A Systematic Review of Medical Expert Systems for Cardiac Arrest Prediction

Page: [551 - 570] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Background: Predicting cardiac arrest is crucial for timely intervention and improved patient outcomes. Machine learning has yielded astounding results by offering tailored prediction analyses on complex data. Despite advancements in medical expert systems, there remains a need for a comprehensive analysis of their effectiveness and limitations in cardiac arrest prediction. This need arises because there are not enough existing studies that thoroughly cover the topic.

Objective: The systematic review aims to analyze the existing literature on medical expert systems for cardiac arrest prediction, filling the gaps in knowledge and identifying key challenges.

Methods: This paper adopts the PRISMA methodology to conduct a systematic review of 37 publications obtained from PubMed, Springer, ScienceDirect, and IEEE, published within the last decade. Careful inclusion and exclusion criteria were applied during the selection process, resulting in a comprehensive analysis that utilizes five integrated layers- research objectives, data collection, feature set generation, model training and validation employing various machine learning techniques.

Results and Conclusion: The findings indicate that current studies frequently use ensemble and deep learning methods to improve machine learning predictions’ accuracy. However, they lack adequate implementation of proper pre-processing techniques. Further research is needed to address challenges related to external validation, implementation, and adoption of machine learning models in real clinical settings, as well as integrating machine learning with AI technologies like NLP. This review aims to be a valuable resource for both novice and experienced researchers, offering insights into current methods and potential future recommendations.

Graphical Abstract

[1]
Hodgetts TJ, Kenward G, Vlachonikolis IG, Payne S, Castle N. The identification of risk factors for cardiac arrest and formulation of activation criteria to alert a medical emergency team. Resuscitation 2002; 54(2): 125-31.
[http://dx.doi.org/10.1016/S0300-9572(02)00100-4] [PMID: 12161291]
[2]
Manlhiot C, van den Eynde J, Kutty S, Ross HJ. A primer on the present state and future prospects for machine learning and artificial intelligence applications in cardiology. Can J Cardiol 2021; 38(2): 169-84.
[PMID: 34838700]
[3]
Nguyen MT, Nguyen BV, Kim K. Deep feature learning for sudden cardiac arrest detection in automated external defibrillators. Sci Rep 2018; 8(1): 17196.
[http://dx.doi.org/10.1038/s41598-018-33424-9] [PMID: 30464177]
[4]
Parshuram CS, Duncan HP, Joffe AR, et al. Multicentre validation of the bedside paediatric early warning system score: A severity of illness score to detect evolving critical illness in hospitalised children. Crit Care 2011; 15(4): R184.
[http://dx.doi.org/10.1186/cc10337] [PMID: 21812993]
[5]
Buist MD, Burton PR, Bernard SA, Waxman BP, Anderson J, Anderson J. Recognising clinical instability in hospital patients before cardiac arrest or unplanned admission to intensive care: A pilot study in a tertiary‐care hospital. Med J Aust 1999; 171(1): 22-5.
[http://dx.doi.org/10.5694/j.1326-5377.1999.tb123492.x] [PMID: 10451667]
[6]
Chan PS, Khalid A, Longmore LS, Berg RA, Kosiborod M, Spertus JA. Hospital-wide code rates and mortality before and after implementation of a rapid response team. JAMA 2008; 300(21): 2506-13.
[http://dx.doi.org/10.1001/jama.2008.715] [PMID: 19050194]
[7]
Sandroni C, Nolan J, Cavallaro F, Antonelli M. In-hospital cardiac arrest: Incidence, prognosis and possible measures to improve survival. Intensive Care Med 2007; 33(2): 237-45.
[http://dx.doi.org/10.1007/s00134-006-0326-z] [PMID: 17019558]
[8]
Church TR, Hodges M, Bailey JJ, Mongin SJ. Risk stratification applied to CAST registry data: Combining 9 predictors. J Electrocardiol 2002; 35(4): 117-22.
[http://dx.doi.org/10.1054/jelc.2002.37168] [PMID: 12539108]
[9]
Ebrahimzadeh E, Pooyan M. Early detection of sudden cardiac death by using classical linear techniques and time-frequency methods on electrocardiogram signals. J Biomed Sci Eng 2011; 4(11): 699-706.
[http://dx.doi.org/10.4236/jbise.2011.411087]
[10]
Kim YJ, Saqlian M, Lee JY. Deep learning–based prediction model of occurrences of major adverse cardiac events during 1-year follow-up after hospital discharge in patients with AMI using knowledge mining. Pers Ubiquitous Comput 2022; 26(2): 259-67.
[http://dx.doi.org/10.1007/s00779-019-01248-7]
[11]
Bai Y, Do DH, Harris PRE, et al. Integrating monitor alarms with laboratory test results to enhance patient deterioration prediction. J Biomed Inform 2015; 53: 81-92.
[http://dx.doi.org/10.1016/j.jbi.2014.09.006] [PMID: 25240252]
[12]
Kaur I, Doja MN, Ahmad T. Data mining and machine learning in cancer survival research: An overview and future recommendations. J Biomed Inform 2022; 128: 104026.
[http://dx.doi.org/10.1016/j.jbi.2022.104026] [PMID: 35167976]
[13]
Dilsizian SE, Siegel EL. Artificial intelligence in medicine and cardiac imaging: Harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr Cardiol Rep 2014; 16(1): 441.
[http://dx.doi.org/10.1007/s11886-013-0441-8] [PMID: 24338557]
[14]
Patel VL, Shortliffe EH, Stefanelli M, et al. The coming of age of artificial intelligence in medicine. Artif Intell Med 2009; 46(1): 5-17.
[http://dx.doi.org/10.1016/j.artmed.2008.07.017] [PMID: 18790621]
[15]
Neill DB. Using artificial intelligence to improve hospital inpatient care. IEEE Intell Syst 2013; 28(2): 92-5.
[http://dx.doi.org/10.1109/MIS.2013.51]
[16]
Doja MN, Kaur I, Ahmad T. Age-specific survival in prostate cancer using machine learning. Data Technol Appl 2020; 54(2): 215-34.
[http://dx.doi.org/10.1108/DTA-10-2019-0189]
[17]
Van den Eynde J, Lachmann M, Laugwitz KL, Manlhiot C, Kutty S. Successfully implemented artificial intelligence and machine learning applications in cardiology: State-of-the-art review. Trends Cardiovasc Med 2023; 33(5): 265-71.
[http://dx.doi.org/10.1016/j.tcm.2022.01.010] [PMID: 35101642]
[18]
Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc Neurol 2017; 2(4): 230-43.
[http://dx.doi.org/10.1136/svn-2017-000101] [PMID: 29507784]
[19]
Della Mea V, Popescu MH, Roitero K. Underlying cause of death identification from death certificates using reverse coding to text and a NLP based deep learning approach. Inform Med Unlocked 2020; 21: 100456.
[http://dx.doi.org/10.1016/j.imu.2020.100456]
[20]
Bhattacharjee S, Delen D, Ghasemaghaei M, Kumar A, Ngai EWT. Business and government applications of text mining & Natural Language Processing (NLP) for societal benefit: Introduction to the special issue on “text mining & NLP”. Decis Support Syst 2022; 162: 113867.
[http://dx.doi.org/10.1016/j.dss.2022.113867]
[21]
Kaur I, Doja MN, Ahmad T. Time-range based sequential mining for survival prediction in prostate cancer. J Biomed Inform 2020; 110: 103550.
[http://dx.doi.org/10.1016/j.jbi.2020.103550] [PMID: 32882394]
[22]
Bao Z, Zhao X, Li J, et al. Prediction of repeated-dose intravenous ketamine response in major depressive disorder using the GWAS-based machine learning approach. J Psychiatr Res 2021; 138: 284-90.
[http://dx.doi.org/10.1016/j.jpsychires.2021.04.014] [PMID: 33878621]
[23]
Chang AC. Primary prevention of sudden cardiac death of the young athlete: The controversy about the screening electrocardiogram and its innovative artificial intelligence solution. Pediatr Cardiol 2012; 33(3): 428-33.
[http://dx.doi.org/10.1007/s00246-012-0244-5] [PMID: 22327231]
[24]
Kaur I, Doja MN, Ahmad T, et al. An integrated approach for cancer survival prediction using data mining techniques. Comput Intell Neurosci 2021; 2021: 1-14.
[http://dx.doi.org/10.1155/2021/6342226]
[25]
Layeghian Javan S, Sepehri MM. A predictive framework in healthcare: Case study on cardiac arrest prediction. Artif Intell Med 2021; 117: 102099.
[http://dx.doi.org/10.1016/j.artmed.2021.102099] [PMID: 34127237]
[26]
Li H, Wu TT, Yang DL, et al. Decision tree model for predicting in‐hospital cardiac arrest among patients admitted with acute coronary syndrome. Clin Cardiol 2019; 42(11): 1087-93.
[http://dx.doi.org/10.1002/clc.23255] [PMID: 31509271]
[27]
Jang D-H, Kim J, Jo YH, Lee JH, Hwang JE, Park SM, et al. Developing neural network models for early detection of cardiac arrest in emergency department. Am J Emerg Med 2019; 38(1): 43-9.
[http://dx.doi.org/10.1016/j.ajem.2019.04.006] [PMID: 30982559]
[28]
Baral S, Alsadoon A, Prasad PWC, Al Aloussi S, Alsadoon OH. A novel solution of using deep learning for early prediction cardiac arrest in Sepsis patient: Enhanced bidirectional long short-term memory (LSTM). Multimedia Tools Appl 2021; 80(21-23): 32639-64.
[http://dx.doi.org/10.1007/s11042-021-11176-5]
[29]
Al-Dury N, Ravn-Fischer A, Hollenberg J, et al. Identifying the relative importance of predictors of survival in out of hospital cardiac arrest: A machine learning study. Scand J Trauma Resusc Emerg Med 2020; 28(1): 60.
[http://dx.doi.org/10.1186/s13049-020-00742-9] [PMID: 32586339]
[30]
Tapas N, Lone T, Reddy D, Kuppili V. Prediction of cardiac arrest recurrence using ensemble classifiers. Sadhana 2017; 42(7): 1135-41.
[http://dx.doi.org/10.1007/s12046-017-0683-z]
[31]
Matam BR, Duncan H, Lowe D. Machine learning based framework to predict cardiac arrests in a paediatric intensive care unit. J Clin Monit Comput 2019; 33(4): 713-24.
[http://dx.doi.org/10.1007/s10877-018-0198-0] [PMID: 30264218]
[32]
Harford S, Del Rios M, Heinert S, et al. A machine learning approach for modeling decisions in the out of hospital cardiac arrest care workflow. BMC Med Inform Decis Mak 2022; 22(1): 21.
[http://dx.doi.org/10.1186/s12911-021-01730-4] [PMID: 35078470]
[33]
Liu N, Koh ZX, Goh J, et al. Prediction of adverse cardiac events in emergency department patients with chest pain using machine learning for variable selection. BMC Med Inform Decis Mak 2014; 14(1): 75.
[http://dx.doi.org/10.1186/1472-6947-14-75] [PMID: 25150702]
[34]
Liu N, Lin Z, Cao J, et al. An intelligent scoring system and its application to cardiac arrest prediction. IEEE Trans Inf Technol Biomed 2012; 16(6): 1324-31.
[http://dx.doi.org/10.1109/TITB.2012.2212448] [PMID: 24218703]
[35]
Ong MEH, Lee Ng CH, Goh K, et al. Prediction of cardiac arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability compared with the modified early warning score. Crit Care 2012; 16(3): R108.
[http://dx.doi.org/10.1186/cc11396] [PMID: 22715923]
[36]
Johnsson J, Björnsson O, Andersson P, et al. Artificial neural networks improve early outcome prediction and risk classification in out-of-hospital cardiac arrest patients admitted to intensive care. Crit Care 2020; 24(1): 474.
[http://dx.doi.org/10.1186/s13054-020-03103-1] [PMID: 32731878]
[37]
Ebrahimzadeh E, Foroutan A, Shams M, et al. An optimal strategy for prediction of sudden cardiac death through a pioneering feature-selection approach from HRV signal. Comput Methods Programs Biomed 2019; 169: 19-36.
[http://dx.doi.org/10.1016/j.cmpb.2018.12.001] [PMID: 30638589]
[38]
Yijing L, Wenyu Y, Kang Y, et al. Prediction of cardiac arrest in critically ill patients based on bedside vital signs monitoring. Comput Methods Programs Biomed 2022; 214: 106568.
[http://dx.doi.org/10.1016/j.cmpb.2021.106568] [PMID: 34883382]
[39]
Liu T, Lin Z, Ong MEH, et al. Manifold ranking based scoring system with its application to cardiac arrest prediction: A retrospective study in emergency department patients. Comput Biol Med 2015; 67: 74-82.
[http://dx.doi.org/10.1016/j.compbiomed.2015.10.001] [PMID: 26498047]
[40]
Churpek MM, Yuen TC, Park SY, Meltzer DO, Hall JB, Edelson DP. Derivation of a cardiac arrest prediction model using ward vital signs. Crit Care Med 2012; 40(7): 2102-8.
[http://dx.doi.org/10.1097/CCM.0b013e318250aa5a] [PMID: 22584764]
[41]
Soudan B, Dandachi FF, Nassif AB. Attempting cardiac arrest prediction using artificial intelligence on vital signs from Electronic Health Records. Smart Health 2022; 25: 100294.
[http://dx.doi.org/10.1016/j.smhl.2022.100294]
[42]
Nishijima I, Oyadomari S, Maedomari S, et al. Use of a modified early warning score system to reduce the rate of in-hospital cardiac arrest. J Intensive Care 2016; 4(1): 12.
[http://dx.doi.org/10.1186/s40560-016-0134-7] [PMID: 26865981]
[43]
Sonet KMMH, Rahman MM, Mazumder P, Reza A, Rahman RM. Analyzing patterns of numerously occurring heart diseases using association rule mining. 2017 Twelfth International Conference on Digital Information Management (ICDIM). Fukuoka, Japan. 2012; p. 12-14 Sep; 8244690.
[http://dx.doi.org/10.1109/ICDIM.2017.8244690]
[44]
Lee SH. Development of ventricular fibrillation diagnosis method based on neuro-fuzzy systems for automated external defibrillators. Int J Fuzzy Syst 2017; 19(2): 440-51.
[http://dx.doi.org/10.1007/s40815-016-0174-0]
[45]
Gao Y, Zhiping L, Tong Tong Z, et al. Effects of two new features of approximate entropy and sample entropy on cardiac arrest prediction. IEEE International Symposium on Circuits and Systems (ISCAS). Lisbon, Portugal. 2015.24-27 May;
[46]
Sheela CJ, Vanitha L. Prediction of Sudden Cardiac Death using support vector machine. International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014]. Nagercoil, India. 2014.20-21 Mar;
[http://dx.doi.org/10.1109/ICCPCT.2014.7054771]
[47]
Alonso DH, et al. Prediction of cardiac death after adenosine myocardial perfusion SPECT based on machine learning. J Nucl Cardiol 2018; 26(5): 1-9.
[PMID: 29542015]
[48]
Ho J, Park Y, Carvalho C. DYNACARE: Dynamic cardiac arrest risk estimation. Proc Mach Learn Res 2013; 31: 333-41.
[49]
Joshi S, Nair M K. Prediction of heart disease using classification based data mining techniques. Smart Innov, Sys Technol 2014; 503-11.
[http://dx.doi.org/10.1007/978-81-322-2208-8_46]
[50]
Lupton JR, Jui J, Neth MR, Sahni R, Daya MR, Newgard CD. Development of a clinical decision rule for the early prediction of Shock-Refractory Out-of-Hospital cardiac arrest. Resuscitation 2022; 181: 60-7.
[http://dx.doi.org/10.1016/j.resuscitation.2022.10.010] [PMID: 36280216]
[51]
Alvarez CA, Clark CA, Zhang S, et al. Predicting out of intensive care unit cardiopulmonary arrest or death using electronic medical record data. BMC Med Inform Decis Mak 2013; 13(1): 28.
[http://dx.doi.org/10.1186/1472-6947-13-28] [PMID: 23442316]
[52]
Desautels T, Calvert J, Hoffman J, et al. Prediction of sepsis in the intensive care unit with minimal electronic health record data: A machine learning approach. JMIR Med Inform 2016; 4(3): e28.
[http://dx.doi.org/10.2196/medinform.5909] [PMID: 27694098]
[53]
Badriyah T, Briggs JS, Meredith P, et al. Decision-tree early warning score (DTEWS) validates the design of the National Early Warning Score (NEWS). Resuscitation 2014; 85(3): 418-23.
[http://dx.doi.org/10.1016/j.resuscitation.2013.12.011] [PMID: 24361673]
[54]
Bhatt A, Dubey S, Bhatt A. Sudden cardiac arrest prediction using predictive analytics. Int J Intell Eng Sys 2017; 10(3): 184-91.
[http://dx.doi.org/10.22266/ijies2017.0630.20]
[55]
Raka A, Naik G, Chai R. Computational algorithms underlying the time-based detection of sudden cardiac arrest via electrocardiographic markers. Appl Sci 2017; 7(9): 954.
[http://dx.doi.org/10.3390/app7090954]
[56]
Akrivos E. Prediction of cardiac arrest in intensive care patients through machine learning, Precision Medicine Powered by pHealth and Connected Health. Springer 2018; pp. 25-9.
[57]
Sakthivel M. Automated detection of cardiac arrest in human beings using auto encoders. Measurement. Sensors 2023; 27: 100792.
[58]
Lee YJ, Cho KJ, Kwon O, et al. A multicentre validation study of the deep learning-based early warning score for predicting in-hospital cardiac arrest in patients admitted to general wards. Resuscitation 2021; 163: 78-85.
[http://dx.doi.org/10.1016/j.resuscitation.2021.04.013] [PMID: 33895236]
[59]
Kaspal R, Alsadoon A, Prasad PWC, Al-Saiyd NA, Nguyen TQV, Pham DTH. A novel approach for early prediction of sudden cardiac death (SCD) using hybrid deep learning. Multimedia Tools Appl 2021; 80(5): 8063-90.
[http://dx.doi.org/10.1007/s11042-020-10150-x]
[60]
Shimada-Sammori K, Shimada T, Miura RE, et al. Machine learning algorithms for predicting days of high incidence for out-of-hospital cardiac arrest. Sci Rep 2023; 13(1): 9950.
[http://dx.doi.org/10.1038/s41598-023-36270-6] [PMID: 37336904]
[61]
Xia Y, Yao R, Zhao P, et al. Publication trends of research on COVID-19 and host immune response: A bibliometric analysis. Front Public Health 2022; 10: 939053.
[http://dx.doi.org/10.3389/fpubh.2022.939053] [PMID: 36003630]
[62]
Baldi E, Cortegiani A, Savastano S. Cardiac arrest and coronavirus disease 2019. Curr Opin Crit Care 2022; 28(3): 237-43.
[http://dx.doi.org/10.1097/MCC.0000000000000931] [PMID: 35275877]
[63]
Kaur I, Doja MN, Ahmad T. An Empirical Analysis of Survival Predictors for Cancer Using Machine Learning. Singapore: Springer 2022.
[http://dx.doi.org/10.1007/978-981-16-2594-7_17]
[64]
Merritt RE, Abdel-Rasoul M, Fitzgerald M, D’Souza DM, Kneuertz PJ. Nomograms for predicting overall and recurrence-free survival from pathologic stage IA and IB lung cancer after lobectomy. Clin Lung Cancer 2021; 22(4): e574-83.
[http://dx.doi.org/10.1016/j.cllc.2020.10.009] [PMID: 33234491]
[65]
Stein PK, Bosner MS, Kleiger RE, Conger BM. Heart rate variability: A measure of cardiac autonomic tone. Am Heart J 1994; 127(5): 1376-81.
[http://dx.doi.org/10.1016/0002-8703(94)90059-0] [PMID: 8172068]
[66]
Kudaiberdieva G, Gorenek B, Timuralp B. Heart rate variability as a predictor of sudden cardiac death, Anatolian J Cardiol Anadolu Kardiyol Derg 2007.
[67]
Kennedy CE, Aoki N, Mariscalco M, Turley JP. Using time series analysis to predict cardiac arrest in a PICU. Pediatr Crit Care Med 2015; 16(9): e332-9.
[68]
Alpaydin E. Introduction to Machine Learning. MIT press 2009.
[69]
Han J. Micheline Kamber. (3rd ed.), Data Mining Concepts and Techniques 2012.
[70]
Yokoyama JS, Bonham LW, Sears RL, et al. Decision tree analysis of genetic risk for clinically heterogeneous Alzheimer’s disease. BMC Neurol 2015; 15(1): 47.
[http://dx.doi.org/10.1186/s12883-015-0304-6] [PMID: 25880661]
[71]
Doja MN, Kaur I, Ahmad T. Current state of the art for survival prediction in cancer using data mining techniques. Curr Bioinform 2020; 15(3): 174-86.
[http://dx.doi.org/10.2174/1574893614666190902152142]
[72]
Kaur I, Kapoor N. Token based approach for cross project prediction of fault prone modules. 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT). New Delhi, India. 2016.11-13 Mar;
[http://dx.doi.org/10.1109/ICCTICT.2016.7514581]
[73]
Vakili M, Ghamsari M, Rezaei M. Performance analysis and comparison of machine and deep learning algorithms for IoT data classification Arxiv 2020; 2020: 09636.
[http://dx.doi.org/10.48550/ARXIV.2001.09636]
[74]
Ravi D, Wong C, Deligianni F, et al. Deep learning for health informatics. IEEE J Biomed Health Inform 2017; 21(1): 4-21.
[http://dx.doi.org/10.1109/JBHI.2016.2636665] [PMID: 28055930]
[75]
Benitez RU, Duque AO. Sudden cardiac death prediction based on a nonlinear estimation. IFMBE Proc 2017; 60: 485-8.
[http://dx.doi.org/10.1007/978-981-10-4086-3_122]
[76]
Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press 2016.
[77]
Eertink JJ, Heymans MW, Zwezerijnen GJC, Zijlstra JM, de Vet HCW, Boellaard R. External validation: A simulation study to compare cross-validation versus holdout or external testing to assess the performance of clinical prediction models using PET data from DLBCL patients. EJNMMI Res 2022; 12(1): 58.
[http://dx.doi.org/10.1186/s13550-022-00931-w] [PMID: 36089634]
[78]
Purushotham S, Tripathy BK. Evaluation of classifier models using stratified tenfold cross validation techniques. In: Krishna PV, Babu MR, Ariwa E, Eds. Global Trends in Information Systems and Software Applications ObCom 2011 Communications in Computer and Information Science. Berlin, Heidelberg: Springer 2012; Vol. 270.
[http://dx.doi.org/10.1007/978-3-642-29216-3_74]
[79]
Xu Y, Liu X, Cao X, et al. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021; 2(4): 100179.
[http://dx.doi.org/10.1016/j.xinn.2021.100179] [PMID: 34877560]
[80]
Tutsoy O. COVID-19 epidemic and opening of the schools: Artificial intelligence-based long-term adaptive policy making to control the pandemic diseases. IEEE Access 2021; 9: 68461-71.
[http://dx.doi.org/10.1109/ACCESS.2021.3078080]
[81]
Mohapatra S, Maneesha S, Mohanty S, et al. A stacking classifiers model for detecting heart irregularities and predicting cardiovascular disease. Healthcare Analy 2023; 3: 100133.
[http://dx.doi.org/10.1016/j.health.2022.100133]
[82]
Hooper A, Nolan JP, Rees N, Walker A, Perkins GD, Couper K. Drug routes in out-of-hospital cardiac arrest: A summary of current evidence. Resuscitation 2022; 181: 70-8.
[http://dx.doi.org/10.1016/j.resuscitation.2022.10.015] [PMID: 36309248]
[83]
Kim HB, Nguyen HT, Jin Q, et al. Computational signatures for post-cardiac arrest trajectory prediction: Importance of early physiological time series. Anaesth Crit Care Pain Med 2022; 41(1): 101015.
[http://dx.doi.org/10.1016/j.accpm.2021.101015] [PMID: 34968747]
[84]
Tsao CW, Zaid IA, Alvaro A, et al. Heart disease and stroke statistics-2022 Update: A report from the american heart association. Circulation 2022; 145(8): e153-639.
[85]
K R P N C N. Lung cancer survivability prediction based on performance using classification techniques of support vector machines, C4.5 and naive bayes algorithms for healthcare analytics. Procedia Comput Sci 2018; 132: 412-20.
[http://dx.doi.org/10.1016/j.procs.2018.05.162]
[86]
Tom M. Mitchell, Machine Learning. McGraw Hill 1997.
[87]
Rejeb A, Rejeb K, Treiblmaier H, et al. The Internet of Things (IoT) in healthcare: Taking stock and moving forward. Int Things 2023; 22: 100721.
[http://dx.doi.org/10.1016/j.iot.2023.100721]
[88]
Anurag SR. Tenhunen, pervasive health monitoring based on internet of things: Two case studies. 4th International Conference on Wireless Mobile Communication and Healthcare - Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH). Athens, Greece. 2014.03-05 Nov;
[89]
Mannini A, Trojaniello D, Cereatti A, Sabatini A. A Machine learning framework for gait classification using inertial sensors: Application to elderly, post-stroke and huntington’s disease patients. Sensors 2016; 16(1): 134.
[http://dx.doi.org/10.3390/s16010134] [PMID: 26805847]
[90]
Villar JR, González S, Sedano J, Chira C, Trejo-Gabriel-Galan JM. Improving human activity recognition and its application in early stroke diagnosis. Int J Neural Syst 2015; 25(4): 1450036.
[http://dx.doi.org/10.1142/S0129065714500361] [PMID: 25684369]
[91]
Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. PLoS Med 2018; 15(11): e1002683.
[http://dx.doi.org/10.1371/journal.pmed.1002683] [PMID: 30399157]
[92]
Gottesman O, Johansson F, Komorowski M, et al. Guidelines for reinforcement learning in healthcare. Nat Med 2019; 25(1): 16-8.
[http://dx.doi.org/10.1038/s41591-018-0310-5] [PMID: 30617332]
[93]
Parbhoo S, Bogojeska J, Zazzi M, Roth V, Doshi-Velez F. Combining kernel and model based learning for HIV therapy selection. AMIA Jt Summits Transl Sci Proc 2017; 2017: 239-48.
[PMID: 28815137]
[94]
Guez A, Vincent RD, Avoli M, Pineau J. Treatment of epilepsy via batch-mode reinforcement learning. In: Proceedings of the Twenty-Tird AAAI Conference on Artifcial Intelligence (AAAI 2008). AAAI Press 2008; pp. 1671-8.
[95]
Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med 2018; 24(11): 1716-20.
[http://dx.doi.org/10.1038/s41591-018-0213-5] [PMID: 30349085]
[96]
Adam Lally P. Natural language processing with prolog in the IBM watson system. 2021. Available from: https://www.cs.nmsu.edu/ALP/wp-content/uploads/2011/03/PrologAndWatson1.pdf
[97]
Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell 2019; 1(5): 206-15.
[http://dx.doi.org/10.1038/s42256-019-0048-x] [PMID: 35603010]
[98]
Castelvecchi D. Can we open the black box of AI? Nature 2016; 538(7623): 20-3.
[http://dx.doi.org/10.1038/538020a] [PMID: 27708329]
[99]
Nayyar A, Gadhavi L, Zaman N. Machine learning in healthcare: Review, opportunities and challenges. In: Machine Learning and the Internet of Medical Things in Healthcare. Elsevier 2021; pp. 23-45.
[100]
Chen PHC, Liu Y, Peng L. How to develop machine learning models for healthcare. Nat Mater 2019; 18(5): 410-4.
[http://dx.doi.org/10.1038/s41563-019-0345-0] [PMID: 31000806]
[101]
Endsley MR. Autonomous driving systems: A preliminary naturalistic study of the Tesla Model S. J Cogn Eng Decis Mak 2017; 11(3): 225-38.
[http://dx.doi.org/10.1177/1555343417695197]
[102]
Lee D, Yoon SN. Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges. Int J Environ Res Public Health 2021; 18(1): 271.
[http://dx.doi.org/10.3390/ijerph18010271] [PMID: 33401373]
[103]
Spector L. Evolution of artificial intelligence. Artif Intell 2006; 170(18): 1251-3.
[http://dx.doi.org/10.1016/j.artint.2006.10.009]