TBAB in One-pot Green Approach for the Synthesis of N-Heterocyclic Compounds: A Comprehensive Review

Page: [2 - 24] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Designing innovative one-pot reactions using eco-friendly methodologies has attracted a lot of attention in drug development, organic synthesis, and material sciences due to the impressive art of mitigating the possibility of side reactions, particularly for the synthesis of Ncontaining heterocycles, which are crucial for the manufacturing and development of new drugs. These moieties have demonstrated a diversity of biological applications, such as anti-tumor, antimicrobial, antibiofilm, antioxidant, and anti-inflammatory. Due to the wide range of medicinal applications, several techniques have been reported in the literature for the synthesis of these physiologically important scaffolds, employing different homogeneous and heterogeneous catalysts. One such highly efficient catalyst is tetrabutylammonium bromide (TBAB), which has gained significant attention as an efficient metal-free homogeneous phase-transfer catalyst to facilitate a reaction when the reactants are in different phases. It is also used as a zwitterionic solvent in many organic transformations and as an effective co-catalyst for a variety of coupling reactions. In the current study, we highlighted recent developments in one-pot reactions involving TBAB as a phase-transfer catalyst or zwitterionic solvent for the efficient synthesis of various biologically promising monocyclic and bicyclic N-heterocycle scaffolds.

Graphical Abstract

[1]
Hiebel, M.A.; Berteina-Raboin, S. Iodine-catalyzed regioselective sulfenylation of imidazoheterocycles in PEG400. Green Chem., 2015, 17(2), 937-944.
[http://dx.doi.org/10.1039/C4GC01462F]
[2]
Guo, Y.; Gao, Q. Recent advances in 3-aminoindazoles as versatile synthons for the synthesis of nitrogen heterocycles. Org. Biomol. Chem., 2022, 20(36), 7138-7150.
[http://dx.doi.org/10.1039/D2OB01348G] [PMID: 36043318]
[3]
Sachdeva, H.; Mathur, J.; Guleria, A. Indole derivatives as potential anticancer agents. A review. J. Chil. Chem. Soc., 2020, 65(3), 4900-4907.
[http://dx.doi.org/10.4067/s0717-97072020000204900]
[4]
Xiang, Y.; Wang, C.; Ding, Q.; Peng, Y. Diazo compounds: Versatile synthons for the synthesis of nitrogen heterocycles via transition metal-catalyzed cascade C-H activation/carbene insertion/annulation reactions. Adv. Synth. Catal., 2019, 361(5), 919-944.
[http://dx.doi.org/10.1002/adsc.201800960]
[5]
Rajanarendar, E.; Rama Krishna, S.; Nagaraju, D.; Govardhan Reddy, K.; Kishore, B.; Reddy, Y.N. Environmentally benign synthesis, molecular properties prediction and anti-inflammatory activity of novel isoxazolo[5,4-d]isoxazol-3-yl-aryl-methanones via vinylogous Henry nitroaldol adducts as synthons. Bioorg. Med. Chem. Lett., 2015, 25(7), 1630-1634.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.041] [PMID: 25708616]
[6]
Saini, M.S.; Kumar, A.; Dwivedi, J.; Singh, R. A review: Biological significances of heterocyclic compounds. Int. J. Pharm. Sci. Res., 2013, 4(3), 66-77.
[7]
Chen, C.J.; Song, B.A.; Yang, S.; Xu, G.F.; Bhadury, P.S.; Jin, L.H.; Hu, D.Y.; Li, Q.Z.; Liu, F.; Xue, W.; Lu, P.; Chen, Z. Synthesis and antifungal activities of 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-thiadiazole and 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-oxadiazole derivatives. Bioorg. Med. Chem., 2007, 15(12), 3981-3989.
[http://dx.doi.org/10.1016/j.bmc.2007.04.014] [PMID: 17452108]
[8]
Dham, S.; Kour, P. Synthesis of some 2, 6-disubstituted imidazo[2, 1-b]-1, 3, 4-thiadiazoles and their biological activities. Proceedings-National Academy of Sciences India Section A, 1993, 63, 589-589.
[9]
Arora, D.S. Some Indian spices and their antimicrobial properties. Exploiting Fungi from Natural Resources for Novel Products; Springer US: Boston, MA, 1999, pp. 33-40.
[10]
Chen, Q.; Zhu, X.L.; Jiang, L.L.; Liu, Z.M.; Yang, G.F. Synthesis, antifungal activity and CoMFA analysis of novel 1,2,4-triazolo[1,5-a]pyrimidine derivatives. Eur. J. Med. Chem., 2008, 43(3), 595-603.
[http://dx.doi.org/10.1016/j.ejmech.2007.04.021] [PMID: 17618711]
[11]
Amir, M.; Javed, S.A.; Kumar, H. Synthesis of some 1, 3, 4-oxadiazole derivatives as potential anti-inflammatory agents. Indian J. Chem., 2007, 46B, 1014-1019.
[12]
Burbuliene, M.M.; Jakubkiene, V.; Mekuskiene, G.; Udrenaite, E.; Smicius, R.; Vainilavicius, P. Synthesis and anti-inflammatory activity of derivatives of 5-[(2-disubstitutedamino-6-methyl-pyrimidin-4-yl)-sulfanylmethyl]-3H-1,3,4-oxadiazole-2-thiones. Farmaco, 2004, 59(10), 767-774.
[http://dx.doi.org/10.1016/j.farmac.2004.05.007] [PMID: 15474053]
[13]
Palaska, E. Şahin, G.; Kelicen, P.; Durlu, N.T.; Altinok, G. Synthesis and anti-inflammatory activity of 1-acylthiosemicarbazides, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones. Farmaco, 2002, 57(2), 101-107.
[http://dx.doi.org/10.1016/S0014-827X(01)01176-4] [PMID: 11902651]
[14]
Chandra, T.; Garg, N.; Lata, S.; Saxena, K.K.; Kumar, A. Synthesis of substituted acridinyl pyrazoline derivatives and their evaluation for anti-inflammatory activity. Eur. J. Med. Chem., 2010, 45(5), 1772-1776.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.009] [PMID: 20149499]
[15]
Husain, A.; Ajmal, M. Sinteza i djelovanje novih derivata 1, 3, 4-oksadiazola. Acta Pharm., 2009, 59(2), 223-233.
[PMID: 19564146]
[16]
Akhter, M.; Husain, A.; Azad, B.; Ajmal, M. Aroylpropionic acid based 2,5-disubstituted-1,3,4-oxadiazoles: Synthesis and their anti-inflammatory and analgesic activities. Eur. J. Med. Chem., 2009, 44(6), 2372-2378.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.005] [PMID: 18977556]
[17]
Dewangan, D.; Pandey, A.; Sivakumar, T.; Rajavel, R.; Dubey, R.D. Synthesis of some novel 2, 5-disubstituted 1, 3, 4-oxadiazole and its analgesic, anti-inflammatory, anti-bacterial and anti-tubercular activity. Int. J. Chemtech Res., 2010, 2(3), 1397-1412.
[18]
Jayashankar, B.; Lokanath Rai, K.M.; Baskaran, N.; Sathish, H.S. Synthesis and pharmacological evaluation of 1,3,4-oxadiazole bearing bis(heterocycle) derivatives as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2009, 44(10), 3898-3902.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.006] [PMID: 19423197]
[19]
Abd-Ellah, H.S.; Abdel-Aziz, M.; Shoman, M.E.; Beshr, E.A.M.; Kaoud, T.S.; Ahmed, A.S.F.F. Novel 1,3,4-oxadiazole/oxime hybrids: Synthesis, docking studies and investigation of anti-inflammatory, ulcerogenic liability and analgesic activities. Bioorg. Chem., 2016, 69, 48-63.
[http://dx.doi.org/10.1016/j.bioorg.2016.09.005] [PMID: 27669120]
[20]
Chao, S.J.; Hui, X.P.; Li, S.; Qiu, Z.Z.; Xu, P.F.; Zhang, Z.Y.; Wang, Q.; Guan, Z.W. Synthesis and antibacterial activities of novel biphenyltetrazole derivatives bearing 1,3,4-oxadiazole. J. Chin. Chem. Soc., 2005, 52(3), 539-544.
[http://dx.doi.org/10.1002/jccs.200500079]
[21]
Srinivas, K.; Srinivas, U.; Bhanuprakash, K.; Harakishore, K.; Murthy, U.S.N.; Jayathirtha, R.V. Synthesis and antibacterial activity of various substituted s-triazines. Eur. J. Med. Chem., 2006, 41(11), 1240-1246.
[http://dx.doi.org/10.1016/j.ejmech.2006.05.013] [PMID: 16815597]
[22]
Banday, M.R.; Mattoo, R.H.; Rauf, A. Synthesis, characterization and anti-bacterial activity of 5-(alkenyl)-2-amino- and 2-(alkenyl)-5-phenyl-1,3,4-oxadiazoles. J. Chem. Sci., 2010, 122(2), 177-182.
[http://dx.doi.org/10.1007/s12039-010-0019-6]
[23]
Ateş Ö.; Kocabalkanli, A.; Cesur, N.; Ötük, G. Synthesis and antimicrobial activity of some 5-aryl-2-[(N,N-disubstituted thiocarbamoylthio)acylamino]-1,3,4-oxadiazoles. Farmaco, 1998, 53(8-9), 541-544.
[http://dx.doi.org/10.1016/S0014-827X(98)00063-9] [PMID: 10081816]
[24]
Saad, H. Design synthesis, characterization and antibacterial activity of 1, 3, 4-Oxadiazolederivatives. Indian J. Chem. Sect. B, 1996, 35, 980-982.
[25]
Nanjunda, S.; Swamy, S.; Basppa, P.B.; Prabhuswamy, B.; Doreswamy, B.H. Crystal structure of novel 2-butyl-4-chloro-1HImidazolyl-5-Carboxaldehyde. Eur. J. Med. Chem., 2006, 41, 531-538.
[26]
Hui, X.P.; Chu, C.H. Zangzu; Wang, Q; Zhang, Q. Synthysis and antibacterial activitiesof 1, 3 and 4-oxadiazole derivates containing 5-methglisoozde moiety. Indian J. Chem., 2002, 41B, 2176.
[27]
Yar; Shahar, M; Wasim, M A. Polish Pharmaceutical Society, 2009, 66, 393-397.
[28]
Zarghi, A.; Hamedi, S.; Tootooni, F.; Amini, B.; Sharifi, B.; Faizi, M.; Tabatabai, S.A.; Shafiee, A. Synthesis and pharmacological evaluation of new 2-substituted-5-{2-[(2-halobenzyl) thio) phenyl}-1, 3, 4-oxadiazoles as anticonvulsant agents. Sci. Pharm., 2008, 76(2), 185-202.
[http://dx.doi.org/10.3797/scipharm.0803-10]
[29]
Zarghi, A.; Tabatabai, S.A.; Faizi, M.; Ahadian, A.; Navabi, P.; Zanganeh, V.; Shafiee, A. Synthesis and anticonvulsant activity of new 2-substituted-5-(2-benzyloxyphenyl)-1,3,4-oxadiazoles. Bioorg. Med. Chem. Lett., 2005, 15(7), 1863-1865.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.014] [PMID: 15780622]
[30]
Almasirad, A.; Tabatabai, S.A.; Faizi, M.; Kebriaeezadeh, A.; Mehrabi, N.; Dalvandi, A.; Shafiee, A. Synthesis and anticonvulsant activity of new 2-substituted-5- [2-(2-fluorophenoxy)phenyl]-1,3,4-oxadiazoles and 1,2,4-triazoles. Bioorg. Med. Chem. Lett., 2004, 14(24), 6057-6059.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.072] [PMID: 15546729]
[31]
Landreau, C.; Deniaud, D.; Evain, M.; Reliquet, A.; Meslin, J.C. Efficient regioselective synthesis of triheterocyclic compounds: Imidazo[2,1-b]benzothiazoles, pyrimido[2,1-b]benzothiazolones and pyrimido[2,1-b]benzothiazoles. J. Chem. Soc., Perkin Trans. 1, 2002, (6), 741-745.
[http://dx.doi.org/10.1039/b111639h]
[32]
Roy, P.J.; Landry, K.; Leblanc, Y. Condensation of 2-amino-5-chlorobenzoxazole with α-bromoketones: A mechanistic study. Heterocycles, 1997, 11, 2239-2246.
[http://dx.doi.org/10.3987/COM-97-7861]
[33]
Tanabe, Y.; Kawai, A.; Yoshida, Y.; Ogura, M.; Okumura, H. Preparation of fused thiadiazolo-and imidazo-benzothiazoles from 2-aminobenzothiazoles. Their fungicidal activity. Heterocycles, 1997, 45(8), 1579-1588.
[http://dx.doi.org/10.3987/COM-97-7839]
[34]
Trapani, G.; Franco, M.; Latrofa, A.; Genchi, G.; Liso, G. Synthesis and benzodiazepine receptor binding of some 4H-pyrimido[2,1-b]benzothiazol-4-ones. Eur. J. Med. Chem., 1992, 27(1), 39-44.
[http://dx.doi.org/10.1016/0223-5234(92)90058-9]
[35]
Chan, C.; Ma, J.C.N.; Mak, T.C.W. Synthesis and X-ray structure of methyl 2-oxopyrimido[2,1-b]benzothiazole-4-carboxylate from condensation of 2-aminobenzothiazole and dimethyl but-2-ynedioate. J. Chem. Soc., Perkin Trans. 2, 1977, (8), 1070-1074.
[http://dx.doi.org/10.1039/p29770001070]
[36]
Wade, J.J.; Hegel, R.F.; Toso, C.B. Reaction of 2-aminobenzazoles with dimethyl 2-aminofumarate. Synthesis and nuclear magnetic resonance spectroscopy of 4-oxopyrimido[2,1-b]benzazoles. J. Org. Chem., 1979, 44(11), 1811-1816.
[http://dx.doi.org/10.1021/jo01325a013]
[37]
Gupta, A.; Rawat, S. Synthesis and cyclization of benzothiazole. J Curr Pharm Res, 2010, 3, 13-23.
[38]
Bartovič A.; Ilavský, D.; Šimo, O.; Zalibera, L.; Belicová, A.; Seman, M. Synthesis of nitro-substituted 4-oxo-4H-pyrimido [2, 1-b] benzothiazole-3-carboxylic acids and their spectral characteristics. Collect. Czech. Chem. Commun., 1995, 60(4), 583-593.
[http://dx.doi.org/10.1135/cccc19950583]
[39]
el-Sherbeny, M.A. Synthesis of certain pyrimido[2,1-b]benzothiazole and benzothiazolo[2,3-b]quinazoline derivatives for in vitro antitumor and antiviral activities. Arzneimittelforschung, 2000, 50(9), 848-853.
[PMID: 11050704]
[40]
Kettles, M.K.; Browning, S.R.; Prince, T.S.; Horstman, S.W. Triazine herbicide exposure and breast cancer incidence: An ecologic study of Kentucky counties. Environ. Health Perspect., 1997, 105(11), 1222-1227.
[http://dx.doi.org/10.1289/ehp.971051222] [PMID: 9370519]
[41]
Du, X.H. Amide Thiourea and 1,2,4-Triazoles Synthesis and Plant Growth Regulating Activity; Ph.D. Dissertation, China Agricultural University, Beijing, China, 1997.
[42]
Wong, R.; Dolman, S.J. Isothiocyanates from tosyl chloride mediated decomposition of in situ generated dithiocarbamic acid salts. J. Org. Chem., 2007, 72(10), 3969-3971.
[http://dx.doi.org/10.1021/jo070246n] [PMID: 17444687]
[43]
Chen, H.S.; Li, Z.M.; Li, J.F. Synthesis of 2-Pyrazoyl-5-substituted-1,3,4-oxadiazoles and their biological activities. Chem. J. Chin., 2000, 21(10), 1520-1523.
[44]
Zhang, K.S.; Mu, L.J.; Long, Y.X. Synthesis and preliminary bio-activity studies of alpha-pyrazyl-N-phenyl-alpha-aminophosphonates. Chem. J. Chin., 1999, 20(5), 741-743.
[45]
Zhao, W.G. Synthesis of pyrazolyl-heterocycles and their fungicidal activities. Chem. J. Chin., 2001, 22(6), 939-942.
[46]
Zhao, W.G.; Cao, Y.B.; Li, Z.M.; Gao, F.W.; Wang, S.H.; Wang, J.G. Synthesis and biological activity of 1-sulfonyl-3, 5-diamino-1H-pyrazole derivatives. Chem. J. Chin., 2001, 18(6), 427-430.
[47]
Hatton, L.R.; Buntain, I.G.; Hawkins, D.W.; Parnell, E.W.; Pearson, C.J.; Roberts, D.A. Derivatives of N-phenylpyrazoles. U.S. Patent 5,232,940, 1993.
[48]
Hatton, L.R.; Buntain, I.G.; Hawkins, D.W.; Parnell, E.W.; Pearson, C.J.; Roberts, D.A. Derivatives of N-phenylpyrazoles. EP Patent 295117, 1996.
[49]
Kok, S.H.L.; Gambari, R.; Chui, C.H.; Yuen, M.C.W.; Lin, E.; Wong, R.S.M.; Lau, F.Y.; Cheng, G.Y.M.; Lam, W.S.; Chan, S.H. Synthesis and anti-cancer activity of benzothiazole containing phthalimide on human carcinoma cell lines. Bioorg. Med. Chem., 2008, 16(7), 3626-3631.
[http://dx.doi.org/10.1016/j.bmc.2008.02.005]
[50]
Wang, M.; Gao, M.; Mock, B.H.; Miller, K.D.; Sledge, G.W.; Hutchins, G.D.; Zheng, Q.H. Synthesis of carbon-11 labeled fluorinated 2-arylbenzothiazoles as novel potential PET cancer imaging agents. Bioorg. Med. Chem., 2006, 14(24), 8599-8607.
[http://dx.doi.org/10.1016/j.bmc.2006.08.026] [PMID: 16962783]
[51]
Jin, L.; Song, B.; Zhang, G.; Xu, R.; Zhang, S.; Gao, X.; Hu, D.; Yang, S. Synthesis, X-ray crystallographic analysis, and antitumor activity of N-(benzothiazole-2-yl)-1-(fluorophenyl)-O,O-dialkyl-α-aminophosphonates. Bioorg. Med. Chem. Lett., 2006, 16(6), 1537-1543.
[http://dx.doi.org/10.1016/j.bmcl.2005.12.041] [PMID: 16406612]
[52]
Aboraia, A.S.; Abdel-Rahman, H.M.; Mahfouz, N.M. EL-Gendy, M.A. Novel 5-(2-hydroxyphenyl)-3-substituted-2,3-dihydro-1,3,4-oxadiazole-2-thione derivatives: Promising anticancer agents. Bioorg. Med. Chem., 2006, 14(4), 1236-1246.
[http://dx.doi.org/10.1016/j.bmc.2005.09.053] [PMID: 16242340]
[53]
Al-Issa, S.A. Synthesis and anticancer activity of some fused pyrimidines and related heterocycles. Saudi Pharm. J., 2013, 21(3), 305-316.
[http://dx.doi.org/10.1016/j.jsps.2012.09.002] [PMID: 23960847]
[54]
Wang, Z.; Wei, P.; Wang, L.; Wang, Q. Design, synthesis, and anti-tobacco mosaic virus (TMV) activity of phenanthroindolizidines and their analogues. J. Agric. Food Chem., 2012, 60(41), 10212-10219.
[http://dx.doi.org/10.1021/jf303550a] [PMID: 23035814]
[55]
Su, B.; Cai, C.; Deng, M.; Liang, D.; Wang, L.; Wang, Q. Design, synthesis, antiviral activity, and SARs of 13a-substituted phenanthroindolizidine alkaloid derivatives. Bioorg. Med. Chem. Lett., 2014, 24(13), 2881-2884.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.101] [PMID: 24835986]
[56]
Liu, G.; Ren, G.; Zhao, L.; Cheng, L.; Wang, C.; Sun, B. Antibacterial activity and mechanism of bifidocin A against Listeria monocytogenes. Food Control, 2017, 73, 854-861.
[http://dx.doi.org/10.1016/j.foodcont.2016.09.036]
[57]
Li, X.; Zhang, R.; Zhang, X.; Zhu, P.; Yao, T. Silver‐catalyzed decarboxylative allylation of difluoroarylacetic acids with allyl sulfones in water. Chem. Asian J., 2020, 15(7), 1175-1179.
[http://dx.doi.org/10.1002/asia.202000059] [PMID: 32056375]
[58]
Liu, Y.; Hu, B.; Wu, S.; Wang, M.; Zhang, Z.; Cui, B.; He, L.; Du, M. Hierarchical nanocomposite electrocatalyst of bimetallic zeolitic imidazolate framework and MoS2 sheets for non-Pt methanol oxidation and water splitting. Appl. Catal. B, 2019, 258, 117970.
[http://dx.doi.org/10.1016/j.apcatb.2019.117970]
[59]
Sharma, M.G.; Pandya, J.; Patel, D.M.; Vala, R.M.; Ramkumar, V.; Subramanian, R.; Gupta, V.K.; Gardas, R.L.; Dhanasekaran, A.; Patel, H.M. One-Pot assembly for synthesis of 1, 4-dihydropyridine scaffold and their biological applications. Polycycl. Aromat. Compd., 2021, 41(7), 1495-1505.
[http://dx.doi.org/10.1080/10406638.2019.1686401]
[60]
Thakur, A.; Verma, M.; Bharti, R.; Sharma, R. Oxazole and isoxazole: From one-pot synthesis to medical applications. Tetrahedron, 2022, 119, 132813.
[http://dx.doi.org/10.1016/j.tet.2022.132813]
[61]
Muchtaridi, M.; Praceka, M.S.; Megantara, S.; Maharani, R. Comparison of various synthesis methods and synthesis parameters of pyrazoline derivates. J. Adv. Pharm. Technol. Res., 2021, 12(4), 321-326.
[http://dx.doi.org/10.4103/japtr.JAPTR_252_21] [PMID: 34820304]
[62]
Patil, S.; Sarkar, L. A review: Alternative methods of preparing 1, 4- dihydropyridine derivatives by hantzsch reaction. J. Sci. Res., 2021, 65(2), 87-91.
[http://dx.doi.org/10.37398/JSR.2021.650217]
[63]
Amato, I. The Slow birth of green chemistry: Government funding, public concern, and tantalizing research problems may finally coax mainstream chemists into lending their skills to environmental protection. Science, 1993, 259(5101), 1538-1541.
[64]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[65]
Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res., 2009, 42(3), 463-472.
[http://dx.doi.org/10.1021/ar800214s] [PMID: 19175315]
[66]
Khan, A.T.; Lal, M.; Khan, M.M. Synthesis of highly functionalized piperidines by one-pot multicomponent reaction using tetrabutylammonium tribromide (TBATB). Tetrahedron Lett., 2010, 51(33), 4419-4424.
[http://dx.doi.org/10.1016/j.tetlet.2010.06.069]
[67]
Wang, Q.; Zhu, J. Multicomponent domino process: Rational design and serendipity; Domino Reactions, 2014, pp. 579-610.
[68]
Biggs-Houck, J.E.; Younai, A.; Shaw, J.T. Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr. Opin. Chem. Biol., 2010, 14(3), 371-382.
[http://dx.doi.org/10.1016/j.cbpa.2010.03.003] [PMID: 20392661]
[69]
Nelson, A. Asymmetric phase-transfer catalysis. Angew. Chem. Int. Ed., 1999, 38(11), 1583-1585.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990601)38:11<1583:AID-ANIE1583>3.0.CO;2-E] [PMID: 29710985]
[70]
Makosza, M. Phase-transfer catalysis. A general green methodology in organic synthesis. Pure Appl. Chem., 2000, 72(7), 1399-1403.
[http://dx.doi.org/10.1351/pac200072071399]
[71]
Maruoka, K.; Ooi, T. Enantioselective amino acid synthesis by chiral phase-transfer catalysis. Chem. Rev., 2003, 103(8), 3013-3028.
[http://dx.doi.org/10.1021/cr020020e] [PMID: 12914490]
[72]
Mąkosza, M.; Fedoryński, M. Phase transfer catalysis. Catal. Rev., Sci. Eng., 2003, 45(3-4), 321-367.
[http://dx.doi.org/10.1081/CR-120025537]
[73]
O’Donnell, M.J. The enantioselective synthesis of α-amino acids by phase-transfer catalysis with achiral Schiff base esters. Acc. Chem. Res., 2004, 37(8), 506-517.
[http://dx.doi.org/10.1021/ar0300625] [PMID: 15311949]
[74]
O’Donnell, M.J. Catalytic Asymmetric Synthesis, 2nd ed; Ojima, I., Ed.; Wiley-VCH: New York, 2005.
[75]
Vachon, J.; Lacour, J. Recent developments in enantioselective phase transfer catalysis using chiral ammonium salts. Chimia, 2006, 60(5), 266-266.
[http://dx.doi.org/10.2533/000942906777674732]
[76]
Hashimoto, T.; Maruoka, K. Recent development and application of chiral phase-transfer catalysts. Chem. Rev., 2007, 107(12), 5656-5682.
[http://dx.doi.org/10.1021/cr068368n] [PMID: 18072806]
[77]
Ooi, T.; Maruoka, K. Recent advances in asymmetric phase-transfer catalysis. Angew. Chem. Int. Ed., 2007, 46(23), 4222-4266.
[http://dx.doi.org/10.1002/anie.200601737] [PMID: 17525926]
[78]
Ooi, T.; Maruoka, K. Development and applications of C2-symmetric, chiral, phase transfer catalysts. Aldrichim Acta, 2007, 40, 77-86.
[79]
Maruoka, K. Practical aspects of recent asymmetric phase-transfer catalysis. Org. Process Res. Dev., 2008, 12(4), 679-697.
[http://dx.doi.org/10.1021/op7002979]
[80]
Jew, S.; Park, H. Cinchona-based phase-transfer catalysts for asymmetric synthesis. Chem. Commun., 2009, (46), 7090-7103.
[http://dx.doi.org/10.1039/b914028j] [PMID: 19920996]
[81]
Maruoka, K. Highly practical amino acid and alkaloid synthesis using designer chiral phase transfer catalysts as high-performance organocatalysts. Chem. Rec., 2010, 10(5), 254-259.
[http://dx.doi.org/10.1002/tcr.201000019] [PMID: 20878639]
[82]
Shirakawa, S.; Maruoka, K. Recent developments in asymmetric phase-transfer reactions. Angew. Chem. Int. Ed., 2013, 52(16), 4312-4348.
[http://dx.doi.org/10.1002/anie.201206835] [PMID: 23450630]
[83]
Tan, J.; Yasuda, N. Contemporary asymmetric phase transfer catalysis: Large-scale industrial applications. Org. Process Res. Dev., 2015, 19(11), 1731-1746.
[http://dx.doi.org/10.1021/acs.oprd.5b00304]
[84]
Kaneko, S.; Kumatabara, Y.; Shirakawa, S. A new generation of chiral phase-transfer catalysts. Org. Biomol. Chem., 2016, 14(24), 5367-5376.
[http://dx.doi.org/10.1039/C5OB02446C] [PMID: 26754659]
[85]
Liu, S.; Kumatabara, Y.; Shirakawa, S. Chiral quaternary phosphonium salts as phase-transfer catalysts for environmentally benign asymmetric transformations. Green Chem., 2016, 18(2), 331-341.
[http://dx.doi.org/10.1039/C5GC02692J]
[86]
Charles, S.M. Phase-transfer catalysis. No. CONF-850942; American Chemical Society: Washington, DC, 1987.
[87]
Dehmlow, E.V.; Dehmlow, S.S. Phase Transfer Catalysis, 3rd ed; VCH: Weinheim, Germany, 1993.
[88]
Sasson, Y.; Rothenberg, G. Handbook of Green Chemistry and Technology; James, H; Clark, D.M., Ed.; Blackwell Science Ltd.: Oxford, U.K., 2002.
[89]
Takido, T.; Fujihira, T.; Seno, M.; Itabashi, K. Phase-Transfer Catalysis; Halpern, M.E., Ed.; ACS Publications: Washington, DC, 1997, Vol. 659, .
[http://dx.doi.org/10.1021/bk-1997-0659.ch015]
[90]
Freedman, H.H. Industrial applications of phase transfer catalysis (PTC): Past, present and future. Pure Appl. Chem., 1986, 58(6), 857-868.
[http://dx.doi.org/10.1351/pac198658060857]
[91]
Zaidman, B.; Sasson, Y.; Neumann, R. General economic evaluation of the use of quaternary ammonium salts as catalysts in industrial applications. Ind. Eng. Chem. Prod. Res. Dev., 1985, 24(3), 390-393.
[http://dx.doi.org/10.1021/i300019a010]
[92]
Khurana, J.M.; Kumar, S. Tetrabutylammonium bromide (TBAB): A neutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives in water and solvent-free conditions. Tetrahedron Lett., 2009, 50(28), 4125-4127.
[http://dx.doi.org/10.1016/j.tetlet.2009.04.125]
[93]
Kantevari, S.; Chary, M.V.; Rudra, D.A.P.; Vuppalapati, S.V.N.; Lingaiah, N. Catalysis by an ionic liquid: Highly efficient solvent-free synthesis of aryl-14H-dibenzo[a.j]xanthenes by molten tetrabutylammonium bromide under conventional and microwave heating. Catal. Commun., 2008, 9(7), 1575-1578.
[http://dx.doi.org/10.1016/j.catcom.2008.01.003]
[94]
Chary, M.V.; Keerthysri, N.C.; Vupallapati, S.V.N.; Lingaiah, N.; Kantevari, S. Tetrabutylammonium bromide (TBAB) in isopropanol: An efficient, novel, neutral and recyclable catalytic system for the synthesis of 2,4,5-trisubstituted imidazoles. Catal. Commun., 2008, 9(10), 2013-2017.
[http://dx.doi.org/10.1016/j.catcom.2008.03.037]
[95]
Siddiqui, S.A.; Narkhede, U.C.; Palimkar, S.S.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Room temperature ionic liquid promoted improved and rapid synthesis of 2,4,5-triaryl imidazoles from aryl aldehydes and 1,2-diketones or α-hydroxyketone. Tetrahedron, 2005, 61(14), 3539-3546.
[http://dx.doi.org/10.1016/j.tet.2005.01.116]
[96]
Ranu, B.C.; Das, A.; Samanta, S. Catalysis by ionic liquids: solvent-free efficient transthioacetalisation of acetals by molten tetrabutylammonium bromide. Electronic supplementary information (ESI) avialable: spectral data of S,S-acetals. J. Chem. Soc., Perkin Trans. 1, 2002, (13), 1520-1522.
[http://dx.doi.org/10.1039/b204363g]
[97]
Ranu, B.C.; Dey, S.S.; Hajra, A. Catalysis by an ionic liquid: efficient conjugate addition of thiols to electron deficient alkenes catalyzed by molten tetrabutylammonium bromide under solvent-free conditions. Tetrahedron, 2003, 59(14), 2417-2421.
[http://dx.doi.org/10.1016/S0040-4020(03)00289-8]
[98]
Mobinikhaledi, A.; Fard, M.A. Tetrabutylammonium bromide in water as a green media for the synthesis of pyrano[2, 3-d] pyrimidinone and tetrahydrobenzo [b] pyran derivatives. Acta Chim. Slov., 2010, 57(4), 931-935.
[PMID: 24061899]
[99]
Banik, B.K.; Banerjee, B.; Kaur, G.; Saroch, S.; Kumar, R. Tetrabutylammonium bromide (TBAB) catalyzed synthesis of bioactive heterocycles. Molecules, 2020, 25(24), 5918-5942.
[http://dx.doi.org/10.3390/molecules25245918] [PMID: 33327504]
[100]
Gurumurthi, S.; Sundari, V.; Valliappan, R. An efficient and convenient approach to synthesis of tetrahydrobenzo [b] pyran derivatives using tetrabutylammonium bromide as catalyst. E-J. Chem., 2009, 6(s1), S466-S472.
[http://dx.doi.org/10.1155/2009/875086]
[101]
Calò, V.; Nacci, A.; Monopoli, A.; Fornaro, A.; Sabbatini, L.; Cioffi, N.; Ditaranto, N. Heck reaction catalyzed by nanosized palladium on chitosan in ionic liquids. Organometallics, 2004, 23(22), 5154-5158.
[http://dx.doi.org/10.1021/om049586e]
[102]
Calò, V.; Nacci, A.; Lopez, L.; Mannarini, N. Heck reaction in ionic liquids catalyzed by a Pd–benzothiazole carbene complex. Tetrahedron Lett., 2000, 41(46), 8973-8976.
[http://dx.doi.org/10.1016/S0040-4039(00)01592-6]
[103]
Orlińska, B.J.; Zawadiak, J.M. Copper (II) chloride/tetrabutylammonium bromide catalyzed oxidation of 2, 6-diisopropylnaphthalene and 4, 4′-diisopropylbiphenyl. Cent. Eur. J. Chem., 2010, 8, 285-290.
[104]
Wang, F.; Li, X.; Li, Z.; Zhou, S.; Zhang, W. Copper salts/TBAB-catalyzed chemo- and regioselective β-C(sp3)–H acyloxylation of aliphatic amides. ACS Omega, 2019, 4(1), 331-343.
[http://dx.doi.org/10.1021/acsomega.8b02430] [PMID: 31459332]
[105]
Li, J.H.; Li, J.L.; Xie, Y.X. TBAB-promoted ligand-free copper-catalyzed cross-coupling reactions of aryl halides with arylboronic acids. Synthesis, 2007, 2007(7), 984-988.
[http://dx.doi.org/10.1055/s-2007-965958]
[106]
Dong, F.; Liu, J.Q.; Wang, X.S. An efficient synthesis of biaryl diamides via Ullmann coupling reaction catalyzed by CuI in the presence of Cs2CO3 and TBAB. Res. Chem. Intermed., 2018, 44(9), 5271-5283.
[http://dx.doi.org/10.1007/s11164-018-3422-0]
[107]
Fontaine, P.; Chiaroni, A.; Masson, G.; Zhu, J. One-pot three-component synthesis of α-iminonitriles by IBX/TBAB-mediated oxidative Strecker reaction. Org. Lett., 2008, 10(8), 1509-1512.
[http://dx.doi.org/10.1021/ol800199b] [PMID: 18345680]
[108]
Johnson, C.R.; Ansari, M.I.; Coop, A. Tetrabutylammonium bromide-promoted metal-free, efficient, rapid, and scalable synthesis of N-aryl amines. ACS Omega, 2018, 3(9), 10886-10890.
[http://dx.doi.org/10.1021/acsomega.8b01426] [PMID: 30288459]
[109]
Weskamp, T.; Böhm, V.P.W.; Herrmann, W.A. N-Heterocyclic carbenes: State of the art in transition-metal-complex synthesis. J. Organomet. Chem., 2000, 600(1-2), 12-22.
[http://dx.doi.org/10.1016/S0022-328X(00)00035-8]
[110]
Sezen, B.; Sames, D. Selective C-arylation of free (NH)-heteroarenes via catalytic C-H bond functionalization. J. Am. Chem. Soc., 2003, 125(18), 5274-5275.
[http://dx.doi.org/10.1021/ja034848+] [PMID: 12720429]
[111]
Sączewski, F.; Kornicka, A.; Balewski, Ł. Imidazoline scaffold in medicinal chemistry: A patent review (2012–2015). Expert Opin. Ther. Pat., 2016, 26(9), 1031-1048.
[http://dx.doi.org/10.1080/13543776.2016.1210128] [PMID: 27382975]
[112]
Mannelli, L.D.C.; Ghelardini, C.; Micheli, L.; Bello, F.D.; Giannella, M.; Piergentili, A.; Pigini, M.; Quaglia, W. J. Pharmacol., 2017, 810, 28.
[113]
Liu, S.; Li, W.; Pang, Y.; Xiao, H.; Zhou, Y.; Wang, X. Green synthesis of 2‐substituted imidazolines using hydrogen peroxide catalyzed by tungstophosphoric acid and tetrabutylammonium bromide in water. J. Heterocycl. Chem., 2019, 56(3), 998-1002.
[http://dx.doi.org/10.1002/jhet.3482]
[114]
Bellina, F.; Cauteruccio, S.; Rossi, R. Synthesis and biological activity of vicinal diaryl-substituted 1H-imidazoles. Tetrahedron, 2007, 63(22), 4571-4624.
[http://dx.doi.org/10.1016/j.tet.2007.02.075]
[115]
Hofmann, K. The nitro-, arylazo-and aminoimidazoles. The Chemistry of Heterocyclic Compounds-Imidazole and Its Derivatives. Part I; Inter Science Publishers, Inc.: New York, London, 1953.
[116]
Radziszewski, B. Ueber die Constitution des Lophins und verwandter Verbindungen. Ber. Dtsch. Chem. Ges., 1882, 15(2), 1493-1496.
[http://dx.doi.org/10.1002/cber.18820150207]
[117]
Wang, L.M.; Shao, J.H.; Tian, H.; Wang, Y.H.; Liu, B. Rare earth perfluorooctanoate [RE(PFO)3] catalyzed one-pot synthesis of benzopyran derivatives. J. Fluor. Chem., 2006, 127(1), 97-100.
[http://dx.doi.org/10.1016/j.jfluchem.2005.10.004]
[118]
Frantz, D.E.; Morency, L.; Soheili, A.; Murry, J.A.; Grabowski, E.J.J.; Tillyer, R.D. Synthesis of substituted imidazoles via organocatalysis. Org. Lett., 2004, 6(5), 843-846.
[http://dx.doi.org/10.1021/ol0498803] [PMID: 14986989]
[119]
Balalaie, S.; Hashemi, M.M.; Akhbari, M. A novel one-pot synthesis of tetrasubstituted imidazoles under solvent-free conditions and microwave irradiation. Tetrahedron Lett., 2003, 44(8), 1709-1711.
[http://dx.doi.org/10.1016/S0040-4039(03)00018-2]
[120]
Balalaie, S.; Arabanian, A. One-pot synthesis of tetrasubstituted imidazoles catalyzed by zeolite HY and silica gel under microwave irradiation. Green Chem., 2000, 2(6), 274-276.
[http://dx.doi.org/10.1039/b006201o]
[121]
Usyatinsky, A.Y.; Khmelnitsky, Y.L. Microwave-assisted synthesis of substituted imidazoles on a solid support under solvent-free conditions. Tetrahedron Lett., 2000, 41(26), 5031-5034.
[http://dx.doi.org/10.1016/S0040-4039(00)00771-1]
[122]
Heravi, M.M.; Bakhtiari, K.; Oskooie, H.A.; Taheri, S. Synthesis of 2,4,5-triaryl-imidazoles catalyzed by NiCl2·6H2O under heterogeneous system. J. Mol. Catal. Chem., 2007, 263(1-2), 279-281.
[http://dx.doi.org/10.1016/j.molcata.2006.08.070]
[123]
Momiyama, N.; Torii, H.; Saito, S.; Yamamoto, H. O -nitroso aldol synthesis: Catalytic enantioselective route to α-aminooxy carbonyl compounds via enamine intermediate. Proc. Natl. Acad. Sci., 2004, 101(15), 5374-5378.
[http://dx.doi.org/10.1073/pnas.0307785101] [PMID: 15067138]
[124]
Hartikka, A.; Arvidsson, P.I. Tetrazolic acid functionalized dihydroindol: Rational design of a highly selective cyclopropanation organocatalyst. J. Org. Chem., 2007, 72(15), 5874-5877.
[http://dx.doi.org/10.1021/jo070519e] [PMID: 17585815]
[125]
Prieto, A.; Halland, N.; Jørgensen, K.A. Novel imidazolidine-tetrazole organocatalyst for asymmetric conjugate addition of nitroalkanes. Org. Lett., 2005, 7(18), 3897-3900.
[http://dx.doi.org/10.1021/ol051301m] [PMID: 16119926]
[126]
Pinter, T.; Jana, S.; Courtemanche, R.J.M.; Hof, F. Recognition properties of carboxylic acid bioisosteres: Anion binding by tetrazoles, aryl sulfonamides, and acyl sulfonamides on a calix[4]arene scaffold. J. Org. Chem., 2011, 76(10), 3733-3741.
[http://dx.doi.org/10.1021/jo200031u] [PMID: 21462934]
[127]
Singh, R.P.; Gao, H.; Meshri, D.T.; Shreeve, J.N.M. Nitrogen-rich heterocycles. In: High Energy Density Materials; Springer, 2007; pp. 35-83.
[128]
Göbel, M.; Karaghiosoff, K.; Klapötke, T.M.; Piercey, D.G.; Stierstorfer, J. Nitrotetrazolate-2N-oxides and the strategy of N-oxide introduction. J. Am. Chem. Soc., 2010, 132(48), 17216-17226.
[http://dx.doi.org/10.1021/ja106892a] [PMID: 21070031]
[129]
Jones, C.B.; Haiges, R.; Schroer, T.; Christe, K.O. Oxygen-balanced energetic ionic liquid. Angew. Chem. Int. Ed., 2006, 45(30), 4981-4984.
[http://dx.doi.org/10.1002/anie.200600735] [PMID: 16819744]
[130]
Tymtsunik, A.V.; Bilenko, V.A.; Kokhan, S.O.; Grygorenko, O.O.; Volochnyuk, D.M.; Komarov, I.V. 1-Alkyl-5-((di)alkylamino) tetrazoles: Building blocks for peptide surrogates. J. Org. Chem., 2012, 77(2), 1174-1180.
[http://dx.doi.org/10.1021/jo2022235] [PMID: 22171684]
[131]
Herr, R.J. 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: Medicinal chemistry and synthetic methods. Bioorg. Med. Chem., 2002, 10(11), 3379-3393.
[http://dx.doi.org/10.1016/S0968-0896(02)00239-0] [PMID: 12213451]
[132]
Matta, C.F.; Arabi, A.A.; Weaver, D.F. The bioisosteric similarity of the tetrazole and carboxylate anions: Clues from the topologies of the electrostatic potential and of the electron density. Eur. J. Med. Chem., 2010, 45(5), 1868-1872.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.025] [PMID: 20133027]
[133]
Xie, A.; Cao, M.; Feng, L.; Dong, W. The synthesis of 5-substituted 1 H-tetrazoles in molten tetrabutylammonium bromide. J. Chem. Res., 2013, 37(11), 665-667.
[http://dx.doi.org/10.3184/174751913X13812404042931]
[134]
Elbein, A.D.; Molyneux, R. Alkaloids, Chemical and Biological Perspectives; Pelletier, S.W., Ed.; John Wiley & Sons, 1987.
[135]
O’Hagan, D. Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids (1998 to 1999). Nat. Prod. Rep., 2000, 17(5), 435-446.
[http://dx.doi.org/10.1039/a707613d] [PMID: 11072891]
[136]
Daly, J.W.; Spande, T.F.; Garraffo, H.M. Alkaloids from amphibian skin: A tabulation of over eight-hundred compounds. J. Nat. Prod., 2005, 68(10), 1556-1575.
[http://dx.doi.org/10.1021/np0580560] [PMID: 16252926]
[137]
Watson, P.S.; Jiang, B.; Scott, B. A diastereoselective synthesis of 2,4-disubstituted piperidines: Scaffolds for drug discovery. Org. Lett., 2000, 2(23), 3679-3681.
[http://dx.doi.org/10.1021/ol006589o] [PMID: 11073674]
[138]
Petit, S.; Nallet, J.P.; Guillard, M.; Dreux, J.; Chermat, R.; Poncelet, M.; Bulach, C.; Simon, P.; Fontaine, C.; Barthelmebs, M.; Imbs, J.L. Synthèses et activités psychotropes de 3,4-diarylpipéridines. Corrélation structure-activité et recherche d’une activité antihypertensive. Eur. J. Med. Chem., 1991, 26(1), 19-32.
[http://dx.doi.org/10.1016/0223-5234(91)90209-6]
[139]
Zhou, Y.; Gregor, V.E.; Ayida, B.K.; Winters, G.C.; Sun, Z.; Murphy, D.; Haley, G.; Bailey, D.; Froelich, J.M.; Fish, S.; Webber, S.E.; Hermann, T.; Wall, D. Synthesis and SAR of 3,5-diamino-piperidine derivatives: Novel antibacterial translation inhibitors as aminoglycoside mimetics. Bioorg. Med. Chem. Lett., 2007, 17(5), 1206-1210.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.024] [PMID: 17188860]
[140]
Misra, M.; Pandey, S.K.; Pandey, V.P.; Pandey, J.; Tripathi, R.; Tripathi, R.P. Organocatalyzed highly atom economic one pot synthesis of tetrahydropyridines as antimalarials. Bioorg. Med. Chem., 2009, 17(2), 625-633.
[http://dx.doi.org/10.1016/j.bmc.2008.11.062] [PMID: 19095455]
[141]
Ho, B.; Michael, C.A.; Stables, J.P. Synthesis and structure–activity relationships of potential anticonvulsants based on 2-piperidinecarboxylic acid and related pharmacophores. Eur. J. Med. Chem., 2001, 36(3), 265-286.
[http://dx.doi.org/10.1016/S0223-5234(00)01206-X] [PMID: 11337105]
[142]
Esquivias, J.; Arrayás, R.G.; Carretero, J.C. Catalytic asymmetric inverse-electron-demand Diels-Alder reaction of N-sulfonyl-1-aza-1,3-dienes. J. Am. Chem. Soc., 2007, 129(6), 1480-1481.
[http://dx.doi.org/10.1021/ja0658766] [PMID: 17283978]
[143]
Zhu, X.F.; Lan, J.; Kwon, O. An expedient phosphine-catalyzed [4 + 2] annulation: synthesis of highly functionalized tetrahydropyridines. J. Am. Chem. Soc., 2003, 125(16), 4716-4717.
[http://dx.doi.org/10.1021/ja0344009] [PMID: 12696883]
[144]
Takemiya, A.; Hartwig, J.F. Rhodium-catalyzed intramolecular, anti-Markovnikov hydroamination. Synthesis of 3-arylpiperidines. J. Am. Chem. Soc., 2006, 128(18), 6042-6043.
[http://dx.doi.org/10.1021/ja058299e] [PMID: 16669666]
[145]
Amat, M.; Bassas, O.; Pericàs, M.A.; Pastó, M.; Bosch, J. Highly enantioselective dynamic kinetic resolution and desymmetrization processes by cyclocondensation of chiral aminoalcohols with racemic or prochiral δ-oxoacid derivatives. Chem. Commun., 2005, 10(10), 1327-1329.
[http://dx.doi.org/10.1039/B413937B]
[146]
Martín, R.; Murruzzu, C.; Pericàs, M.A.; Riera, A. General approach to glycosidase inhibitors. Enantioselective synthesis of deoxymannojirimycin and swainsonine. J. Org. Chem., 2005, 70(6), 2325-2328.
[http://dx.doi.org/10.1021/jo048172s] [PMID: 15760222]
[147]
Lebold, T.P.; Leduc, A.B.; Kerr, M.A. Zn(II)-Catalyzed synthesis of piperidines from propargyl amines and cyclopropanes. Org. Lett., 2009, 11(16), 3770-3772.
[http://dx.doi.org/10.1021/ol901435k] [PMID: 19719208]
[148]
Ardakani; Shaker, L.; Arabmarkadeh, A.; Kazemi, M. Multicomponent synthesis of highly functionalized piperidines. Synth. Commun., 2021, 51, 856-879.
[149]
Chinnaraja, D.; Rajalakshmi, R. Atom and step economic multicomponent synthesis of highly functionalized novel N-alkyl piperidines: Structural elucidation through spectral studies and single crystallographic analysis. RSC Advances, 2014, 4(78), 41314-41322.
[http://dx.doi.org/10.1039/C4RA06505K]
[150]
Breslow, R. Determining the geometries of transition States by use of antihydrophobic additives in water. Acc. Chem. Res., 2004, 37(7), 471-478.
[http://dx.doi.org/10.1021/ar040001m] [PMID: 15260509]
[151]
Kamble, V.; Atkore, S.; Pisal, P.; Sadaf, M.; Thakre, R.V. Tetrabutylammonium bromide-Cesium carbonate: New reagent system for the synthesis of substituted pyridines at room temperature. Iran. Chem. Commun., 2016, 4(2), 186-197.
[152]
Ananda Kumar, T.D.; Mohan, P.; Subrahmanyam, C.V.S.; Satyanarayana, K. Comparative study of catalytic potential of TBAB, BTEAC, and CTAB in one-pot synthesis of 1, 4-dihydropyridines under aqueous medium. Synth. Commun., 2014, 44(4), 574-582.
[http://dx.doi.org/10.1080/00397911.2013.825807]
[153]
Vohra, R.K.; Bruneau, C.; Renaud, J.L. Lewis acid-catalyzed sequential transformations: Straightforward preparation of functional dihydropyridines. Adv. Synth. Catal., 2006, 348(18), 2571-2574.
[http://dx.doi.org/10.1002/adsc.200600343]
[154]
Wang, L.M.; Sheng, J.; Zhang, L.; Han, J.W.; Fan, Z.Y.; Tian, H.; Qian, C.T. Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. Tetrahedron, 2005, 61(6), 1539-1543.
[http://dx.doi.org/10.1016/j.tet.2004.11.079]
[155]
Adharvana Chari, M.; Syamasundar, K. Silica gel/NaHSo4 catalyzed one-pot synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Catal. Commun., 2005, 6(9), 624-626.
[http://dx.doi.org/10.1016/j.catcom.2005.03.010]
[156]
Sabitha, G.; Arundhathi, K.; Sudhakar, K.; Sastry, B.S.; Yadav, J.S. CeCl3. 7H2O-catalyzed one-pot synthesis of Hantzsch 1, 4-dihydropyridines at room temperature. Synth. Commun., 2009, 39(16), 2843-2851.
[http://dx.doi.org/10.1080/00397910802656091]
[157]
Heravi, M.M.; Saeedi, M.; Karimi, N.; Zakeri, M.; Beheshtiha, Y.S.; Davoodnia, A. Brønsted acid ionic liquid [(CH2) 4SO3HMIM][HSO4] as novel catalyst for one-pot synthesis of Hantzsch polyhydroquinoline derivatives. Synth. Commun., 2010, 40(4), 523-529.
[http://dx.doi.org/10.1080/00397910902994194]
[158]
Heydari, A.; Khaksar, S.; Tajbakhsh, M.; Bijanzadeh, H.R. One-step, synthesis of Hantzsch esters and polyhydroquinoline derivatives in fluoro alcohols. J. Fluor. Chem., 2009, 130(7), 609-614.
[http://dx.doi.org/10.1016/j.jfluchem.2009.03.014]
[159]
Jiang, H.; Ji, X.; Li, Y.; Chen, Z.; Wang, A. Palladium-assisted multicomponent cyclization of aromatic aldehydes, arylamines and terminal olefins under molecular oxygen: An assembly of 1,4-dihydropyridines. Org. Biomol. Chem., 2011, 9(15), 5358-5361.
[http://dx.doi.org/10.1039/c1ob05440f] [PMID: 21681331]
[160]
Ohtaka, A.; Kozono, M.; Takahashi, K.; Hamasaka, G.; Uozumi, Y.; Shinagawa, T.; Shimomura, O.; Nomura, R. Linear polystyrene-stabilized Pt nanoparticles catalyzed indole synthesis in water via aerobic alcohol oxidation. Chem. Lett., 2016, 45(7), 758-760.
[http://dx.doi.org/10.1246/cl.160331]
[161]
Barluenga, J.; Jiménez-Aquino, A.; Aznar, F.; Valdés, C. “On-water,” microwave-assisted, Pd-catalyzed synthesis of indoles from imines and o-difunctionalized arenes. Chemistry, 2010, 16(38), 11707-11711.
[http://dx.doi.org/10.1002/chem.201000753] [PMID: 20799299]
[162]
Suresh, B.K.; Rama, S.R.V.; Sunitha, P.; Sivaram, B.S.; Madhusudana, R.J. Mild and efficient michael addition of activated olefins to indoles using TBAB as a catalyst: Synthesis of 3‐. Substituted Indoles. Synth. Commun., 2008, 38(11), 1784-1791.
[http://dx.doi.org/10.1080/00397910801989600]
[163]
Sundberg, R.J. The Chemistry of Indoles; Academi Press: New York, 1996.
[164]
Mobinikhaledi, A.; Foroughifar, N.; Fard, M.A.B. Simple and efficient method for three-component synthesis of spirooxindoles in aqueous and solvent-free media. Synth. Commun., 2011, 41(3), 441-450.
[http://dx.doi.org/10.1080/00397911003587507]
[165]
Schmitt, F.; Gold, M.; Rothemund, M.; Andronache, I.; Biersack, B.; Schobert, R.; Mueller, T. New naphthopyran analogues of LY290181 as potential tumor vascular-disrupting agents. Eur. J. Med. Chem., 2019, 163, 160-168.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.055] [PMID: 30503940]
[166]
Baitha, A.; Gopinathan, A.; Krishnan, K.; Dabholkar, V.V. Synthesis of 2-amino-4-(2-ethoxybenzo[d][1,3]dioxol-5-yl)-4 H -pyran-3-carbonitrile derivatives and their biological evaluation. J. Heterocycl. Chem., 2018, 55(5), 1189-1192.
[http://dx.doi.org/10.1002/jhet.3152]
[167]
Mandha, S.R.; Siliveri, S.; Alla, M.; Bommena, V.R.; Bommineni, M.R.; Balasubramanian, S. Eco-friendly synthesis and biological evaluation of substituted pyrano[2,3-c]pyrazoles. Bioorg. Med. Chem. Lett., 2012, 22(16), 5272-5278.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.055] [PMID: 22818081]
[168]
Taha, M.; Tariq, J.M.; Imran, S.; Selvaraj, M.; Chigurupati, S.; Ullah, H.; Rahim, F.; Khan, F.; Islam, M.J.; Mohammed, K.K. Synthesis and study of the α-amylase inhibitory potential of thiadiazole quinoline derivatives. Bioorg. Chem., 2017, 74, 179-186.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.003] [PMID: 28826047]
[169]
Hameed, I.; Masoodi, S.R.; Mir, S.A.; Nabi, M.; Ghazanfar, K.; Ganai, B.A. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J. Diabetes, 2015, 6(4), 598-612.
[http://dx.doi.org/10.4239/wjd.v6.i4.598] [PMID: 25987957]
[170]
Upadhyay, D.B.; Vala, R.M.; Patel, S.G.; Patel, P.J.; Chi, C.; Patel, H.M. Water mediated TBAB catalyzed synthesis of spiro-indoline-pyrano[3,2-c]quinolines as α-amylase inhibitor and in silico studies. J. Mol. Struct., 2023, 1273, 134305.
[http://dx.doi.org/10.1016/j.molstruc.2022.134305]
[171]
Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 2017, 125, 143-189.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.023] [PMID: 27662031]
[172]
Aghapoor, K.; Mohsenzadeh, F.; Sayahi, H.; Rastgar, S.; Darabi, H.R. Green synthesis of 1,3-dihydrobenzimidazol-2-ones from aromatic diamines by microwave in a tetrabutylammonium bromide–ethanol molten salt paste. Environ. Chem. Lett., 2018, 16(3), 1109-1116.
[http://dx.doi.org/10.1007/s10311-018-0733-8]
[173]
Bhattacharya, S.; Chaudhuri, P. Medical implications of benzimidazole derivatives as drugs designed for targeting DNA and DNA associated processes. Curr. Med. Chem., 2008, 15(18), 1762-1777.
[http://dx.doi.org/10.2174/092986708785133013] [PMID: 18691037]
[174]
Horton, D.A.; Bourne, G.T.; Smythe, M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev., 2003, 103(3), 893-930.
[http://dx.doi.org/10.1021/cr020033s] [PMID: 12630855]
[175]
Preston, P.N. Synthesis, reactions, and spectroscopic properties of benzimidazoles. Chem. Rev., 1974, 74(3), 279-314.
[http://dx.doi.org/10.1021/cr60289a001]
[176]
Shah, D.I.; Sharma, M.; Bansal, Y.; Bansal, G.; Singh, M.; Angiotensin, I.I. AT1 receptor antagonists: Design, synthesis and evaluation of substituted carboxamido benzimidazole derivatives. Eur. J. Med. Chem., 2008, 43(9), 1808-1812.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.008] [PMID: 18158200]
[177]
Denny, W.A.; Rewcastle, G.W.; Baguley, B.C. Potential antitumor agents. 59. Structure-activity relationships for 2-phenylbenzimidazole-4-carboxamides, a new class of minimal DNA-intercalating agents which may not act via topoisomerase II. J. Med. Chem., 1990, 33(2), 814-819.
[http://dx.doi.org/10.1021/jm00164a054] [PMID: 2153829]
[178]
Labanauskas, L.K.; Brukštus, A.B.; Gaidelis, P.G.; Buchinskaite, V.A.; Udrenaite, É.B.; Daukšas, V.K. Synthesis and antiinflammatory activity of some new 1-acyl derivatives of 2-methylthio-5, 6-diethoxybenzimidazole. Pharm. Chem. J., 2000, 34(7), 353-355.
[http://dx.doi.org/10.1023/A:1005213306544]
[179]
Veisi, H.; Sedrpoushan, A.; Zolfigol, M.A.; Mohanazadeh, F. Synthesis and application of silica phenyl sulfonic acid as a solid acid heterogeneous catalyst for one-pot synthesis of 2-aryl-1-arylmethyl-1H-1,3-benzimidazoles and bis(indolyl)methanes in water. J. Heterocycl. Chem., 2011, 48(6), 1448-1454.
[http://dx.doi.org/10.1002/jhet.765]
[180]
Ma, L.; Li, S.; Zheng, H.; Chen, J.; Lin, L.; Ye, X.; Chen, Z.; Xu, Q.; Chen, T.; Yang, J.; Qiu, N.; Wang, G.; Peng, A.; Ding, Y.; Wei, Y.; Chen, L. Synthesis and biological activity of novel barbituric and thiobarbituric acid derivatives against non-alcoholic fatty liver disease. Eur. J. Med. Chem., 2011, 46(6), 2003-2010.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.033] [PMID: 21429633]
[181]
Edupuganti, R.; Wang, Q.; Tavares, C.D.J.; Chitjian, C.A.; Bachman, J.L.; Ren, P.; Anslyn, E.V.; Dalby, K.N. Synthesis and biological evaluation of pyrido[2,3-d]pyrimidine-2,4-dione derivatives as eEF-2K inhibitors. Bioorg. Med. Chem., 2014, 22(17), 4910-4916.
[http://dx.doi.org/10.1016/j.bmc.2014.06.050] [PMID: 25047940]
[182]
Pałasz, A.; Cież D. In search of uracil derivatives as bioactive agents. Uracils and fused uracils: Synthesis, biological activity and applications. Eur. J. Med. Chem., 2015, 97, 582-611.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.008] [PMID: 25306174]
[183]
Khalafy, J.; Javahershenas, R. One-pot, three-component synthesis of pyrrolo[2,3-d]pyrimidine derivatives. J. Mex. Chem. Soc., 2018, 62(1), 62.
[http://dx.doi.org/10.29356/jmcs.v62i1.340]
[184]
Maji, P.K. Recent progress in the synthesis of pyrimidine heterocycles: A review. Curr. Org. Chem., 2020, 24(10), 1055-1096.
[http://dx.doi.org/10.2174/1385272824999200507123843]
[185]
Akula, H.K.; Kokatla, H.; Andrei, G.; Snoeck, R.; Schols, D.; Balzarini, J.; Yang, L.; Lakshman, M.K. Facile functionalization at the C4 position of pyrimidine nucleosides via amide group activation with (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) and biological evaluations of the products. Org. Biomol. Chem., 2017, 15(5), 1130-1139.
[http://dx.doi.org/10.1039/C6OB02334G] [PMID: 28054092]
[186]
Kumar, S.; Narasimhan, B. Therapeutic potential of heterocyclic pyrimidine scaffolds. Chem. Cent. J., 2018, 12(1), 38.
[http://dx.doi.org/10.1186/s13065-018-0406-5] [PMID: 29619583]
[187]
Frank, A.; Meza-Arriagada, F.; Salas, C.O.; Espinosa-Bustos, C.; Stark, H. Nature-inspired pyrrolo[2,3-d]pyrimidines targeting the histamine H3 receptor. Bioorg. Med. Chem., 2019, 27(14), 3194-3200.
[http://dx.doi.org/10.1016/j.bmc.2019.05.042] [PMID: 31176569]
[188]
Ali, A.; Khalid, M.; Rehman, M.F.; Haq, S.; Ali, A.; Tahir, M.N.; Ashfaq, M.; Rasool, F.; Braga, A.A.C. Efficient synthesis, SC-XRD, and theoretical studies of O-Benzenesulfonylated pyrimidines: Role of noncovalent interaction influence in their supramolecular network. ACS Omega, 2020, 5(25), 15115-15128.
[http://dx.doi.org/10.1021/acsomega.0c00975] [PMID: 32637784]
[189]
Ali, A.; Khalid, M.; Tahir, M.N.; Imran, M.; Ashfaq, M.; Hussain, R.; Assiri, M.A.; Khan, I. Synthesis of diaminopyrimidine sulfonate derivatives and exploration of their structural and quantum chemical insights via SC-XRD and the DFT approach. ACS Omega, 2021, 6(10), 7047-7057.
[http://dx.doi.org/10.1021/acsomega.0c06323] [PMID: 33748618]
[190]
Ali, A.; Kuznetsov, A.; Ashfaq, M.; Tahir, M.N.; Khalid, M.; Imran, M.; Irfan, A. Synthesis, single-crystal exploration, and theoretical insights of arylsulfonylated 2-amino-6-methylpyrimidin derivatives. J. Mol. Struct., 2021, 1243, 130789.
[http://dx.doi.org/10.1016/j.molstruc.2021.130789]
[191]
Ashfaq, M.; Ali, A.; Kuznetsov, A.; Tahir, M.N.; Khalid, M. DFT and single-crystal investigation of the pyrimethamine-based novel co-crystal salt: 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium-4-methylbenzoate hydrate (1:1:1) (DEMH). J. Mol. Struct., 2021, 1228, 129445.
[http://dx.doi.org/10.1016/j.molstruc.2020.129445]
[192]
Udayasri, A.; Chandrasekhar, M.; Naga, B.; Varanasi, G.; Ramakrishna, D. Green chemical principles based regioselective functionalization of 2,4,6-trichloropyrimidine-5-carbaldehyde: Application in the synthesis of new pyrimidines and pyrrolopyrimidine. J. Serb. Chem. Soc., 2023, 88(1), 1-9.
[http://dx.doi.org/10.2298/JSC210804063U]
[193]
Sayyafi, M.; Seyyedhamzeh, M.; Khavasi, H.R.; Bazgir, A. One-pot, three-component route to 2H-indazolo[2,1-b]phthalazine-triones. Tetrahedron, 2008, 64(10), 2375-2378.
[http://dx.doi.org/10.1016/j.tet.2008.01.006]
[194]
Shukla, G.; Verma, R.K.; Verma, G.K.; Singh, M.S. Solvent-free sonochemical one-pot three-component synthesis of 2H-indazolo[2,1-b]phthalazine-1,6,11-triones and 1H-pyrazolo[1,2-b]phthalazine-5,10-diones. Tetrahedron Lett., 2011, 52(52), 7195-7198.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.136]
[195]
Pavithra, D.; Ethiraj, K.R. Tetrabutylammonium Bromide (TBAB) promoted metal-free synthesis of 2 H -Indazolo[1,2- b]Phthalazinetriones and Pyrazolo[1,2- b]phthalazines from benzylalcohol through aerobic oxidation, sequential addition-cyclization with phthalhydrazide and β-diketones. Polycycl. Aromat. Compd., 2022, 42(2), 344-357.
[http://dx.doi.org/10.1080/10406638.2020.1732430]
[196]
Salamatmanesh, A.; Heydari, A. Magnetic nanostructure-anchored mixed-donor ligand system based on carboxamide and N-heterocyclic thiones: An efficient support of CuI catalyst for synthesis of imidazo[1,2-a]pyridines in eutectic medium. Appl. Catal. A Gen., 2021, 624, 118306.
[http://dx.doi.org/10.1016/j.apcata.2021.118306]
[197]
Chen, J.; Liu, W.; Ma, J.; Xu, H.; Wu, J.; Tang, X.; Fan, Z.; Wang, P. Synthesis and properties of fluorescence dyes: Tetracyclic pyrazolo[3,4-b]pyridine-based coumarin chromophores with intramolecular charge transfer character. J. Org. Chem., 2012, 77(7), 3475-3482.
[http://dx.doi.org/10.1021/jo3002722] [PMID: 22428730]
[198]
Ghosh, A.; Khan, A.T. Synthesis of dihydrochromeno[4,3-b]pyrazolo[4,3-e]pyridin-6(7H)-ones involving one-pot three-component tandem Knoevenagel–Michael reaction catalyzed by n-tetrabutylammonium tribromide (TBATB). Tetrahedron Lett., 2014, 55(12), 2006-2009.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.014]
[199]
Stevens, N.; O’Connor, N.; Vishwasrao, H.; Samaroo, D.; Kandel, E.R.; Akins, D.L.; Drain, C.M.; Turro, N.J. Two color RNA intercalating probe for cell imaging applications. J. Am. Chem. Soc., 2008, 130(23), 7182-7183.
[http://dx.doi.org/10.1021/ja8008924] [PMID: 18489094]
[200]
Cheng, P.; Qing, Z.; Liu, S.; Liu, W.; Xie, H.; Zeng, J. Regiospecific Minisci acylation of phenanthridine via thermolysis or photolysis. Tetrahedron Lett., 2014, 55(49), 6647-6651.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.068]
[201]
Ghosh, M.; Ahmed, A.; Dhara, S.; Ray, J.K. Synthesis of phenanthridine and its analogues via aerobic ligand-free domino Suzuki coupling–Michael addition reaction catalyzed by in situ generated palladium-nanoparticles in water. Tetrahedron Lett., 2013, 54(36), 4837-4840.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.089]
[202]
Devi, L.; Pokhriyal, A.; Shekhar, S.; Kant, R.; Mukherjee, S.; Rastogi, N. Organo‐photocatalytic Synthesis of 6‐ β ‐disubstituted phenanthridines from α ‐diazo‐ β‐ keto compounds and vinyl azides. Asian J. Org. Chem., 2021, 10(12), 3328-3333.
[http://dx.doi.org/10.1002/ajoc.202100518]
[203]
Schütz, H.; Schütz, H. Blood-, Serum-and Plasma-Levels and Other Pharmacokinetic Data from Literature: Blut-, Serum und Plasma-Spiegel und andere pharmakokinetische Daten aus der Literatur. Benzodiazepines: A Handbook; Basic Data, Analytical Methods, Pharmacokinetics and Comprehensive Literature, 1982, pp. 205-242.
[204]
Smalley, R.K. Comprehensive Organic Chemistry; Barton D, Ollis WD, 1979, Vol. 4, .
[205]
Landquist, J.K. Comprehensive Heterocyclic Chemistry; Katritzky, AR; Rees, C W. Pergamon: Oxford, 1984, 1, p. 166.
[206]
Baseer, M.A.; Khan, A.J. An efficient one-pot synthesis of 1, 5-Benzodiazepine derivatives catalyzed by TBAB under Mild Conditions. E-J. Chem., 2012, 9(1), 407-414.
[http://dx.doi.org/10.1155/2012/657439]
[207]
Mannschreck, A.; Koller, H.; Stuhler, G.; Davies, M.A.; Traber, J. Flüssigkeits-chromatographie an triacetylcellulose 8: The enantiomers of methaqualone and their unequal anticonvulsive activity. Eur. J. Med. Chem., 1984, 19, 381-383.
[208]
Xia, Y.; Yang, Z.Y.; Hour, M.J.; Kuo, S.C.; Xia, P.; Bastow, K.F.; Nakanishi, Y.; Nampoothiri, P.; Hackl, T.; Hamel, E.; Lee, K.H. Antitumor agents. Part 204: Synthesis and biological evaluation of substituted 2-aryl quinazolinones. Bioorg. Med. Chem. Lett., 2001, 11(9), 1193-1196.
[http://dx.doi.org/10.1016/S0960-894X(01)00190-1] [PMID: 11354375]
[209]
Malamas, M.S.; Millen, J. Quinazolineacetic acids and related analogs as aldose reductase inhibitors. J. Med. Chem., 1991, 34(4), 1492-1503.
[http://dx.doi.org/10.1021/jm00108a038] [PMID: 1901912]
[210]
Hour, M.J.; Huang, L.J.; Kuo, S.C.; Xia, Y.; Bastow, K.; Nakanishi, Y.; Hamel, E.; Lee, K.H. 6-Alkylamino- and 2,3-dihydro-3′-methoxy-2-phenyl-4-quinazolinones and related compounds: their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J. Med. Chem., 2000, 43(23), 4479-4487.
[http://dx.doi.org/10.1021/jm000151c] [PMID: 11087572]
[211]
Davoodnia, A.; Allameh, S.; Fakhari, A.R.; Tavakoli-Hoseini, N. Highly efficient solvent-free synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones using tetrabutylammonium bromide as novel ionic liquid catalyst. Chin. Chem. Lett., 2010, 21(5), 550-553.
[http://dx.doi.org/10.1016/j.cclet.2010.01.032]
[212]
Dong, H.S.; Quan, B.; Chai, E.F.; Mao, X.R. The syntheses and crystal structure of novel 5-methyl-3-substituted-1,2,4-triazolo[3,4-b]benzothiazoles. J. Mol. Struct., 2002, 608(1), 41-47.
[http://dx.doi.org/10.1016/S0022-2860(01)00923-1]
[213]
Chow, A.W.; Bitler, S.P.; Penwell, P.E.; Osborne, D.J.; Wolfe, J.F. Synthesis and solution properties of extended chain poly(2,6-benzothiazole) and poly(2,5-benzoxazole). Macromolecules, 1989, 22(9), 3514-3520.
[http://dx.doi.org/10.1021/ma00199a002]
[214]
Schneider, C.S.; Mierau, J. Dopamine autoreceptor agonists: Resolution and pharmacological activity of 2,6-diaminotetrahydrobenzothiazole and an aminothiazole analog of apomorphine. J. Med. Chem., 1987, 30(3), 494-498.
[http://dx.doi.org/10.1021/jm00386a009] [PMID: 3820220]
[215]
Consorti, C.S.; Jurisch, M.; Gladysz, J.A. Ionic transformations in extremely nonpolar fluorous media: Phase transfer catalysis of halide substitution reactions. Org. Lett., 2007, 9(12), 2309-2312.
[http://dx.doi.org/10.1021/ol0706354] [PMID: 17500561]
[216]
Juliette, J.J.J.; Gladysz, J.A.; Horváth, I.T. Transition metal catalysis in fluorous media: practical application of a new immobilization principle to rhodium‐catalyzed hydroboration. Angew. Chem. Int. Ed. Engl., 1997, 36(15), 1610-1612.
[http://dx.doi.org/10.1002/anie.199716101]
[217]
Ryu, I.; Kreimerman, S.; Araki, F.; Nishitani, S.; Oderaotoshi, Y.; Minakata, S.; Komatsu, M. Cascade radical reactions catalyzed by a Pd/light system: Cyclizative multiple carbonylation of 4-alkenyl iodides. J. Am. Chem. Soc., 2002, 124(15), 3812-3813.
[http://dx.doi.org/10.1021/ja017315e] [PMID: 11942801]
[218]
Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[219]
Liu, D.C.; Zhang, H.J.; Jin, C.M.; Quan, Z.S. Synthesis and biological evaluation of novel benzothiazole derivatives as potential anticonvulsant agents. Molecules, 2016, 21(3), 164.
[http://dx.doi.org/10.3390/molecules21030164] [PMID: 26938519]
[220]
Mizoule, J.; Meldrum, B.; Mazadier, M.; Croucher, M.; Ollat, C.; Uzan, A.; Legrand, J.J.; Gueremy, C.; Le Fur, G. 2-Amino-6-trifluoromethoxy benzothiazole, a possible antagonist of excitatory amino acid neurotransmission—I. Neuropharmacology, 1985, 24(8), 767-773.
[http://dx.doi.org/10.1016/0028-3908(85)90011-5] [PMID: 3018617]
[221]
Demir Özkay, Ü.; Can, Ö.D. Sağlık, B.N.; Turan, N. A benzothiazole/piperazine derivative with acetylcholinesterase inhibitory activity: Improvement in streptozotocin-induced cognitive deficits in rats. Pharmacol. Rep., 2017, 69(6), 1349-1356.
[http://dx.doi.org/10.1016/j.pharep.2017.06.009] [PMID: 29132093]
[222]
Radhika, S.; Baby Aleena, M.; Anilkumar, G. A green aerobic Fe(lll) catalyzed base-free synthesis of 2-aminobenzothiazoles in water. J. Catal., 2022, 416, 233-239.
[http://dx.doi.org/10.1016/j.jcat.2022.11.005]