109.
[http://dx.doi.org/10.1242/dmm.049109] [PMID: 35199829]
[65]
Peglion, F.; Coumailleau, F.; Etienne-Manneville, S. Live imaging of microtubule dynamics in glioblastoma cells invading the zebrafish brain. J. Vis. Exp., 2022, (185)
[http://dx.doi.org/10.3791/64093]
[66]
Eden, C.J.; Ju, B.; Murugesan, M.; Phoenix, T.N.; Nimmervoll, B.; Tong, Y.; Ellison, D.W.; Finkelstein, D.; Wright, K.; Boulos, N.; Dapper, J.; Thiruvenkatam, R.; Lessman, C.A.; Taylor, M.R.; Gilbertson, R.J. Orthotopic models of pediatric brain tumors in zebrafish. Oncogene, 2015, 34(13), 1736-1742.
[http://dx.doi.org/10.1038/onc.2014.107] [PMID: 24747973]
[67]
Zeng, A.; Ye, T.; Cao, D.; Huang, X.; Yang, Y.; Chen, X.; Xie, Y.; Yao, S.; Zhao, C. Identify a blood-brain barrier penetrating drug-tnb using zebrafish orthotopic glioblastoma xenograft model. Sci. Rep., 2017, 7(1), 14372.
[http://dx.doi.org/10.1038/s41598-017-14766-2] [PMID: 29085081]
[68]
Almstedt, E.; Rosén, E.; Gloger, M.; Stockgard, R.; Hekmati, N.; Koltowska, K.; Krona, C.; Nelander, S. Real-time evaluation of glioblastoma growth in patient-specific zebrafish xenografts. Neuro-oncol., 2022, 24(5), 726-738.
[http://dx.doi.org/10.1093/neuonc/noab264] [PMID: 34919147]
[69]
Pudelko, L.; Edwards, S.; Balan, M.; Nyqvist, D.; Al-Saadi, J.; Dittmer, J.; Almlöf, I.; Helleday, T.; Bräutigam, L. An orthotopic glioblastoma animal model suitable for high-throughput screenings. Neuro-oncol., 2018, 20(11), 1475-1484.
[http://dx.doi.org/10.1093/neuonc/noy071] [PMID: 29750281]
[70]
Banasavadi-Siddegowda, Y.K.; Welker, A.M.; An, M.; Yang, X.; Zhou, W.; Shi, G.; Imitola, J.; Li, C.; Hsu, S.; Wang, J.; Phelps, M.; Zhang, J.; Beattie, C.E.; Baiocchi, R.; Kaur, B. PRMT5 as a druggable target for glioblastoma therapy. Neuro-oncol., 2018, 20(6), 753-763.
[http://dx.doi.org/10.1093/neuonc/nox206] [PMID: 29106602]
[71]
Amsterdam, A.; Lai, K.; Komisarczuk, A.Z.; Becker, T.S.; Bronson, R.T.; Hopkins, N.; Lees, J.A. Zebrafish Hagoromo mutants up-regulate fgf8 postembryonically and develop neuroblastoma. Mol. Cancer Res., 2009, 7(6), 841-850.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0555] [PMID: 19531571]
[72]
Pei, D.; Luther, W.; Wang, W.; Paw, B.H.; Stewart, R.A.; George, R.E. Distinct neuroblastoma-associated alterations of PHOX2B impair sympathetic neuronal differentiation in zebrafish models. PLoS Genet., 2013, 9(6), e1003533.
[http://dx.doi.org/10.1371/journal.pgen.1003533] [PMID: 23754957]
[73]
Ju, B.; Chen, W.; Spitsbergen, J.M.; Lu, J.; Vogel, P.; Peters, J.L.; Wang, Y-D.; Orr, B.A.; Wu, J.; Henson, H.E.; Jia, S.; Parupalli, C.; Taylor, M.R. Activation of Sonic hedgehog signaling in neural progenitor cells promotes glioma development in the zebrafish optic pathway. Oncogenesis, 2014, 3(3), e96.
[http://dx.doi.org/10.1038/oncsis.2014.10] [PMID: 24686726]
[74]
Ju, B.; Spitsbergen, J.; Eden, C.J.; Taylor, M.R.; Chen, W. Co-activation of hedgehog and AKT pathways promote tumorigenesis in zebrafish. Mol. Cancer, 2009, 8(1), 40.
[http://dx.doi.org/10.1186/1476-4598-8-40] [PMID: 19555497]
[75]
Gamble, J.T.; Reed-Harris, Y.; Barton, C.L.; La Du, J.; Tanguay, R.; Greenwood, J.A. Quantification of glioblastoma progression in zebrafish xenografts: Adhesion to laminin alpha 5 promotes glioblastoma microtumor formation and inhibits cell invasion. Biochem. Biophys. Res. Commun., 2018, 506(4), 833-839.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.076] [PMID: 30389143]
[76]
Wu, J.Y.; Li, Y.J.; Hu, X.B.; Huang, S.; Luo, S.; Tang, T.; Xiang, D.X. Exosomes and biomimetic nanovesicles-mediated anti-glioblastoma therapy: A head-to-head comparison. J. Control. Release, 2021, 336, 510-521.
[http://dx.doi.org/10.1016/j.jconrel.2021.07.004] [PMID: 34237399]