Role of Flavonoids in Modulation of Mitochondria Dynamics during Oxidative Stress

Page: [908 - 919] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Flavonoids are a widespread category of naturally occurring polyphenols distinguished by the flavan nucleus in plant-based foods and beverages, known for their various health benefits. Studies have suggested that consuming 150-500 mg of flavonoids daily is beneficial for health. Recent studies suggest that flavonoids are involved in maintaining mitochondrial activity and preventing impairment of mitochondrial dynamics by oxidative stress.

Objective: This review emphasized the significance of studying the impact of flavonoids on mitochondrial dynamics, oxidative stress, and inflammatory response.

Methods: This review analysed and summarised the findings related to the impact of flavonoids on mitochondria from publicly available search engines namely Pubmed, Scopus, and Web of Science.

Description: Any disruption in mitochondrial dynamics can contribute to cellular dysfunction and diseases, including cancer, cardiac conditions, and neurodegeneration. Flavonoids have been shown to modulate mitochondrial dynamics by regulating protein expression involved in fission and fusion events. Furthermore, flavonoids exhibit potent antioxidant properties by lowering the production of ROS and boosting the performance of antioxidant enzymes. Persistent inflammation is a characteristic of many different disorders. This is because flavonoids also alter the inflammatory response by controlling the expression of numerous cytokines and chemokines involved in the inflammatory process. Flavonoids exhibit an impressive array of significant health effects, making them an effective therapeutic agent for managing various disorders. Further this review summarised available mechanisms underlying flavonoids' actions on mitochondrial dynamics and oxidative stress to recognize the optimal dose and duration of flavonoid intake for therapeutic purposes.

Conclusion: This review may provide a solid foundation for developing targeted therapeutic interventions utilizing flavonoids, ultimately benefiting individuals afflicted with various disorders.

Graphical Abstract

[1]
Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 2018, 5(3), 93.
[http://dx.doi.org/10.3390/medicines5030093] [PMID: 30149600]
[2]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[3]
Arteel, G.E.; Schroeder, P.; Sies, H. Reactions of peroxynitrite with cocoa procyanidin oligomers. J. Nutr., 2000, 130(8), 2100S-2104S.
[http://dx.doi.org/10.1093/jn/130.8.2100S] [PMID: 10917929]
[4]
Chen, J.W.; Zhu, Z.Q.; Hu, T.X.; Zhu, D.Y. Structure-activity relationship of natural flavonoids in hydroxyl radical-scavenging effects. Acta Pharmacol. Sin., 2002, 23(7), 667-672.
[PMID: 12100765]
[5]
Dugas, A.J., Jr; Castañeda-Acosta, J.; Bonin, G.C.; Price, K.L.; Fischer, N.H.; Winston, G.W. Evaluation of the total peroxyl radical-scavenging capacity of flavonoids: Structure-activity relationships. J. Nat. Prod., 2000, 63(3), 327-331.
[http://dx.doi.org/10.1021/np990352n] [PMID: 10757712]
[6]
Gao, Z.; Huang, K.; Yang, X.; Xu, H. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim. Biophys. Acta, Gen. Subj., 1999, 1472(3), 643-650.
[http://dx.doi.org/10.1016/S0304-4165(99)00152-X] [PMID: 10564778]
[7]
Hanasaki, Y.; Ogawa, S.; Fukui, S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic. Biol. Med., 1994, 16(6), 845-850.
[http://dx.doi.org/10.1016/0891-5849(94)90202-X] [PMID: 8070690]
[8]
Sawa, T.; Nakao, M.; Akaike, T.; Ono, K.; Maeda, H. Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: Implications for the anti-tumor-promoter effect of vegetables. J. Agric. Food Chem., 1999, 47(2), 397-402.
[http://dx.doi.org/10.1021/jf980765e] [PMID: 10563906]
[9]
Valcic, S.; Muders, A.; Jacobsen, N.E.; Liebler, D.C.; Timmermann, B.N. Antioxidant chemistry of green tea catechins. Identification of products of the reaction of (-)-epigallocatechin gallate with peroxyl radicals. Chem. Res. Toxicol., 1999, 12(4), 382-386.
[http://dx.doi.org/10.1021/tx990003t] [PMID: 10207128]
[10]
Bito, T.; Roy, S.; Sen, C.K.; Shirakawa, T.; Gotoh, A.; Ueda, M.; Ichihashi, M.; Packer, L. Flavonoids differentially regulate IFNγ-induced ICAM-1 expression in human keratinocytes: Molecular mechanisms of action. FEBS Lett., 2002, 520(1-3), 145-152.
[http://dx.doi.org/10.1016/S0014-5793(02)02810-7] [PMID: 12044887]
[11]
Sartor, L.; Pezzato, E.; Dell’Aica, I.; Caniato, R.; Biggin, S.; Garbisa, S. Inhibition of matrix-proteases by polyphenols: Chemical insights for anti-inflammatory and anti-invasion drug design. Biochem. Pharmacol., 2002, 64(2), 229-237.
[http://dx.doi.org/10.1016/S0006-2952(02)01069-9] [PMID: 12123743]
[12]
Middleton, E., Jr; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 2000, 52(4), 673-751.
[PMID: 11121513]
[13]
Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules, 2021, 26(17), 5377.
[http://dx.doi.org/10.3390/molecules26175377] [PMID: 34500810]
[14]
IfedibaluChukwu Ejiofor. I.M.; Chikodili Igbokwe, M-G. Flavonoids: Understanding their biosynthetic pathways in plants and health benefits; IntechOpen, 2021.
[http://dx.doi.org/10.5772/intechopen.96715]
[15]
Demir, Y. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase‐1 associated with cardiovascular diseases. Drug Dev. Res., 2020, 81(5), 628-636.
[http://dx.doi.org/10.1002/ddr.21667] [PMID: 32232985]
[16]
Peterson, J.J.; Dwyer, J.T.; Jacques, P.F.; McCullough, M.L. Improving the estimation of flavonoid intake for study of health outcomes. Nutr. Rev., 2015, 73(8), 553-576.
[http://dx.doi.org/10.1093/nutrit/nuv008] [PMID: 26084477]
[17]
Chun, O.K.; Chung, S.J.; Song, W.O. Estimated dietary flavonoid intake and major food sources of U.S. adults. J. Nutr., 2007, 137(5), 1244-1252.
[http://dx.doi.org/10.1093/jn/137.5.1244] [PMID: 17449588]
[18]
Kent, K.; Charlton, K.E.; Lee, S.; Mond, J.; Russell, J.; Mitchell, P.; Flood, V.M. Dietary flavonoid intake in older adults: How many days of dietary assessment are required and what is the impact of seasonality? Nutr. J., 2018, 17(1), 7.
[http://dx.doi.org/10.1186/s12937-017-0309-7] [PMID: 29329536]
[19]
Ahn-Jarvis, J.; Parihar, A.; Doseff, A. Dietary flavonoids for immunoregulation and cancer: Food design for targeting disease. Antioxidants, 2019, 8(7), 202.
[http://dx.doi.org/10.3390/antiox8070202] [PMID: 31261915]
[20]
Dabeek, W.M.; Marra, M.V. Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients, 2019, 11(10), 2288.
[http://dx.doi.org/10.3390/nu11102288] [PMID: 31557798]
[21]
Berends, L.M.; van der Velpen, V.; Cassidy, A. Flavan-3-ols, theobromine, and the effects of cocoa and chocolate on cardiometabolic risk factors. Curr. Opin. Lipidol., 2015, 26(1), 10-19.
[http://dx.doi.org/10.1097/MOL.0000000000000144] [PMID: 25551798]
[22]
Lanza, M.G.D.B.; Reis, A.R. Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiol. Biochem., 2021, 164, 27-43.
[http://dx.doi.org/10.1016/j.plaphy.2021.04.026] [PMID: 33962229]
[23]
Thilakarathna, S.; Rupasinghe, H. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 2013, 5(9), 3367-3387.
[http://dx.doi.org/10.3390/nu5093367] [PMID: 23989753]
[24]
Waheed Janabi, A.H.; Kamboh, A.A.; Saeed, M.; Xiaoyu, L. BiBi, J.; Majeed, F.; Naveed, M.; Mughal, M.J.; Korejo, N.A.; Kamboh, R.; Alagawany, M.; Lv, H. Flavonoid-rich foods (FRF): A promising nutraceutical approach against lifespan-shortening diseases. Iran. J. Basic Med. Sci., 2020, 23(2), 140-153.
[http://dx.doi.org/10.22038/ijbms.2019.35125.8353] [PMID: 32405356]
[25]
Jun, S.; Shin, S.; Joung, H. Estimation of dietary flavonoid intake and major food sources of Korean adults. Br. J. Nutr., 2016, 115(3), 480-489.
[http://dx.doi.org/10.1017/S0007114515004006] [PMID: 26489826]
[26]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Scienti. World. J., 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[27]
Mutha, R.E.; Tatiya, A.U.; Surana, S.J. Flavonoids as natural phenolic compounds and their role in therapeutics: An overview. Future J. Pharm. Sci., 2021, 7(1), 25.
[http://dx.doi.org/10.1186/s43094-020-00161-8] [PMID: 33495733]
[28]
Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules, 2020, 25(22), 5243.
[http://dx.doi.org/10.3390/molecules25225243] [PMID: 33187049]
[29]
Zhao, L.; Yuan, X.; Wang, J.; Feng, Y.; Ji, F.; Li, Z.; Bian, J. A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs. Bioorg. Med. Chem., 2019, 27(5), 677-685.
[http://dx.doi.org/10.1016/j.bmc.2019.01.027] [PMID: 30733087]
[30]
Chang, J.Y.; Yu, F.; Shi, L.; Ko, M. L Melatonin affects mitochondrial fission/fusion dynamics in the diabetic retina. J. Diabetes Res., 2019, 2019, 8463125.
[http://dx.doi.org/10.1155/2019/8463125]
[31]
Kimble, R.; Keane, K.M.; Lodge, J.K.; Howatson, G. Dietary intake of anthocyanins and risk of cardiovascular disease: A systematic review and meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr., 2019, 59(18), 3032-3043.
[http://dx.doi.org/10.1080/10408398.2018.1509835] [PMID: 30277799]
[32]
Carrasco-Pozo, C.; Mizgier, M.L.; Speisky, H.; Gotteland, M. Differential protective effects of quercetin, resveratrol, rutin and epigallocatechin gallate against mitochondrial dysfunction induced by indomethacin in Caco-2 cells. Chem. Biol. Interact., 2012, 195(3), 199-205.
[http://dx.doi.org/10.1016/j.cbi.2011.12.007] [PMID: 22214982]
[33]
Teixeira, J.; Chavarria, D.; Borges, F.; Wojtczak, L.; Wieckowski, M.R.; Karkucinska-Wieckowska, A.; Oliveira, P.J. Dietary polyphenols and mitochondrial function: Role in health and disease. Curr. Med. Chem., 2019, 26(19), 3376-3406.
[http://dx.doi.org/10.2174/0929867324666170529101810] [PMID: 28554320]
[34]
Kicinska, A.; Jarmuszkiewicz, W. Flavonoids and mitochondria: Activation of cytoprotective pathways? Molecules, 2020, 25(13), 3060.
[http://dx.doi.org/10.3390/molecules25133060] [PMID: 32635481]
[35]
Koklesova, L.; Liskova, A.; Samec, M.; Zhai, K. AL-Ishaq, R.K.; Bugos, O.; Šudomová, M.; Biringer, K.; Pec, M.; Adamkov, M.; Hassan, S.T.S.; Saso, L.; Giordano, F.A.; Büsselberg, D.; Kubatka, P.; Golubnitschaja, O. Protective effects of flavonoids against mitochondriopathies and associated pathologies: Focus on the predictive approach and personalized prevention. Int. J. Mol. Sci., 2021, 22(16), 8649.
[http://dx.doi.org/10.3390/ijms22168649] [PMID: 34445360]
[36]
Ponnampalam, E.N.; Kiani, A.; Santhiravel, S.; Holman, B.W.B.; Lauridsen, C.; Dunshea, F.R. The importance of dietary antioxidants on oxidative stress, meat and milk production, and their preservative aspects in farm animals: Antioxidant action, animal health, and product quality—invited review. Animals, 2022, 12(23), 3279.
[http://dx.doi.org/10.3390/ani12233279] [PMID: 36496798]
[37]
I. botany. Food Rev. Int., 1995, 11(3), 371-374.
[http://dx.doi.org/10.1080/87559129509541049]
[38]
Kreft, S.; Knapp, M.; Kreft, I. Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. J. Agric. Food Chem., 1999, 47(11), 4649-4652.
[http://dx.doi.org/10.1021/jf990186p] [PMID: 10552865]
[39]
Stewart, A.J.; Bozonnet, S.; Mullen, W.; Jenkins, G.I.; Lean, M.E.J.; Crozier, A. Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem., 2000, 48(7), 2663-2669.
[http://dx.doi.org/10.1021/jf000070p] [PMID: 10898604]
[40]
Hertog, M.G.L.; Hollman, P.C.H.; Katan, M.B. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J. Agric. Food Chem., 1992, 40(12), 2379-2383.
[http://dx.doi.org/10.1021/jf00024a011]
[41]
López, M.; Martínez, F.; Del Valle, C.; Orte, C.; Miró, M. Analysis of phenolic constituents of biological interest in red wines by high-performance liquid chromatography. J. Chromatogr. A, 2001, 922(1-2), 359-363.
[http://dx.doi.org/10.1016/S0021-9673(01)00913-X] [PMID: 11486883]
[42]
Miyake, Y.; Shimoi, K.; Kumazawa, S.; Yamamoto, K.; Kinae, N.; Osawa, T. Identification and antioxidant activity of flavonoid metabolites in plasma and urine of eriocitrin-treated rats. J. Agric. Food Chem., 2000, 48(8), 3217-3224.
[http://dx.doi.org/10.1021/jf990994g] [PMID: 10956094]
[43]
Rouseff, R.L.; Martin, S.F.; Youtsey, C.O. Quantitative survey of narirutin, naringin, hesperidin, and neohesperidin in citrus. J. Agric. Food Chem., 1987, 35(6), 1027-1030.
[http://dx.doi.org/10.1021/jf00078a040]
[44]
Reinli, K.; Block, G. Phytoestrogen content of foods—a compendium of literature values. Nutr. Cancer, 1996, 26(2), 123-148.
[http://dx.doi.org/10.1080/01635589609514470] [PMID: 8875551]
[45]
Gracy, R.W.; Talent, J.M.; Kong, Y.; Conrad, C.C. Reactive oxygen species: The unavoidable environmental insult? Mutat. Res., 1999, 428(1-2), 17-22.
[http://dx.doi.org/10.1016/S1383-5742(99)00027-7] [PMID: 10517974]
[46]
Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev., 2016, 2016, 1-44.
[http://dx.doi.org/10.1155/2016/1245049] [PMID: 27478531]
[47]
Cao, G.; Sofic, E.; Prior, R.L. Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radic. Biol. Med., 1997, 22(5), 749-760.
[http://dx.doi.org/10.1016/S0891-5849(96)00351-6] [PMID: 9119242]
[48]
Fraga, C.G. Plant polyphenols: How to translate their in vitro antioxidant actions to in vivo conditions. IUBMB Life, 2007, 59(4), 308-315.
[http://dx.doi.org/10.1080/15216540701230529] [PMID: 17505970]
[49]
Xi, X.; Wang, J.; Qin, Y.; You, Y.; Huang, W.; Zhan, J. The biphasic effect of flavonoids on oxidative stress and cell proliferation in breast cancer cells. Antioxidants, 2022, 11(4), 622.
[http://dx.doi.org/10.3390/antiox11040622] [PMID: 35453307]
[50]
Perez, C.A.; Wei, Y.; Guo, M. Iron-binding and anti-Fenton properties of baicalein and baicalin. J. Inorg. Biochem., 2009, 103(3), 326-332.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.11.003] [PMID: 19108897]
[51]
Bastianetto, S.; Quirion, R. Natural extracts as possible protective agents of brain aging. Neurobiol. Aging, 2002, 23(5), 891-897.
[http://dx.doi.org/10.1016/S0197-4580(02)00024-6] [PMID: 12392793]
[52]
Dudylina, A.L.; Ivanova, M.V.; Shumaev, K.B.; Ruuge, E.K. Superoxide formation in cardiac mitochondria and effect of phenolic antioxidants. Cell Biochem. Biophys., 2019, 77(1), 99-107.
[http://dx.doi.org/10.1007/s12013-018-0857-2] [PMID: 30218405]
[53]
Shah, Z.A.; Li, R.C.; Ahmad, A.S.; Kensler, T.W.; Yamamoto, M.; Biswal, S.; Doré, S. The flavanol (-)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. J. Cereb. Blood Flow Metab., 2010, 30(12), 1951-1961.
[http://dx.doi.org/10.1038/jcbfm.2010.53] [PMID: 20442725]
[54]
Assunção, M.; Santos-Marques, M.J.; Carvalho, F.; Andrade, J.P. Green tea averts age-dependent decline of hippocampal signaling systems related to antioxidant defenses and survival. Free Radic. Biol. Med., 2010, 48(6), 831-838.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.01.003] [PMID: 20064606]
[55]
Arredondo, F.; Echeverry, C.; Abin-Carriquiry, J.A.; Blasina, F.; Antúnez, K.; Jones, D.P.; Go, Y.M.; Liang, Y.L.; Dajas, F. After cellular internalization, quercetin causes Nrf2 nuclear translocation, increases glutathione levels, and prevents neuronal death against an oxidative insult. Free Radic. Biol. Med., 2010, 49(5), 738-747.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.05.020] [PMID: 20554019]
[56]
Schaffer, S.; Asseburg, H.; Kuntz, S.; Muller, W.E.; Eckert, G.P. Effects of polyphenols on brain ageing and Alzheimer’s disease: Focus on mitochondria. Mol. Neurobiol., 2012, 46(1), 161-178.
[http://dx.doi.org/10.1007/s12035-012-8282-9] [PMID: 22706880]
[57]
Alvarez-Suarez, J.M.; Giampieri, F.; Cordero, M.; Gasparrini, M.; Forbes-Hernández, T.Y.; Mazzoni, L.; Afrin, S.; Beltrán-Ayala, P.; González-Paramás, A.M.; Santos-Buelga, C.; Varela-Lopez, A.; Quiles, J.L.; Battino, M. Activation of AMPK/Nrf2 signalling by Manuka honey protects human dermal fibroblasts against oxidative damage by improving antioxidant response and mitochondrial function promoting wound healing. J. Funct. Foods, 2016, 25, 38-49.
[http://dx.doi.org/10.1016/j.jff.2016.05.008]
[58]
Zhou, Z.D.; Xie, S.P.; Saw, W.T.; Ho, P.G.H.; Wang, H.; Lei, Z.; Yi, Z.; Tan, E.K. The therapeutic implications of tea polyphenols against dopamine (da) neuron degeneration in Parkinson’s disease (PD). Cells, 2019, 8(8), 911.
[http://dx.doi.org/10.3390/cells8080911] [PMID: 31426448]
[59]
Dai, C.; Tang, S.; Wang, Y.; Velkov, T.; Xiao, X. Baicalein acts as a nephroprotectant that ameliorates colistin-induced nephrotoxicity by activating the antioxidant defence mechanism of the kidneys and down-regulating the inflammatory response. J. Antimicrob. Chemother., 2017, 72(9), 2562-2569.
[http://dx.doi.org/10.1093/jac/dkx185] [PMID: 28859441]
[60]
Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of antioxidants and natural products in inflammation. Oxid. Med. Cell. Longev., 2016, 2016, 1-15.
[http://dx.doi.org/10.1155/2016/5276130] [PMID: 27803762]
[61]
Luo, Y.; Cui, H.X.; Jia, A.; Jia, S.S.; Yuan, K. The protective effect of the total flavonoids of Abelmoschus esculentus l. flowers on transient cerebral ischemia-reperfusion injury is due to activation of the Nrf2-are pathway. Oxid. Med. Cell. Longev., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/8987173] [PMID: 30174782]
[62]
Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13(10), 572-584.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5] [PMID: 12550068]
[63]
Sandoval-Acuña, C.; Ferreira, J.; Speisky, H. Polyphenols and mitochondria: An update on their increasingly emerging ROS-scavenging independent actions. Arch. Biochem. Biophys., 2014, 559, 75-90.
[http://dx.doi.org/10.1016/j.abb.2014.05.017] [PMID: 24875147]
[64]
McAnlis, G.T.; McEneny, J.; Pearce, J.; Young, I.S. Absorption and antioxidant effects of quercetin from onions, in man. Eur. J. Clin. Nutr., 1999, 53(2), 92-96.
[http://dx.doi.org/10.1038/sj.ejcn.1600682] [PMID: 10099940]
[65]
Cheng, G.; Zielonka, J.; McAllister, D.; Hardy, M.; Ouari, O.; Joseph, J.; Dwinell, M.B.; Kalyanaraman, B. Antiproliferative effects of mitochondria-targeted cationic antioxidants and analogs: Role of mitochondrial bioenergetics and energy-sensing mechanism. Cancer Lett., 2015, 365(1), 96-106.
[http://dx.doi.org/10.1016/j.canlet.2015.05.016] [PMID: 26004344]
[66]
Peoples, J.N.; Saraf, A.; Ghazal, N.; Pham, T.T.; Kwong, J.Q. Mitochondrial dysfunction and oxidative stress in heart disease. Exp. Mol. Med., 2019, 51(12), 1-13.
[http://dx.doi.org/10.1038/s12276-019-0355-7] [PMID: 31857574]
[67]
Brown, E.J.; Khodr, H.; Hider, C.R.; Rice-Evans, C.A. Structural dependence of flavonoid interactions with Cu2+ ions: Implications for their antioxidant properties. Biochem. J., 1998, 330(3), 1173-1178.
[http://dx.doi.org/10.1042/bj3301173] [PMID: 9494082]
[68]
Slika, H.; Mansour, H.; Wehbe, N.; Nasser, S.A.; Iratni, R.; Nasrallah, G.; Shaito, A.; Ghaddar, T.; Kobeissy, F.; Eid, A.H. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed. Pharmacother., 2022, 146, 112442.
[http://dx.doi.org/10.1016/j.biopha.2021.112442] [PMID: 35062053]
[69]
Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules, 2019, 24(8), 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[70]
Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as potential anti-inflammatory molecules: A review. Molecules, 2022, 27(9), 2901.
[http://dx.doi.org/10.3390/molecules27092901] [PMID: 35566252]
[71]
Brown, E.L.; Foletta, V.C.; Wright, C.R.; Sepulveda, P.V.; Konstantopoulos, N.; Sanigorski, A.; Della Gatta, P.; Cameron-Smith, D.; Kralli, A.; Russell, A.P. PGC-1α and PGC-1β increase protein synthesis via ERRα in C2C12 Myotubes. Front. Physiol., 2018, 9, 1336.
[http://dx.doi.org/10.3389/fphys.2018.01336] [PMID: 30356878]
[72]
Hodnick, W.F.; Bohmont, C.W.; Capps, C.; Pardini, R.S. Inhibition of the mitochondrial NADH-oxidase (NADH-Coenzyme Q oxido-reductase) enzyme system by flavonoids: A structure-activity study. Biochem. Pharmacol., 1987, 36(17), 2873-2874.
[http://dx.doi.org/10.1016/0006-2952(87)90282-6] [PMID: 3632714]
[73]
Hodnick, W.F.; Duval, D.L.; Pardini, R.S. Inhibition of mitochondrial respiration and cyanide-stimulated generation of reactive oxygen species by selected flavonoids. Biochem. Pharmacol., 1994, 47(3), 573-580.
[http://dx.doi.org/10.1016/0006-2952(94)90190-2] [PMID: 8117326]
[74]
Lagoa, R.; Graziani, I.; Lopez-Sanchez, C.; Garcia-Martinez, V.; Gutierrez-Merino, C. Complex I and cytochrome c are molecular targets of flavonoids that inhibit hydrogen peroxide production by mitochondria. Biochim. Biophys. Acta Bioenerg., 2011, 1807(12), 1562-1572.
[http://dx.doi.org/10.1016/j.bbabio.2011.09.022] [PMID: 22015496]
[75]
Iglesias, D.E.; Bombicino, S.S.; Boveris, A.; Valdez, L.B. (+)-Catechin inhibits heart mitochondrial complex I and nitric oxide synthase: Functional consequences on membrane potential and hydrogen peroxide production. Food Funct., 2019, 10(5), 2528-2537.
[http://dx.doi.org/10.1039/C8FO01843J] [PMID: 30993288]
[76]
Sharikadze, N.; Jojua, N.; Sepashvili, M.; Zhuravliova, E.; Mikeladze, D.G. Mitochondrial target of nobiletin’s action. Nat. Prod. Commun., 2016, 11(12), 1934578X1601101.
[http://dx.doi.org/10.1177/1934578X1601101215] [PMID: 30508345]
[77]
Carrasco-Pozo, C.; Gotteland, M.; Speisky, H. Apple peel polyphenol extract protects against indomethacin-induced damage in Caco-2 cells by preventing mitochondrial complex I inhibition. J. Agric. Food Chem., 2011, 59(21), 11501-11508.
[http://dx.doi.org/10.1021/jf202621d] [PMID: 21954913]
[78]
Dorta, D.J.; Pigoso, A.A.; Mingatto, F.E.; Rodrigues, T.; Prado, I.M.R.; Helena, A.F.C.; Uyemura, S.A.; Santos, A.C.; Curti, C. The interaction of flavonoids with mitochondria: Effects on energetic processes. Chem. Biol. Interact., 2005, 152(2-3), 67-78.
[http://dx.doi.org/10.1016/j.cbi.2005.02.004] [PMID: 15840381]
[79]
Dhiman, P.; Malik, N.; Sobarzo-Sánchez, E.; Uriarte, E.; Khatkar, A. Quercetin and related chromenone derivatives as monoamine oxidase inhibitors: Targeting neurological and mental disorders. Molecules, 2019, 24(3), 418.
[http://dx.doi.org/10.3390/molecules24030418] [PMID: 30678358]
[80]
Rigotti, M.; Cerbaro, A.F. Grape seed proanthocyanidins prevent H2O2-induced mitochondrial dysfunction and apoptosis via SIRT 1 activation in embryonic kidney cells. J. Food Biochem., 2020, 44(3), e13147.
[http://dx.doi.org/10.1111/jfbc.13147]
[81]
Kashyap, D.; Garg, V.K.; Tuli, H.S.; Yerer, M.B.; Sak, K.; Sharma, A.K.; Kumar, M.; Aggarwal, V.; Sandhu, S.S. Fisetin and quercetin: Promising flavonoids with chemopreventive potential. Biomolecules, 2019, 9(5), 174.
[http://dx.doi.org/10.3390/biom9050174] [PMID: 31064104]
[82]
Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients, 2020, 12(2), 457.
[http://dx.doi.org/10.3390/nu12020457] [PMID: 32059369]
[83]
Naoi, M.; Wu, Y.; Shamoto-Nagai, M.; Maruyama, W. Mitochondria in neuroprotection by phytochemicals: Bioactive polyphenols modulate mitochondrial apoptosis system, function and structure. Int. J. Mol. Sci., 2019, 20(10), 2451.
[http://dx.doi.org/10.3390/ijms20102451] [PMID: 31108962]
[84]
Wang, D.M.; Li, S.Q.; Zhu, X.Y.; Wang, Y.; Wu, W.L.; Zhang, X.J. Protective effects of hesperidin against amyloid-β (Aβ) induced neurotoxicity through the voltage dependent anion channel 1 (VDAC1)-mediated mitochondrial apoptotic pathway in PC12 cells. Neurochem. Res., 2013, 38(5), 1034-1044.
[http://dx.doi.org/10.1007/s11064-013-1013-4] [PMID: 23475456]
[85]
Yang, Y.; Gong, X.B.; Huang, L.G.; Wang, Z.X.; Wan, R.Z.; Zhang, P.; Zhang, Q.Y.; Chen, Z.; Zhang, B.S. Diosmetin exerts anti-oxidative, anti-inflammatory and anti-apoptotic effects to protect against endotoxin-induced acute hepatic failure in mice. Oncotarget, 2017, 8(19), 30723-30733.
[http://dx.doi.org/10.18632/oncotarget.15413] [PMID: 28430612]
[86]
Cerbaro, A.F.; Rodrigues, V.S.B.; Rigotti, M.; Branco, C.S.; Rech, G.; de Oliveira, D.L.; Salvador, M. Grape seed proanthocyanidins improves mitochondrial function and reduces oxidative stress through an increase in sirtuin 3 expression in EA.hy926 cells in high glucose condition. Mol. Biol. Rep., 2020, 47(5), 3319-3330.
[http://dx.doi.org/10.1007/s11033-020-05401-x] [PMID: 32266639]
[87]
Arjinajarn, P.; Chueakula, N.; Pongchaidecha, A.; Jaikumkao, K.; Chatsudthipong, V.; Mahatheeranont, S.; Norkaew, O.; Chattipakorn, N.; Lungkaphin, A. Anthocyanin-rich Riceberry bran extract attenuates gentamicin-induced hepatotoxicity by reducing oxidative stress, inflammation and apoptosis in rats. Biomed. Pharmacother., 2017, 92, 412-420.
[http://dx.doi.org/10.1016/j.biopha.2017.05.100] [PMID: 28558354]
[88]
Zare, M.F.R.; Rakhshan, K.; Aboutaleb, N.; Nikbakht, F.; Naderi, N.; Bakhshesh, M.; Azizi, Y. Apigenin attenuates doxorubicin induced cardiotoxicity via reducing oxidative stress and apoptosis in male rats. Life Sci., 2019, 232, 116623.
[http://dx.doi.org/10.1016/j.lfs.2019.116623] [PMID: 31279781]
[89]
Malik, S.; Bhatia, J.; Suchal, K.; Gamad, N.; Dinda, A.K.; Gupta, Y.K.; Arya, D.S. Nobiletin ameliorates cisplatin-induced acute kidney injury due to its anti-oxidant, anti-inflammatory and anti-apoptotic effects. Exp. Toxicol. Pathol., 2015, 67(7-8), 427-433.
[http://dx.doi.org/10.1016/j.etp.2015.04.008] [PMID: 26002685]
[90]
Xiao, J.; Sun, G.B.; Sun, B.; Wu, Y.; He, L.; Wang, X.; Chen, R.C.; Cao, L.; Ren, X.Y.; Sun, X.B. Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. Toxicology, 2012, 292(1), 53-62.
[http://dx.doi.org/10.1016/j.tox.2011.11.018] [PMID: 22155320]
[91]
Ploumi, C.; Daskalaki, I.; Tavernarakis, N. Mitochondrial biogenesis and clearance: A balancing act. FEBS J., 2017, 284(2), 183-195.
[http://dx.doi.org/10.1111/febs.13820] [PMID: 27462821]
[92]
Simmons, E.C.; Scholpa, N.E.; Schnellmann, R.G. Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases. Exp. Neurol., 2020, 329, 113309.
[http://dx.doi.org/10.1016/j.expneurol.2020.113309] [PMID: 32289315]
[93]
Yambire, K.F.; Fernandez-Mosquera, L.; Steinfeld, R.; Mühle, C.; Ikonen, E.; Milosevic, I.; Raimundo, N. Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases. eLife, 2019, 8, e39598.
[http://dx.doi.org/10.7554/eLife.39598] [PMID: 30775969]
[94]
Shao, D.; Liu, Y.; Liu, X.; Zhu, L.; Cui, Y.; Cui, A.; Qiao, A.; Kong, X.; Liu, Y.; Chen, Q.; Gupta, N.; Fang, F.; Chang, Y. PGC-1β-Regulated mitochondrial biogenesis and function in myotubes is mediated by NRF-1 and ERRα. Mitochondrion, 2010, 10(5), 516-527.
[http://dx.doi.org/10.1016/j.mito.2010.05.012] [PMID: 20561910]
[95]
Salma, N.; Song, J.S.; Arany, Z.; Fisher, D.E. Transcription factor Tfe3 directly regulates Pgc-1alpha in muscle. J. Cell. Physiol., 2015, 230(10), 2330-2336.
[http://dx.doi.org/10.1002/jcp.24978] [PMID: 25736533]
[96]
Davis, J.M.; Murphy, E.A.; Carmichael, M.D.; Davis, B. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, 296(4), R1071-R1077.
[http://dx.doi.org/10.1152/ajpregu.90925.2008] [PMID: 19211721]
[97]
Nieman, D.C.; Williams, A.S.; Shanely, R.A.; Jin, F.; McAnulty, S.R.; Triplett, N.T.; Austin, M.D.; Henson, D.A. Quercetin’s influence on exercise performance and muscle mitochondrial biogenesis. Med. Sci. Sports Exerc., 2010, 42(2), 338-345.
[http://dx.doi.org/10.1249/MSS.0b013e3181b18fa3] [PMID: 19927026]
[98]
Rayamajhi, N.; Kim, S.K.; Go, H.; Joe, Y.; Callaway, Z.; Kang, J.G.; Ryter, S.W.; Chung, H.T. Quercetin induces mitochondrial biogenesis through activation of HO-1 in HepG2 cells. Oxid. Med. Cell. Longev., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/154279] [PMID: 24288584]
[99]
Yoshino, M.; Naka, A.; Sakamoto, Y.; Shibasaki, A.; Toh, M.; Tsukamoto, S.; Kondo, K.; Iida, K. Dietary isoflavone daidzein promotes Tfam expression that increases mitochondrial biogenesis in C2C12 muscle cells. J. Nutr. Biochem., 2015, 26(11), 1193-1199.
[http://dx.doi.org/10.1016/j.jnutbio.2015.05.010] [PMID: 26166229]
[100]
Jung, H.Y.; Lee, D.; Ryu, H.G.; Choi, B.H.; Go, Y.; Lee, N.; Lee, D.; Son, H.G.; Jeon, J.; Kim, S.H.; Yoon, J.H.; Park, S.M.; Lee, S.J.V.; Lee, I.K.; Choi, K.Y.; Ryu, S.H.; Nohara, K.; Yoo, S.H.; Chen, Z.; Kim, K.T. Myricetin improves endurance capacity and mitochondrial density by activating SIRT1 and PGC-1α. Sci. Rep., 2017, 7(1), 6237.
[http://dx.doi.org/10.1038/s41598-017-05303-2] [PMID: 28740165]
[101]
Lee, M.S.; Kim, Y. Effects of isorhamnetin on adipocyte mitochondrial biogenesis and AMPK activation. Molecules, 2018, 23(8), 1853.
[http://dx.doi.org/10.3390/molecules23081853] [PMID: 30044453]
[102]
Kou, G.; Li, Z.; Wu, C.; Liu, Y.; Hu, Y.; Guo, L.; Xu, X.; Zhou, Z. Citrus tangeretin improves skeletal muscle mitochondrial biogenesis via activating the AMPK-PGC1-α pathway in vitro and in vivo: A possible mechanism for its beneficial effect on physical performance. J. Agric. Food Chem., 2018, 66(45), 11917-11925.
[http://dx.doi.org/10.1021/acs.jafc.8b04124] [PMID: 30369237]
[103]
Zhang, X.; Du, L.; Zhang, W.; Yang, Y.; Zhou, Q.; Du, G. Therapeutic effects of baicalein on rotenone-induced Parkinson’s disease through protecting mitochondrial function and biogenesis. Sci. Rep., 2017, 7(1), 9968.
[http://dx.doi.org/10.1038/s41598-017-07442-y] [PMID: 28855526]
[104]
Chen, X.; Wang, L.; Wu, Y.; Song, S.; Min, H.; Yang, Y.; He, X.; Liang, Q.; Yi, L.; Wang, Y.; Gao, Q. Effect of puerarin in promoting fatty acid oxidation by increasing mitochondrial oxidative capacity and biogenesis in skeletal muscle in diabetic rats. Nutr. Diabetes, 2018, 8(1), 1.
[http://dx.doi.org/10.1038/s41387-017-0009-6] [PMID: 29330446]
[105]
Qiu, L.; Luo, Y.; Chen, X. Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats. Biomed. Pharmacother., 2018, 103, 1585-1591.
[http://dx.doi.org/10.1016/j.biopha.2018.05.003] [PMID: 29864946]
[106]
Wei, L.; Sun, X.; Qi, X.; Zhang, Y.; Li, Y.; Xu, Y. Dihydromyricetin ameliorates cardiac ischemia/reperfusion injury through Sirt3 activation. BioMed Res. Int., 2019, 2019, 1-9.
[http://dx.doi.org/10.1155/2019/6803943] [PMID: 31139646]
[107]
Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol., 2011, 12(1), 9-14.
[http://dx.doi.org/10.1038/nrm3028] [PMID: 21179058]
[108]
Wang, Y.; Wei, N.; Li, X. Preclinical evidence and possible mechanisms of baicalein for rats and mice with Parkinson’s disease: A systematic review and meta-analysis. Front. Aging Neurosci., 2020, 12, 277.
[http://dx.doi.org/10.3389/fnagi.2020.00277] [PMID: 33101006]
[109]
Ashrafi, G.; Schwarz, T.L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ., 2013, 20(1), 31-42.
[http://dx.doi.org/10.1038/cdd.2012.81] [PMID: 22743996]
[110]
Filomeni, G.; Graziani, I.; De Zio, D.; Dini, L.; Centonze, D.; Rotilio, G.; Ciriolo, M.R. Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: Possible implications for Parkinson’s disease. Neurobiol. Aging, 2012, 33(4), 767-785.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.021] [PMID: 20594614]
[111]
Yu, X.; Xu, Y.; Zhang, S.; Sun, J.; Liu, P.; Xiao, L.; Tang, Y.; Liu, L.; Yao, P. Quercetin attenuates chronic ethanol-induced hepatic mitochondrial damage through enhanced mitophagy. Nutrients, 2016, 8(1), 27.
[http://dx.doi.org/10.3390/nu8010027] [PMID: 26742072]
[112]
Liu, P.; Lin, H.; Xu, Y.; Zhou, F.; Wang, J.; Liu, J.; Zhu, X.; Guo, X.; Tang, Y.; Yao, P. Frataxin-mediated PINK1-parkin-dependent mitophagy in hepatic steatosis: The protective effects of quercetin. Mol. Nutr. Food Res., 2018, 62(16), 1800164.
[http://dx.doi.org/10.1002/mnfr.201800164] [PMID: 29935106]
[113]
Chen, X.; Yi, L.; Song, S.; Wang, L.; Liang, Q.; Wang, Y.; Wu, Y.; Gao, Q. Puerarin attenuates palmitate-induced mitochondrial dysfunction, impaired mitophagy and inflammation in L6 myotubes. Life Sci., 2018, 206, 84-92.
[http://dx.doi.org/10.1016/j.lfs.2018.05.041] [PMID: 29802940]
[114]
Feng, J.; Chen, X.; Lu, S.; Li, W.; Yang, D.; Su, W.; Wang, X.; Shen, J. Naringin attenuates cerebral ischemia-reperfusion injury through inhibiting peroxynitrite-mediated mitophagy activation. Mol. Neurobiol., 2018, 55(12), 9029-9042.
[http://dx.doi.org/10.1007/s12035-018-1027-7] [PMID: 29627876]
[115]
Tilokani, L.; Nagashima, S.; Paupe, V.; Prudent, J. Mitochondrial dynamics: Overview of molecular mechanisms. Essays Biochem., 2018, 62(3), 341-360.
[http://dx.doi.org/10.1042/EBC20170104] [PMID: 30030364]
[116]
Kraus, F.; Ryan, M.T. The constriction and scission machineries involved in mitochondrial fission. J. Cell Sci., 2017, 130(18), jcs.199562.
[http://dx.doi.org/10.1242/jcs.199562] [PMID: 28842472]
[117]
Pernas, L.; Scorrano, L. Mito-morphosis: Mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu. Rev. Physiol., 2016, 78(1), 505-531.
[http://dx.doi.org/10.1146/annurev-physiol-021115-105011] [PMID: 26667075]
[118]
Fonseca, T.B.; Sánchez-Guerrero, Á.; Milosevic, I.; Raimundo, N. Mitochondrial fission requires DRP1 but not dynamins. Nature, 2019, 570(7761), E34-E42.
[http://dx.doi.org/10.1038/s41586-019-1296-y] [PMID: 31217603]
[119]
Liu, P.; Zou, D.; Yi, L.; Chen, M.; Gao, Y.; Zhou, R.; Zhang, Q.; Zhou, Y.; Zhu, J.; Chen, K.; Mi, M. Quercetin ameliorates hypobaric hypoxia-induced memory impairment through mitochondrial and neuron function adaptation via the PGC-1α pathway. Restor. Neurol. Neurosci., 2015, 33(2), 143-157.
[http://dx.doi.org/10.3233/RNN-140446] [PMID: 25588463]
[120]
Chitra, L.; Boopathy, R. Adaptability to hypobaric hypoxia is facilitated through mitochondrial bioenergetics: An in vivo study. Br. J. Pharmacol., 2013, 169(5), 1035-1047.
[http://dx.doi.org/10.1111/bph.12179] [PMID: 23517027]
[121]
Kicinska, A.; Kampa, R.P.; Daniluk, J.; Sek, A.; Jarmuszkiewicz, W.; Szewczyk, A.; Bednarczyk, P. Regulation of the mitochondrial BKCa channel by the citrus flavonoid naringenin as a potential means of preventing cell damage. Molecules, 2020, 25, 3010.
[122]
Cui, L.; Li, Z.; Chang, X.; Cong, G.; Hao, L. Quercetin attenuates vascular calcification by inhibiting oxidative stress and mitochondrial fission. Vascul. Pharmacol., 2017, 88, 21-29.
[http://dx.doi.org/10.1016/j.vph.2016.11.006] [PMID: 27932069]
[123]
Chen, C.; Huang, J.; Shen, J.; Bai, Q. Quercetin improves endothelial insulin sensitivity in obese mice by inhibiting Drp1 phosphorylation at serine 616 and mitochondrial fragmentation. Acta Biochim. Biophys. Sin., 2019, 51(12), 1250-1257.
[http://dx.doi.org/10.1093/abbs/gmz127] [PMID: 31781748]
[124]
Yang, X.; Liu, T.; Chen, B.; Wang, F.; Yang, Q.; Chen, X. Grape seed proanthocyanidins prevent irradiation-induced differentiation of human lung fibroblasts by ameliorating mitochondrial dysfunction. Sci. Rep., 2017, 7(1), 62.
[http://dx.doi.org/10.1038/s41598-017-00108-9] [PMID: 28246402]
[125]
Li, S.; Sun, X.; Xu, L.; Sun, R.; Ma, Z.; Deng, X.; Liu, B.; Fu, Q.; Qu, R.; Ma, S. Baicalin attenuates in vivo and in vitro hyperglycemia-exacerbated ischemia/reperfusion injury by regulating mitochondrial function in a manner dependent on AMPK. Eur. J. Pharmacol., 2017, 815, 118-126.
[http://dx.doi.org/10.1016/j.ejphar.2017.07.041] [PMID: 28743390]
[126]
Wu, B.; Luo, H.; Zhou, X.; Cheng, C.; Lin, L.; Liu, B.; Liu, K.; Li, P.; Yang, H. Succinate-induced neuronal mitochondrial fission and hexokinase II malfunction in ischemic stroke: Therapeutical effects of kaempferol. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(9), 2307-2318.
[http://dx.doi.org/10.1016/j.bbadis.2017.06.011] [PMID: 28634116]
[127]
Huang, Y.; Chen, K.; Ren, Q.; Yi, L.; Zhu, J.; Zhang, Q.; Mi, M. Dihydromyricetin attenuates dexamethasone-induced muscle atrophy by improving mitochondrial function via the PGC-1α Pathway. Cell. Physiol. Biochem., 2018, 49(2), 758-779.
[http://dx.doi.org/10.1159/000493040] [PMID: 30165349]
[128]
Son, E.S.; Kim, S.H.; Ryter, S.W.; Yeo, E.J.; Kyung, S.Y.; Kim, Y.J.; Jeong, S.H.; Lee, C.S.; Park, J.W. Quercetogetin protects against cigarette smoke extract-induced apoptosis in epithelial cells by inhibiting mitophagy. Toxicol. In Vitro, 2018, 48, 170-178.
[http://dx.doi.org/10.1016/j.tiv.2018.01.011] [PMID: 29391262]
[129]
Gao, Q.; Pan, H.Y.; Qiu, S.; Lu, Y.; Bruce, I.C.; Luo, J.H.; Xia, Q. Atractyloside and 5-hydroxydecanoate block the protective effect of Puerarin in isolated rat heart. Life Sci., 2006, 79(3), 217-224.
[http://dx.doi.org/10.1016/j.lfs.2005.12.040] [PMID: 16458326]
[130]
Couvreur, N.; Tissier, R.; Pons, S.; Chenoune, M.; Waintraub, X.; Berdeaux, A.; Ghaleh, B. The ceiling effect of pharmacological postconditioning with the phytoestrogen genistein is reversed by the GSK3beta inhibitor SB 216763 [3-(2,4-dichlorophenyl)-4(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione] through mitochondrial ATP-dependent potassium channel opening. J. Pharmacol. Exp. Ther., 2009, 329(3), 1134-1141.
[http://dx.doi.org/10.1124/jpet.109.152587] [PMID: 19318592]
[131]
Hu, Y.; Li, L.; Yin, W.; Shen, L.; You, B.; Gao, H. Protective effect of proanthocyanidins on anoxia-reoxygenation injury of myocardial cells mediated by the PI3K/Akt/GSK-3β pathway and mitochondrial ATP-sensitive potassium channel. Mol. Med. Rep., 2014, 10(4), 2051-2058.
[http://dx.doi.org/10.3892/mmr.2014.2459] [PMID: 25109283]
[132]
Meng, L.M.; Ma, H.J.; Guo, H.; Kong, Q.Q.; Zhang, Y. The cardioprotective effect of naringenin against ischemia–reperfusion injury through activation of ATP-sensitive potassium channel in rat. Can. J. Physiol. Pharmacol., 2016, 94(9), 973-978.
[http://dx.doi.org/10.1139/cjpp-2016-0008] [PMID: 27408985]
[133]
Testai, L.; Martelli, A.; Marino, A.; D’Antongiovanni, V.; Ciregia, F.; Giusti, L.; Lucacchini, A.; Chericoni, S.; Breschi, M.C.; Calderone, V. The activation of mitochondrial BK potassium channels contributes to the protective effects of naringenin against myocardial ischemia/reperfusion injury. Biochem. Pharmacol., 2013, 85(11), 1634-1643.
[http://dx.doi.org/10.1016/j.bcp.2013.03.018] [PMID: 23567997]
[134]
Testai, L.; Da Pozzo, E.; Piano, I.; Pistelli, L.; Gargini, C.; Breschi, M.C.; Braca, A.; Martini, C.; Martelli, A.; Calderone, V. The citrus flavanone naringenin produces cardioprotective effects in hearts from 1 year old rat, through activation of mitoBK channels. Front. Pharmacol., 2017, 8, 71.
[http://dx.doi.org/10.3389/fphar.2017.00071] [PMID: 28289383]
[135]
Kampa, R.P.; Kicinska, A.; Jarmuszkiewicz, W.; Pasikowska-Piwko, M.; Dolegowska, B.; Debowska, R.; Szewczyk, A.; Bednarczyk, P. Naringenin as an opener of mitochondrial potassium channels in dermal fibroblasts. Exp. Dermatol., 2019, 28(5), 543-550.
[http://dx.doi.org/10.1111/exd.13903] [PMID: 30776180]