[4]
J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A.Y. Ng, Multimodal deep learning Proceedings of the 28th International Conference on Machine Learning (CML-11), 2011, pp. 689-696.
[6]
M.Z. Ma, Research on underwater target recognition technology., Harbin Engineering University, 2007.
[7]
G.Y. Liu, Research on object recognition technology based on sonar image., Harbin Engineering University, 2009.
[8]
N. Hurtos, N. Palomeras, S. Nagappa, and J. Salvi, "Automatic detection ofunderwater chain links using a forwardlooking sonar", In: OCEANS-Bergen, 2013 MTS/ IEEE., 2013.
[9]
V. Myers, and J. Fawcett, "A template matching procedure for automatic target recognition in synthetic aperture sonar imagery", IEEE Signal Process. Lett., vol. 17, no. 7, pp. 683-686, 2021.
[10]
Q. Chen, Research on underwater target recognition technology., Harbin Engineering University, 2013.
[12]
J. Tian, Target recognition and ship radiation noise recognition in hydroacoustic imaging., Institute of Acoustics, Chinese Academy of Sciences, 2004.
[14]
M. Gao, Research on feature extraction technology of underwater acoustic images., Harbin Engineering University, 2009.
[15]
J. Groena, E. Coirasa, and D. Williamsa, "Detection rate statistics in synthetic aperture sonarimages", 3rd International Conference & Exhibition on "Underwater Acoustic Measurements: Technologies & Results, 2009.
[16]
D. Liu, Object detection and tracking based on multi-resolution processing of sonar images., Harbin Engineering University, 2011.
[20]
J. Kim, H. Cho, J. Pyo, and B. Kim, "The convolution neural network based agentvehicle detection using forwardlooking sonar mage", In: OCEANS 2016 MTS/IEEE Monterey. 2016, 2016, pp. 1-5.
[22]
W. Hongjian, G. Na, C. Tao, X. Yao, R. Li, and L Benyin, A feature extraction method for sidescan sonar images based on fully convolutional neural networksHeilongjiang Province: CN110781924B February 14, .
[23]
W. Xingmei, J. Jia, S. Boxuan, W. Guoqiang, and L. Anhua, Adaptive Weight Convolutional Neural Network-based Classification Method for Underwater Sonar Images Using Deep LearningHeilongjiang: CN108427958A, August 21, .
[24]
Q. Ye, H. Huang, and C. Zhang, "Image enhancement using stochastic resonance [sonar image processing applications", In 2004 International Conference on Image Processing, 2004, pp. 263-266
[28]
R. Girshick, "Fast R-CNN", IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp. 1440-1448, 2015.
[29]
J. Sun, K. He, R. Girshick, and S. Ren, "Faster r-cnn: Towards realtime object detection with region proposal networks", Adv. Neural Inf. Process. Syst., pp. 91-99, 2015.
[30]
K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask R-CNN", In IEEE International Conference on Computer Vision, 2017, pp. 2980-2988
[31]
T.Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, "Feature pyramid networks for object detection", Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2117-2125.
[33]
Y. Li, Y.N. Chen, N. Wang, and Z. Zhang, "Scale-aware trident networks for object detection", Proceedings of the IEEE international conference on computer wision, 2019, pp. 6054-6063.
[35]
J. Redmon, and A. Farhadi, "YOL09000: Better, faster, stronger", In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263-7271
[36]
J. Redmon, and A. Farhadi, "YOLOv3: An incremental improvement", arXiv, 2018.
[37]
Y. Huizhen, Z. Yujia, and L. Yuan, "Underwater Sonar Image Object Detection Method based on Improved YOLOv3-tiny", Shaanxi Province: CN112861919A, May 5.
[38]
A. Bochkovskiy, C.Y. Wang, and H.Y.M. Liao, "YOLOv4: Optimal speed and accuracy of object detection", arXiv, 2020.
[40]
C.Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A.C. Berg, "Dssd: Deconvolutional single shot detector", arXiv, 2017.
[42]
Z. Li, and F. Zhou, "FSSD: Feature fusion single shot multibox detector", arXiv , 2017.
[45]
L. Huang, Y. Yang, Y. Deng, and Y. Yu, "Densebox: Unifying landmark localization with end to end object detection", arXiv, 2015.
[47]
H. Law, and J. Deng, "Cornernet: Detecting objects as paired keypoints", Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 734-750.
[48]
X. Zhou, D. Wang, and P. Krhenbühl, "Objects as points", arXiv , 2019.
[51]
Z. Tian, C. Shen, H. Chen, and T. He, "Fcos: Fully convolutional one-stage object detection", Proceedings of the IEEE international conference on computer vision, 2019, pp. 9627-9636.
[52]
T. Kong, F. Sun, H. Liu, Y. Jiang, and J. Shi, "Foveabox: Beyound anchor-based object detection", IEEE Trans. Image Process., pp. 7389-7398, 2022.
[54]
D. Yoo, S. Park, J.Y. Lee, A.S. Paek, and I.S. Kweon, AttentionNet: Aggregating Weak Directions for Accurate Object Detection., IEEE, 2016.
[55]
J.W. Li, C.W. Qu, J.Q. Shao, and S.J. Peng, "Deep Learning-based ship detection data set and performance analysis of SAR images", In Proceedings of the Fifth Annual Symposium on High Resolution Earth Observation, 2018.
[56]
P. Xiang, W.W. Guo, Z.H. Zhang, W.X. Yu, P. Xiang, W.W. Guo, Z.H. Zhang, and W.X. Yu, "Opensar data sharing platform for sar interpretation", Inf. Tecnol., no. September, pp. 1-4, 2016.
[57]
X. Sun, Z.R. Wang, Y.R. Sun, W.H. Diao, Y. Zhang, and K. Fu, "Air-sarship-1.0: High-Resolution sarship detection Data set", J. Radar, no. August, pp. 852-862, 2019.
[58]
Y. Zhou, S.C. Chen, K. Wu, M.Q. Ning, H.K. Chen, and P. Zhang, "SCTD1.0: Sonar common target detection data set., vol. 48", Comput. Sci., 2021.
[60]
"Triton Imaging Inc, eXtended Triton Format (XTF)", Rev., vol. 31, pp. 9-45, 2011.
[61]
"Edge Tech, ", Inc.QMIPS File Format-Sonar User's Manual, vol. 2, pp. 9-3, 1999.