Main Aspects of Pharmaceutical Development of In situ Immunobiological Drugs for Intranasal Administration

Page: [1394 - 1405] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Introduction: The review presents the latest developments in the area of intranasal in situ delivery systems of immunobiological drugs (IBDs). Interest in intranasal administration for IBDs has increased significantly due to the COVID-19 pandemic. However, not only intranasal delivery of vaccines is developing, but also bacteriophages, interferons, etc. In situ systems that make a selective phase transition can be a modern solution to intranasal delivery problems caused by mucociliary clearance. In addition, smart-polymers used as the main excipients in in situ systems can be used as specific adjuvants.

Methods: A scientific search was conducted on the PubMed database of medical publications for the period from 2000 to 2022, using the keywords "intranasal in situ vaccine"; "intranasal in situ immunization". There were analyzed in detail more than 70 scientific studies on intranasal in situ delivery of IBDs.

Results and Conclusions: Despite the large number of new studies, the potential of possibilities of intranasal in situ systems is not being realized. Based on the results of the literature review an algorithm was created for the development of in situ systems for intranasal delivery of IBDs. Such algorithms and the methods of study design organization described in the review will help to facilitate the R&D process and bring the drug to commercial market, which will help to improve the quality of medical care.

Graphical Abstract

[1]
Vorob’ev, AA Liashenko, VA Immunobiological preparations: Their present and future. Immunobiol, 2021, 6, 105-111.
[2]
Nagai, M.; Moriyama, M.; Ichinohe, T. Oral bacteria combined with an intranasal vaccine protect from influenza a virus and SARS-CoV-2 infection. MBio, 2021, 12(4), e01598-e21.
[http://dx.doi.org/10.1128/mBio.01598-21] [PMID: 34399617]
[3]
Xu, H.; Cai, L.; Hufnagel, S.; Cui, Z. Intranasal vaccine: Factors to consider in research and development. Int. J. Pharm., 2021, 609, 121180.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121180] [PMID: 34637935]
[4]
Buzitskaya, Z.; Stosman, K.; Khairullin, B.; Kassenov, M.; Nurpeisova, A.; Abylai Sansyzbay, A.; Shurygina, A.P.; Aleksandrov, A.; Sivak, K.; Stukova, M. A new intranasal influenza vector-based vaccine TB/FLU-04L against tuberculosis: Preclinical safety studies. Drug Res., 2022, 72(5), 255-258.
[http://dx.doi.org/10.1055/a-1785-3936] [PMID: 35318622]
[5]
van der Ley, P.A.; Zariri, A.; van Riet, E.; Oosterhoff, D.; Kruiswijk, C.P. An intranasal OMV-based vaccine induces high mucosal and systemic protecting immunity against a SARS-CoV-2 infection. Front. Immunol., 2021, 12, 781280.
[http://dx.doi.org/10.3389/fimmu.2021.781280] [PMID: 34987509]
[6]
van Doremalen, N.; Purushotham, J.N.; Schulz, J.E.; Holbrook, M.G.; Bushmaker, T.; Carmody, A.; Port, J.R.; Yinda, C.K.; Okumura, A.; Saturday, G.; Amanat, F.; Krammer, F.; Hanley, P.W.; Smith, B.J.; Lovaglio, J.; Anzick, S.L.; Barbian, K.; Martens, C.; Gilbert, S.C.; Lambe, T.; Munster, V.J. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci. Transl. Med., 2021, 13(607), eabh0755.
[http://dx.doi.org/10.1126/scitranslmed.abh0755] [PMID: 34315826]
[7]
Ndeupen, S.; Qin, Z.; Jacobsen, S.; Bouteau, A.; Estanbouli, H.; Igyártó, B.Z. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience, 2021, 24(12), 103479.
[http://dx.doi.org/10.1016/j.isci.2021.103479] [PMID: 34841223]
[8]
Kozlovskaya, L.I.; Piniaeva, A.N.; Ignatyev, G.M.; Gordeychuk, I.V.; Volok, V.P.; Rogova, Y.V.; Shishova, A.A.; Kovpak, A.A.; Ivin, Y.Y.; Antonova, L.P.; Mefyod, K.M.; Prokosheva, L.S.; Sibirkina, A.S.; Tarasova, Y.Y.; Bayurova, E.O.; Gancharova, O.S.; Illarionova, V.V.; Glukhov, G.S.; Sokolova, O.S.; Shaitan, K.V.; Moysenovich, A.M.; Gulyaev, S.A.; Gulyaeva, T.V.; Moroz, A.V.; Gmyl, L.V.; Ipatova, E.G.; Kirpichnikov, M.P.; Egorov, A.M.; Siniugina, A.A.; Ishmukhametov, A.A. Long-term humoral immunogenicity, safety and protective efficacy of inactivated vaccine against COVID-19 (CoviVac) in preclinical studies. Emerg. Microbes Infect., 2021, 10(1), 1790-1806.
[http://dx.doi.org/10.1080/22221751.2021.1971569] [PMID: 34427172]
[9]
Anand, T.; Virmani, N.; Kumar, S.; Mohanty, A.K.; Pavulraj, S.; Bera, B.C.; Vaid, R.K.; Ahlawat, U.; Tripathi, B.N. Phage therapy for treatment of virulent Klebsiella pneumoniae infection in a mouse model. J. Glob. Antimicrob. Resist., 2020, 21, 34-41.
[http://dx.doi.org/10.1016/j.jgar.2019.09.018] [PMID: 31604128]
[10]
Ji, Y.; Cheng, M.; Zhai, S.; Xi, H.; Cai, R.; Wang, Z.; Zhang, H.; Wang, X.; Xue, Y.; Li, X.; Sun, C.; Feng, X.; Lei, L. ur Rahman, S.; Han, W.; Gu, J. Preventive effect of the phage VB-SavM-JYL01 on rabbit necrotizing pneumonia caused by Staphylococcus aureus. Vet. Microbiol., 2019, 229, 72-80.
[http://dx.doi.org/10.1016/j.vetmic.2018.12.021] [PMID: 30642601]
[11]
Rodriguez, J.M.; Woodworth, B.A.; Horne, B.A.; Fackler, J.; Brownstein, M.J. Case Report: Successful use of phage therapy in refractory MRSA chronic rhinosinusitis. Int. J. Infect. Dis., 2022, 121, 14-16.
[http://dx.doi.org/10.1016/j.ijid.2022.04.049] [PMID: 35472526]
[12]
Bae, J.Y.; Jun, K.I.; Kang, C.K.; Song, K.H.; Choe, P.G.; Bang, J.H.; Kim, E.S.; Park, S.W.; Kim, H.B.; Kim, N.J.; Park, W.B.; Oh, M. Efficacy of intranasal administration of the recombinant endolysin SAL200 in a lethal murine Staphylococcus aureus pneumonia model. Antimicrob. Agents Chemother., 2019, 63(4), e02009-e02018.
[http://dx.doi.org/10.1128/AAC.02009-18] [PMID: 30670417]
[13]
Gilmer, D.B.; Schmitz, J.E.; Thandar, M.; Euler, C.W.; Fischetti, V.A. The phage lysin plyss2 decolonizes Streptococcus suis from murine intranasal mucosa. PLoS One, 2017, 12(1), e0169180.
[http://dx.doi.org/10.1371/journal.pone.0169180] [PMID: 28046082]
[14]
Wang, Y.; Mi, Z.; Niu, W.; An, X.; Yuan, X.; Liu, H.; Li, P.; Liu, Y.; Feng, Y.; Huang, Y.; Zhang, X.; Zhang, Z.; Fan, H.; Peng, F.; Tong, Y.; Bai, C. Intranasal treatment with bacteriophage rescues mice from Acinetobacter baumannii -mediated pneumonia. Future Microbiol., 2016, 11(5), 631-641.
[http://dx.doi.org/10.2217/fmb.16.11] [PMID: 26925593]
[15]
Dobretsov, K.G.; Kolenchukova, O.; Sipkin, A.; Bellussi, L.M.; Ciprandi, G.; Passali, D. A randomized, double-blind, placebo- -controlled study to investigate the use of bacteriophages in patients with chronic rhinosinusitis with nasal polyps. Otolaryngol. Pol., 2021, 75(6), 33-37.
[http://dx.doi.org/10.5604/01.3001.0015.0084] [PMID: 35175218]
[16]
Ooi, M.L.; Drilling, A.J.; Morales, S.; Fong, S.; Moraitis, S.; Macias-Valle, L.; Vreugde, S.; Psaltis, A.J.; Wormald, P.J. Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to Staphylococcus aureus. JAMA Otolaryngol. Head Neck Surg., 2019, 145(8), 723-729.
[http://dx.doi.org/10.1001/jamaoto.2019.1191] [PMID: 31219531]
[17]
Dor-On, E.; Solomon, B. Targeting glioblastoma via intranasal administration of Ff bacteriophages. Front. Microbiol., 2015, 6, 530.
[http://dx.doi.org/10.3389/fmicb.2015.00530] [PMID: 26074908]
[18]
Eriksson, F.; Culp, W.D.; Massey, R.; Egevad, L.; Garland, D.; Persson, M.A.A.; Pisa, P. Tumor specific phage particles promote tumor regression in a mouse melanoma model. Cancer Immunol. Immunother., 2007, 56(5), 677-687.
[http://dx.doi.org/10.1007/s00262-006-0227-6] [PMID: 16967280]
[19]
González, L.F.; Acuña, E.; Arellano, G.; Morales, P.; Sotomayor, P.; Oyarzun-Ampuero, F.; Naves, R. Intranasal delivery of interferon-β-loaded nanoparticles induces control of neuroinflammation in a preclinical model of multiple sclerosis: A promising simple, effective, non-invasive, and low-cost therapy. J. Control. Release, 2021, 331, 443-459.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.019] [PMID: 33220325]
[20]
Thorne, R.G.; Hanson, L.R.; Ross, T.M.; Tung, D.; Frey, W.H. II Delivery of interferon-β to the monkey nervous system following intranasal administration. Neuroscience, 2008, 152(3), 785-797.
[http://dx.doi.org/10.1016/j.neuroscience.2008.01.013] [PMID: 18304744]
[21]
Porfiryeva, N.N.; Semina, I.I.; Mustafin, R.I.; Khutoryansky, V.V. Intranasal administration as a method of drug delivery to the brain review. Drug Dev. Regist, 2017, 10(4), 117-127.
[http://dx.doi.org/10.33380/2305-2066-2021-10-4-117-127]
[22]
Kunelskaya, N.L.; Artemyeva-Karelova, A.V. The main components of nasal secretion. 2013. Available From: https://cyberleninka.ru/article/n/osnovnye-komponenty-nazalnogo-sekreta-mukoaktivnye-sredstva-vo-vrachebnoy-praktike (accessed on 10 August 2022).
[23]
Demina, N.B.; Bakhrushina, E.O.; Bardakov, A.I.; Krasnyuk, I.I. Biopharmaceutical aspects of the design of intranasal dosage form. Pharmacy, 2017, 68(3), 12-17.
[24]
Bakhrushina, E.O.; Demina, N.B.; Shumkova, M.M.; Rodyuk, P.S.; Shulikina, D.S.; Krasnyuk, I.I. In situ intranasal delivery systems: Application prospects and main pharmaceutical aspects of development (review). Drug Dev. Regist, 2021, 10(4), 54-63.
[http://dx.doi.org/10.33380/2305-2066-2021-10-4-54-63]
[25]
Ivanushko, L.A.; Solovyova, T.F.; Zaporozhets, T.S.; Somova, L.M.; Gorbach, V.I. Antibacterial and antitoxic properties of chitosan and its derivatives. 2009. Available From: https://cyberleninka.ru/article/n/antibakterialnye-i-antitoksicheskie-svoystva-hitozana-i-ego-proizvodnyh (accessed on 10 August 2022).
[26]
Kempe, S.; Mäder, K. In situ forming implants-An attractive formulation principle for parenteral depot formulations. J. Control. Release, 2012, 161(2), 668-679.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.016] [PMID: 22543012]
[27]
Vigani, B.; Rossi, S.; Sandri, G.; Bonferoni, M.C.; Caramella, C.M.; Ferrari, F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics, 2020, 12(9), 859.
[http://dx.doi.org/10.3390/pharmaceutics12090859] [PMID: 32927595]
[28]
Bedford, J.G.; Caminschi, I.; Wakim, L.M. Intranasal delivery of a chitosan-hydrogel vaccine generates nasal tissue resident memory CD8+ T cells that are protective against influenza virus infection. Vaccines, 2020, 8(4), 572.
[http://dx.doi.org/10.3390/vaccines8040572] [PMID: 33019568]
[29]
Ozbılgın, N.D.; Saka, O.M.; Bozkır, A. Preparation and in vitro/in vivo evaluation of mucosal adjuvant in situ forming gels with diphtheria toxoid. Drug Deliv., 2014, 21(2), 140-147.
[http://dx.doi.org/10.3109/10717544.2013.834754] [PMID: 24559517]
[30]
Zhao, K.; Shi, X.; Zhao, Y.; Wei, H.; Sun, Q.; Huang, T.; Zhang, X.; Wang, Y. Preparation and immunological effectiveness of a swine influenza DNA vaccine encapsulated in chitosan nanoparticles. Vaccine, 2011, 29(47), 8549-8556.
[http://dx.doi.org/10.1016/j.vaccine.2011.09.029] [PMID: 21945253]
[31]
Majcher, M.J.; Babar, A.; Lofts, A.; Leung, A.; Li, X.; Abu-Hijleh, F.; Smeets, N.M.B.; Mishra, R.K.; Hoare, T. In situ gelling starch nanoparticle (SNP)/O-carboxymethyl chitosan (CMCh) nanoparticle network hydrogels for the intranasal delivery of an antipsychotic peptide. J. Control. Release, 2021, 330, 738-752.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.050] [PMID: 33383097]
[32]
Agrawal, A.K.; Gupta, P.N.; Khanna, A.; Sharma, R.K.; Chandrawanshi, H.K.; Gupta, N.; Patil, U.K.; Yadav, S.K. Development and characterization of in situ gel system for nasal insulin delivery. Pharmazie, 2010, 65(3), 188-193.
[PMID: 20383938]
[33]
Luppi, B.; Bigucci, F.; Mercolini, L.; Musenga, A.; Sorrenti, M.; Catenacci, L.; Zecchi, V. Novel mucoadhesive nasal inserts based on chitosan/hyaluronate polyelectrolyte complexes for peptide and protein delivery. J. Pharm. Pharmacol., 2010, 61(2), 151-157.
[http://dx.doi.org/10.1211/jpp.61.02.0003] [PMID: 19178761]
[34]
Wang, Q.; Wong, C.H.; Chan, H.Y.E.; Lee, W.Y.; Zuo, Z. Statistical design of experiment (DoE) based development and optimization of DB213 in situ thermosensitive gel for intranasal delivery. Int. J. Pharm., 2018, 539(1-2), 50-57.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.032] [PMID: 29366939]
[35]
Ahmad, N.; Ahmad, R.; Ahmad, F.J.; Ahmad, W.; Alam, M.A.; Amir, M.; Ali, A. Poloxamer-chitosan-based naringenin nanoformulation used in brain targeting for the treatment of cerebral ischemia. Saudi J. Biol. Sci., 2020, 27(1), 500-517.
[http://dx.doi.org/10.1016/j.sjbs.2019.11.008] [PMID: 31889876]
[36]
Díaz, A.G.; Quinteros, D.A.; Gutiérrez, S.E.; Rivero, M.A.; Palma, S.D.; Allemandi, D.A.; Pardo, R.P.; Zylberman, V.; Goldbaum, F.A.; Estein, S.M. Immune response induced by conjunctival immunization with polymeric antigen BLSOmp31 using a thermoresponsive and mucoadhesive in situ gel as vaccine delivery system for prevention of ovine brucellosis. Vet. Immunol. Immunopathol., 2016, 178, 50-56.
[http://dx.doi.org/10.1016/j.vetimm.2016.07.004] [PMID: 27496742]
[37]
Nasirizadeh, S.; Rajabnezhad, S.; Majid, Z.; Somayeh, D.; Leyla, M.; Ali, D.; Rajabnejad, M. Gonçalves, Lidia Mucoadhesive microspheres of chitosan and polyvinyl alcohol as a carrier for intranasal delivery of insulin: In vitro and in vivo studies. MOJ Bioequiv. Bioavailab., 2017, 3(2), 00030.
[38]
Krauland, A.H.; Guggi, D.; Bernkop-Schnürch, A. Thiolated chitosan microparticles: A vehicle for nasal peptide drug delivery. Int. J. Pharm., 2006, 307(2), 270-277.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.016] [PMID: 16300914]
[39]
Das, S.S.; Kar, S.; Singh, S.K.; Hussain, A. Carboxymethyl chitosan in advanced drug-delivery applications. In: Chitosan in Drug Delivery; Academic Press, 2022; pp. 323-360.
[http://dx.doi.org/10.1016/B978-0-12-819336-5.00006-6]
[40]
Kola, M.; Puri, K.; Unnisa, T.; Swapna, J. Formulation, optimization and evaluation of rasagiline mesylate in situ nasal gel., 2018, 8(9), 1645-1654.
[41]
Bertram, U.; Bernard, M.C.; Haensler, J.; Maincent, P.; Bodmeier, R. In situ gelling nasal inserts for influenza vaccine delivery. Drug Dev. Ind. Pharm., 2010, 36(5), 581-593.
[http://dx.doi.org/10.3109/03639040903382673] [PMID: 19954407]
[42]
Thakkar, J.H.; Prajapati, S.T. Formulation development and characterization of in-situ gel of Rizatriptan Benzoate for intranasal delivery. J. Drug Deliv. Ther., 2021, 11(1-s), 1-6.
[http://dx.doi.org/10.22270/jddt.v11i1-s.4685]
[43]
Bertram, U.; Bodmeier, R. In situ gelling, bioadhesive nasal inserts for extended drug delivery: in vitro characterization of a new nasal dosage form. Eur. J. Pharm. Sci., 2006, 27(1), 62-71.
[http://dx.doi.org/10.1016/j.ejps.2005.08.005] [PMID: 16213127]
[44]
Cao, S.; Ren, X.; Zhang, Q.; Chen, E.; Xu, F.; Chen, J.; Liu, L.; Jiang, X. In situ gel based on gellan gum as new carrier for nasal administration of mometasone furoate. Int. J. Pharm., 2009, 365(1-2), 109-115.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.042] [PMID: 18822361]
[45]
Raquel Maia, F.; Vitor, M. Natural origin materials for bone tissue engineering: properties, processing, and performance. In: Principles of Regenerative Medicine; Academic Press, 2019; pp. 535-558.
[http://dx.doi.org/10.1016/B978-0-12-809880-6.00032-1]
[46]
Ball, J.P.; Springer, M.J.; Ni, Y.; Finger-Baker, I.; Martinez, J.; Hahn, J.; Suber, J.F.; DiMarco, A.V.; Talton, J.D.; Cobb, R.R. Intranasal delivery of a bivalent norovirus vaccine formulated in an in situ gelling dry powder. PLoS One, 2017, 12(5), e0177310.
[http://dx.doi.org/10.1371/journal.pone.0177310] [PMID: 28545100]
[47]
Velasquez, L.S.; Shira, S.; Berta, A.N.; Kilbourne, J.; Medi, B.M.; Tizard, I.; Ni, Y.; Arntzen, C.J.; Herbst-Kralovetz, M.M. Intranasal delivery of Norwalk virus-like particles formulated in an in situ gelling, dry powder vaccine. Vaccine, 2011, 29(32), 5221-5231.
[http://dx.doi.org/10.1016/j.vaccine.2011.05.027] [PMID: 21640778]
[48]
Dukovski, B.J. Plantić I.; Čunčić I.; Krtalić I.; Juretić M.; Pepić I.; Lovrić J.; Hafner, A. Lipid/alginate nanoparticle-loaded in situ gelling system tailored for dexamethasone nasal delivery. Int. J. Pharm., 2017, 533(2), 480-487.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.065] [PMID: 28577969]
[49]
Giri, T.K. Nanoarchitectured polysaccharide-based drug carrier for ocular therapeutics. In: Nanoarchitectonics for Smart Delivery and Drug Targeting; William Andrew Publishing, 2016; pp. 119-141.
[http://dx.doi.org/10.1016/B978-0-323-47347-7.00005-7]
[50]
Iklasova, A.Sh.; Sakipova, Z.B.; Bekbolatova, E.N. Pectin: composition, technology of production, application in food and pharmaceutical industry. 2018. Available From: https://cyberleninka. ru/article/n/pektin-sostav-tehnologiya-polucheniya-primenenie-v-pischevoy-i-farmatsevticheskoy-promyshlennosti (accessed on 10 August 2022).
[51]
Park, J.S.; Oh, Y.K.; Yoon, H.; Kim, J.M.; Kim, C.K. In situ gelling and mucoadhesive polymer vehicles for controlled intranasal delivery of plasmid DNA. J. Biomed. Mater. Res., 2002, 59(1), 144-151.
[http://dx.doi.org/10.1002/jbm.1227] [PMID: 11745547]
[52]
Mura, P.; Mennini, N.; Nativi, C.; Richichi, B. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. Eur. J. Pharm. Biopharm., 2018, 122, 54-61.
[http://dx.doi.org/10.1016/j.ejpb.2017.10.008] [PMID: 29032194]
[53]
Francisco, J. Stimuli sensitive ocular drug delivery systems. In: Drug Targeting and Stimuli Sensitive Drug Delivery Systems; William Andrew Publishing, 2018; pp. 211-270.
[http://dx.doi.org/10.1016/B978-0-12-813689-8.00006-9]
[54]
Tian, J.L.; Zhao, Y.Z.; Jin, Z.; Lu, C.T.; Tang, Q.Q.; Xiang, Q.; Sun, C.Z.; Zhang, L.; Xu, Y.Y.; Gao, H.S.; Zhou, Z.C.; Li, X.K.; Zhang, Y. Synthesis and characterization of Poloxamer 188-grafted heparin copolymer. Drug Dev. Ind. Pharm., 2010, 36(7), 832-838.
[http://dx.doi.org/10.3109/03639040903520983] [PMID: 20515404]
[55]
Zylke, J. Poloxamer 188 for sickle cell disease. JAMA, 2021, 325(15), 1524.
[http://dx.doi.org/10.1001/jama.2021.3399] [PMID: 33877286]
[56]
Emanuele, M.; Balasubramaniam, B. Differential effects of commercial-grade and purified poloxamer 188 on renal function. Drugs R D., 2014, 14(2), 73-83.
[http://dx.doi.org/10.1007/s40268-014-0041-0] [PMID: 24723148]
[57]
Li, Y.; Cui, Y.; Li, L.; Lin, X.; Zhou, X.; Zhu, H.; Feng, B.A. UHPLC-Q-TOF/MS method for the determination of poloxamer 124 and its application in a tissue distribution study in rats. Anal. Methods, 2021, 13(45), 5516-5522.
[http://dx.doi.org/10.1039/D1AY01373D] [PMID: 34750596]
[58]
Li, Y.; Cui, Y.; Li, L.; Lin, X.; Zhou, X.; Zhu, H.; Feng, B. Ultra‐high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry method for quantifying polymer poloxamer 124 and its application to pharmacokinetic study. J. Sep. Sci., 2021, 44(20), 3822-3829.
[http://dx.doi.org/10.1002/jssc.202100552] [PMID: 34435744]
[59]
Bakhrushina, E.O.; Novozhilova, E.; Kashperko, A.S.; Sokolova, A.; Demina, N.B.; Krasnyuk, I. Biopharmaceutical study of binary poloxamer systems as in situ drug delivery systems poloxamer polycomplexes: The study. Int. J. Appl. Pharm, 2022, 14(3), 162-165.
[http://dx.doi.org/10.22159/ijap.2022v14i3.43930]
[60]
Patil, P.R.; Salve, V.K.; Thorat, R.U. Formulation and evaluation of ion-sensitive in-situ nasal gel of Zolmitriptan. Int. J. Pharm. Pharm. Sci., 2015, 7, 478-486.
[61]
Kaur, G.; Grewal, J.; Jyoti, K.; Jain, U.K.; Chandra, R.; Madan, J. Oral controlled and sustained drug delivery systems: Concepts, advances, preclinical, and clinical status. In: Drug Targeting and Stimuli Sensitive Drug Delivery Systems; William Andrew Publishing, 2018; pp. 567-626.
[http://dx.doi.org/10.1016/B978-0-12-813689-8.00015-X]
[62]
Díaz, A.G.; Quinteros, D.A.; Paolicchi, F.A.; Rivero, M.A.; Palma, S.D.; Pardo, R.P.; Clausse, M.; Zylberman, V.; Goldbaum, F.A.; Estein, S.M. Mucosal immunization with polymeric antigen BLSOmp31 using alternative delivery systems against Brucella ovis in rams. Vet. Immunol. Immunopathol., 2019, 209, 70-77.
[http://dx.doi.org/10.1016/j.vetimm.2019.02.005] [PMID: 30885309]
[63]
Hathaway, H.; Alves, D.R.; Bean, J.; Esteban, P.P.; Ouadi, K.; Mark Sutton, J.; Jenkins, A.T.A. Poly(N-isopropylacrylamide-co-allylamine) (PNIPAM-co-ALA) nanospheres for the thermally triggered release of Bacteriophage K. Eur. J. Pharm. Biopharm., 2015, 96, 437-441.
[http://dx.doi.org/10.1016/j.ejpb.2015.09.013] [PMID: 26423908]
[64]
Chang, R.Y.K.; Chen, K.; Wang, J.; Wallin, M.; Britton, W.; Morales, S.; Kutter, E.; Li, J.; Chan, H.K. Proof-of-principle study in a murine lung infection model of antipseudomonal activity of phage pev20 in a dry-powder formulation. Antimicrob. Agents Chemother., 2018, 62(2), e01714-e01717.
[http://dx.doi.org/10.1128/AAC.01714-17] [PMID: 29158280]
[65]
Rahimzadeh, G.; Saeedi, M.; Nokhodchi, A.; Moosazadeh, M.; Ghasemi, M.; Rostamkalaei, S.S.; Mortazavi, P.; Eghbali, M.; Pourbakhshian, R.; Rezai, M.S.; Nemati Hevelaee, E. Evaluation of in-situ gel-forming eye drop containing bacteriophage against Pseudomonas aeruginosa keratoconjunctivitis in vivo. Bioimpacts, 2020, 11(4), 281-287.
[http://dx.doi.org/10.34172/bi.2021.10] [PMID: 34631490]
[66]
de Andrade, C.Y.T.; Yamanaka, I.; Schlichta, L.S.; Silva, S.K.; Picheth, G.F.; Caron, L.F.; de Moura, J.; de Freitas, R.A.; Alvarenga, L.M. Physicochemical and immunological characterization of chitosan-coated bacteriophage nanoparticles for in vivo mycotoxin modeling. Carbohydr. Polym., 2018, 185, 63-72.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.063] [PMID: 29421061]
[67]
Brkich, G.E.; Pyatigorskaya, N.V.; Kargin, V.S.; Zyryanov, O.A. Development of research design to determine the efficacy and safety of an innovative drug. Medical and pharmaceutical journal. Pulse, 2022, 24(5), 19-23.
[http://dx.doi.org/10.26787/nydha-2686-6838-2022-24-5-19-23]
[68]
Zyryanov, O.A. Development of the composition and technology for obtaining a dosage form based on the triazatricyclotetradecane of a potential MODULATOR of the AMPA receptor; Moscow, 2021.
[69]
Flórez Borges, P.; García-Montoya, E.; Pérez-Lozano, P.; Jo, E.; Miñarro, M.; Manich, A.; Suñé-Negre, J.M. The role of SeDeM for characterizing the active substance and polyvinyilpyrrolidone eliminating metastable forms in an oral lyophilizate—A preformulation study. PLoS One, 2018, 13(4), e0196049.
[http://dx.doi.org/10.1371/journal.pone.0196049] [PMID: 29689061]
[70]
Gulenkov, A.S.; Mizina, P.G.; Bakhrushina, E.O.; Bardakov, A.I.; Nyudochkin, A.V. Pharmaceutical and technological study of adsorbed liquid plant extract of antimicrobial action. Drug Dev. Regist, 2022, 11(2), 94-101.
[http://dx.doi.org/10.33380/2305-2066-2022-11-2-94-101]
[71]
Bakhrushina, E.O.; Anurova, M.N.; Aleshkin, A.V.; Demina, N.B.; Krasnyuk, I.I.; Pyatigorskaya, N.V.; Beregovykh, V.V. Some aspects of the use and creation of bacteriophage drugs. Vestnik RAMS., 2021, 76(4), 351-360.
[http://dx.doi.org/10.15690/vramn1380]
[72]
Gilbert, J.C.; Richardson, J.L.; Davies, M.C.; Palin, K.J.; Hadgraft, J. The effect of solutes and polymers on the gelation properties of pluronic F-127 solutions for controlled drug delivery. J. Control. Release, 1987, 5(2), 113-118.
[http://dx.doi.org/10.1016/0168-3659(87)90002-2]
[73]
Nižić L.; Ugrina, I.; Špoljarić D.; Saršon, V.; Kučuk, M.S.; Pepić I.; Hafner, A. Innovative sprayable in situ gelling fluticasone suspension: Development and optimization of nasal deposition. Int. J. Pharm., 2019, 563, 445-456.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.015] [PMID: 30965121]
[74]
Zaki, N.M.; Awad, G.A.; Mortada, N.D.; Abd ElHady, S.S. Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur. J. Pharm. Sci., 2007, 32(4-5), 296-307.
[http://dx.doi.org/10.1016/j.ejps.2007.08.006] [PMID: 17920822]
[75]
Bakhrushina, E.O. Application in vitro modeling for pharmaceutical development in situ systems. Pulse, 2022, 24(6), 137-142.
[http://dx.doi.org/10.26787/nydha-2686-6838-2022-24-6-137-142]
[76]
Mahmoud, E. Star-shaped poly(oligoethylene glycol) copolymer-based gels: Thermo-responsive behaviour and bioapplicability for risedronate intranasal delivery. Int. J. Pharm., 2018, 543(1-2), 224-233.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.053]
[77]
Elshafeey, A.H.; Bendas, E.R.; Mohamed, O.H. Intranasal microemulsion of sildenafil citrate: In vitro evaluation and in vivo pharmacokinetic study in rabbits. AAPS PharmSciTech, 2009, 10, 361-367.
[http://dx.doi.org/10.1208/s12249-009-9213-6]
[78]
El-Shenawy, A.A.; Mahmoud, R.A.; Mahmoud, E.A.; Mohamed, M.S. Intranasal in situ gel of apixaban-loaded nanoethosomes: Preparation, optimization, and in vivo evaluation. AAPS PharmSciTech, 2021, 22(4), 147.
[http://dx.doi.org/10.1208/s12249-021-02020-y] [PMID: 33948767]
[79]
Sousa, J.; Alves, G.; Oliveira, P.; Fortuna, A.; Falcão, A. Intranasal delivery of ciprofloxacin to rats: A topical approach using a thermoreversible in situ gel. Eur. J. Pharm. Sci., 2017, 97, 30-37.
[http://dx.doi.org/10.1016/j.ejps.2016.10.033] [PMID: 27810560]
[80]
Li, C.; Li, C.; Liu, Z.; Li, Q.; Yan, X.; Liu, Y.; Lu, W. Enhancement in bioavailability of ketorolac tromethamine via intranasal in situ hydrogel based on poloxamer 407 and carrageenan. Int. J. Pharm., 2014, 474(1-2), 123-133.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.023]
[81]
Nagaraja, S.; Basavarajappa, G.M.; Karnati, R.K.; Bakir, E.M.; Pund, S. Ion-triggered in situ gelling nanoemulgel as a platform for nose-to-brain delivery of small lipophilic molecules. Pharmaceutics, 2021, 13(8), 1216.
[http://dx.doi.org/10.3390/pharmaceutics13081216] [PMID: 34452177]