Cell Death Mechanisms Elicited by Multifactorial Stress Inducers- A Minireview

Article ID: e091023221907 Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Throughout the cell cycle, the cells are exposed to various endogenous and exogenous factors that could damage the cell at the molecular or extracellular level, leading to its death. Cells can undergo oxidative stress when they are exposed to repeated doses of oxidants produced by metabolism or the result of exposure to toxic chemicals, radiations, nanoparticles, harmful smoke, etc. Reactive oxygen species (ROS) or reactive nitrogen species (RNS) are examples of these oxidants, and the body's primary defense, i.e., the antioxidant enzymes and antioxidant molecules, attempt to scavenge them. Repair mechanisms can protect the DNA to some extent even when they are escaped from this defense system. However, damaged cells can also choose to die in different ways. Different types of cell death can be caused by exposure to different types of nanoparticles, nanostructures, toxic molecules, oxidants, and radiation. This mini-review will discuss reported types of cell death in the literature such as necrosis, necroptosis, secondary necrosis, apoptosis, ferroptosis, pyroptosis, oncosis, and other eight types of cell death. The different pathways of these types of cell deaths are also described in detail mentioning the differences of enzymes involved in these pathways.

Graphical Abstract

[1]
Agraharam G, Girigoswami A, Girigoswami K. Myricetin: A multifunctional flavonol in biomedicine. Curr Pharmacol Rep 2022; 8(1): 48-61. a
[http://dx.doi.org/10.1007/s40495-021-00269-2] [PMID: 35036292]
[2]
Sharmiladevi P, Haribabu V, Girigoswami K, Sulaiman Farook A, Girigoswami A. Author correction: Effect of mesoporous nano water reservoir on MR relaxivity. Sci Rep 2018; 8(1): 10829.
[http://dx.doi.org/10.1038/s41598-018-28859-z] [PMID: 29997394]
[3]
Haribabu V, Sharmiladevi P, Akhtar N, Farook AS, Girigoswami K, Girigoswami A. Label free ultrasmall fluoromagnetic ferrite-clusters for targeted cancer imaging and drug delivery. Curr Drug Deliv 2019; 16(3): 233-41.
[http://dx.doi.org/10.2174/1567201816666181119112410] [PMID: 30451110]
[4]
Deepika R, Girigoswami K, Murugesan R, Girigoswami A. Influence of divalent cation on morphology and drug delivery efficiency of mixed polymer nanoparticles. Curr Drug Deliv 2018; 15(5): 652-7.
[http://dx.doi.org/10.2174/1567201814666170825160617] [PMID: 28847271]
[5]
Girigoswami A, Yassine W, Sharmiladevi P, Haribabu V, Girigoswami K. Camouflaged nanosilver with excitation wavelength dependent high quantum yield for targeted theranostic. Sci Rep 2018; 8(1): 16459.
[http://dx.doi.org/10.1038/s41598-018-34843-4] [PMID: 30405190]
[6]
Ghosh S, Girigoswami K, Girigoswami A. Membrane-encapsulated camouflaged nanomedicines in drug delivery. Nanomedicine 2019; 14(15): 2067-82.
[http://dx.doi.org/10.2217/nnm-2019-0155] [PMID: 31355709]
[7]
Girigoswami K. Toxicity of metal oxide nanoparticles. Adv Exp Med Biol 2018; 1048: 99-122.
[http://dx.doi.org/10.1007/978-3-319-72041-8_7] [PMID: 29453535]
[8]
Bose K, Bhaumik G, Ghosh R. Chronic low dose exposure to hydrogen peroxide changes sensitivity of V79 cells to different damaging agents. Indian J Exp Biol 2003; 41(8): 832-6.
[PMID: 15248480]
[9]
Bosegirigoswami K, Bhaumik G, Ghosh R. Induced resistance in cells exposed to repeated low doses of HO involves enhanced activity of antioxidant enzymes. Cell Biol Int 2005; 29(9): 761-7.
[http://dx.doi.org/10.1016/j.cellbi.2005.05.001] [PMID: 16087365]
[10]
Bose Girigoswami K, Ghosh R. Response to γ-irradiation in V79 cells conditioned by repeated treatment with low doses of hydrogen peroxide. Radiat Environ Biophys 2005; 44(2): 131-7.
[http://dx.doi.org/10.1007/s00411-005-0009-0] [PMID: 16136317]
[11]
Ghosh R, Girigoswami K. NADH dehydrogenase subunits are overexpressed in cells exposed repeatedly to H2O2. Mutat Res 2008; 638(1-2): 210-5.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.08.008] [PMID: 17905312]
[12]
Ghosh R, Girigoswami K, Dipanjan G. Suppression of apoptosis leads to cisplatin resistance in V79 cells subjected to chronic oxidative stress. Indian J Biochem Biophys 2012; 49(5): 363-70.
[PMID: 23259323]
[13]
Ghosh R, Girigoswami K, Guha D. Caspase dependent apoptosis is only inhibited on ᵧirradiation of cells conditioned by repetitive oxidative stress. Int J Sci Res 2013; 2(9): 12-8.
[14]
Obeng E. Apoptosis (programmed cell death) and its signals - A review. Braz J Biol 2021; 81(4): 1133-43.
[http://dx.doi.org/10.1590/1519-6984.228437] [PMID: 33111928]
[15]
Khalid N, Azimpouran M. Necrosis. In: StatPearls. Treasure Island, FL: StatPearls Publishing 2022.
[16]
Berghe TV, Vanlangenakker N, Parthoens E, et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 2010; 17(6): 922-30.
[http://dx.doi.org/10.1038/cdd.2009.184] [PMID: 20010783]
[17]
Tonnus W, Meyer C, Paliege A, et al. The pathological features of regulated necrosis. J Pathol 2019; 247(5): 697-707.
[http://dx.doi.org/10.1002/path.5248] [PMID: 30714148]
[18]
Maremonti F, Meyer C, Linkermann A. Mechanisms and models of kidney tubular necrosis and nephron loss. J Am Soc Nephrol 2022; 33(3): 472-86.
[http://dx.doi.org/10.1681/ASN.2021101293] [PMID: 35022311]
[19]
Majtnerová P, Roušar T. An overview of apoptosis assays detecting DNA fragmentation. Mol Biol Rep 2018; 45(5): 1469-78.
[http://dx.doi.org/10.1007/s11033-018-4258-9] [PMID: 30022463]
[20]
Zhang J, Liu Y, Yao W, Li Q, Liu H, Pan Z. Initiation of follicular atresia: Gene networks during early atresia in pig ovaries. Reproduction 2018; 156(1): 23-33.
[http://dx.doi.org/10.1530/REP-18-0058] [PMID: 29743261]
[21]
Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature 2000; 407(6805): 784-8.
[http://dx.doi.org/10.1038/35037722] [PMID: 11048729]
[22]
D’Arcy MS. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 2019; 43(6): 582-92.
[http://dx.doi.org/10.1002/cbin.11137] [PMID: 30958602]
[23]
Santagostino SF, Assenmacher CA, Tarrant JC, Adedeji AO, Radaelli E. Mechanisms of regulated cell death: Current perspectives. Vet Pathol 2021; 58(4): 596-623.
[http://dx.doi.org/10.1177/03009858211005537] [PMID: 34039100]
[24]
Pickering AM, Vojtovich L, Tower J, A Davies KJ. Oxidative stress adaptation with acute, chronic, and repeated stress. Free Radic Biol Med 2013; 55: 109-18.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.001] [PMID: 23142766]
[25]
Liu L, Fan J, Ai G, et al. Berberine in combination with cisplatin induces necroptosis and apoptosis in ovarian cancer cells. Biol Res 2019; 52(1): 37.
[http://dx.doi.org/10.1186/s40659-019-0243-6] [PMID: 31319879]
[26]
Chou CH, Chen MJ. The effect of steroid hormones on ovarian follicle development. Vitam Horm 2018; 107: 155-75.
[http://dx.doi.org/10.1016/bs.vh.2018.01.013] [PMID: 29544629]
[27]
Bezerra MÉS, Barberino RS, Menezes VG, et al. Insulin-like growth factor-1 (IGF-1) promotes primordial follicle growth and reduces DNA fragmentation through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signalling pathway. Reprod Fertil Dev 2018; 30(11): 1503-13.
[http://dx.doi.org/10.1071/RD17332] [PMID: 29843892]
[28]
Jan R, Chaudhry GS. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv Pharm Bull 2019; 9(2): 205-18.
[http://dx.doi.org/10.15171/apb.2019.024] [PMID: 31380246]
[29]
Abate M, Festa A, Falco M, et al. Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol 2020; 98: 139-53.
[http://dx.doi.org/10.1016/j.semcdb.2019.05.022] [PMID: 31154010]
[30]
Horvitz HR. Programmed cell death: The biology of cell death in the nematode caenorhabditis elegans and implications for the understanding and treatment of human brain injury after cardiac surgery.Brain Injury and Pediatric Cardiac Surgery. CRC Press 2019; pp. 75-83.
[http://dx.doi.org/10.1201/9780367813864-5]
[31]
Yang B, Yin Z, Gao S, et al. Characterization of Caspase8 and its role in the regulation of apoptosis-related genes in large yellow croaker (Larimichthys crocea). Aquaculture 2021; 539: 736595.
[http://dx.doi.org/10.1016/j.aquaculture.2021.736595]
[32]
Mishra N, Wei H, Conradt B. Caenorhabditis elegans ced-3 Caspase Is Required for Asymmetric Divisions That Generate Cells Programmed To Die. Genetics 2018; 210(3): 983-98.
[http://dx.doi.org/10.1534/genetics.118.301500] [PMID: 30194072]
[33]
Wang H, Zhu J, Jiang L, et al. Mechanism of heshouwuyin inhibiting the Cyt c/Apaf-1/Caspase-9/Caspase-3 pathway in spermatogenic cell apoptosis. BMC Complement Med Ther 2020; 20(1): 180.
[http://dx.doi.org/10.1186/s12906-020-02904-9] [PMID: 32527252]
[34]
Boice A, Bouchier-Hayes L. Targeting apoptotic caspases in cancer. Biochim Biophys Acta Mol Cell Res 2020; 1867(6): 118688.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118688] [PMID: 32087180]
[35]
Gao J, Tian X, Yan X, et al. Selenium exerts protective effects against fluoride-induced apoptosis and oxidative stress and altered the expression of Bcl-2/caspase family. Biol Trace Elem Res 2021; 199(2): 682-92.
[http://dx.doi.org/10.1007/s12011-020-02185-w] [PMID: 32613488]
[36]
King SD, Gray CF, Song L, et al. The cisd gene family regulates physiological germline apoptosis through ced-13 and the canonical cell death pathway in Caenorhabditis elegans. Cell Death Differ 2019; 26(1): 162-78.
[http://dx.doi.org/10.1038/s41418-018-0108-5] [PMID: 29666474]
[37]
Vaux DL, Weissman IL, Kim SK. Prevention of programmed cell death in caenorhabditis elegans by human bcl-2. Science 1992; 258(5090): 1955-7.
[http://dx.doi.org/10.1126/science.1470921] [PMID: 1470921]
[38]
Hengartner MO, Horvitz HR. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 1994; 76(4): 665-76.
[http://dx.doi.org/10.1016/0092-8674(94)90506-1] [PMID: 7907274]
[39]
Green DR. The mitochondrial pathway of apoptosis part II: The BCL-2 protein family. Cold Spring Harb Perspect Biol 2022; 14(6): a041046.
[http://dx.doi.org/10.1101/cshperspect.a041046] [PMID: 35701220]
[40]
Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 2019; 20(3): 175-93.
[http://dx.doi.org/10.1038/s41580-018-0089-8] [PMID: 30655609]
[41]
Serrano BP, Hardy JA. Phosphorylation by protein kinase A disassembles the caspase-9 core. Cell Death Differ 2018; 25(6): 1025-39.
[http://dx.doi.org/10.1038/s41418-017-0052-9] [PMID: 29352269]
[42]
Green DR. Caspase activation and inhibition. Cold Spring Harb Perspect Biol 2022; 14(8): a041020.
[http://dx.doi.org/10.1101/cshperspect.a041020] [PMID: 35914782]
[43]
Liu L, Zhang H, Wang Z, Song D. Peptide-functionalized upconversion nanoparticles-based FRET sensing platform for Caspase-9 activity detection in vitro and in vivo. Biosens Bioelectron 2019; 141: 111403.
[http://dx.doi.org/10.1016/j.bios.2019.111403] [PMID: 31176111]
[44]
Voss AK, Strasser A. The essentials of developmental apoptosis. F1000Res 2020; 9 F1000 Faculty Rev-.http://dx.doi.org/10.12688/f1000research.21571.1
[45]
Green DR. The mitochondrial pathway of apoptosis part I: MOMP and beyond. Cold Spring Harb Perspect Biol 2022; 14(5): a041038.
[http://dx.doi.org/10.1101/cshperspect.a041038] [PMID: 35623793]
[46]
Fullstone G, Bauer TL, Guttà C, Salvucci M, Prehn JHM, Rehm M. The apoptosome molecular timer synergises with XIAP to suppress apoptosis execution and contributes to prognosticating survival in colorectal cancer. Cell Death Differ 2020; 27(10): 2828-42.
[http://dx.doi.org/10.1038/s41418-020-0545-9] [PMID: 32341447]
[47]
Polykretis P, Luchinat E. Biophysical characterization of the interaction between the full-length XIAP and Smac/DIABLO. Biochem Biophys Res Commun 2021; 568: 180-5.
[http://dx.doi.org/10.1016/j.bbrc.2021.06.077] [PMID: 34247143]
[48]
Haimovici A, Höfer C, Badr MT, et al. Spontaneous activity of the mitochondrial apoptosis pathway drives chromosomal defects, the appearance of micronuclei and cancer metastasis through the Caspase-Activated DNAse. Cell Death Dis 2022; 13(4): 315.
[http://dx.doi.org/10.1038/s41419-022-04768-y] [PMID: 35393399]
[49]
Huang CH, Wang FT, Chan WH. Role of caspase-3-cleaved/activated PAK2 in brusatol-triggered apoptosis of human lung cancer A549 cells. Toxicol Res 2022; 11(5): 791-803.
[http://dx.doi.org/10.1093/toxres/tfac057] [PMID: 36337251]
[50]
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 2020; 21(2): 85-100.
[http://dx.doi.org/10.1038/s41580-019-0173-8] [PMID: 31636403]
[51]
Kopeina GS, Prokhorova EA, Lavrik IN, Zhivotovsky B. Alterations in the nucleocytoplasmic transport in apoptosis: Caspases lead the way. Cell Prolif 2018; 51(5): e12467.
[http://dx.doi.org/10.1111/cpr.12467] [PMID: 29947118]
[52]
Li S, Huang Y. Ferroptosis: An iron-dependent cell death form linking metabolism, diseases, immune cell and targeted therapy. Clin Transl Oncol 2022; 24(1): 1-12.
[http://dx.doi.org/10.1007/s12094-021-02669-8] [PMID: 34160772]
[53]
Yang Y, Luo M, Zhang K, et al. Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat Commun 2020; 11(1): 433.
[http://dx.doi.org/10.1038/s41467-020-14324-x] [PMID: 31974380]
[54]
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017; 171(2): 273-85.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[55]
Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X. Ferroptosis is an autophagic cell death process. Cell Res 2016; 26(9): 1021-32.
[http://dx.doi.org/10.1038/cr.2016.95] [PMID: 27514700]
[56]
Gao M, Jiang X. To eat or not to eat — the metabolic flavor of ferroptosis. Curr Opin Cell Biol 2018; 51: 58-64.
[http://dx.doi.org/10.1016/j.ceb.2017.11.001] [PMID: 29175614]
[57]
Gao M, Yi J, Zhu J, et al. Role of mitochondria in ferroptosis. Mol Cell 2019; 73(2): 354-363.e3.
[http://dx.doi.org/10.1016/j.molcel.2018.10.042] [PMID: 30581146]
[58]
Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 2015; 520(7545): 57-62.
[http://dx.doi.org/10.1038/nature14344] [PMID: 25799988]
[59]
Wang SJ, Li D, Ou Y, et al. Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep 2016; 17(2): 366-73.
[http://dx.doi.org/10.1016/j.celrep.2016.09.022] [PMID: 27705786]
[60]
Zilka O, Shah R, Li B, et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent Sci 2017; 3(3): 232-43.
[http://dx.doi.org/10.1021/acscentsci.7b00028] [PMID: 28386601]
[61]
Gong Y, Wang N, Liu N, Dong H. Lipid peroxidation and GPX4 inhibition are common causes for myofibroblast differentiation and ferroptosis. DNA Cell Biol 2019; 38(7): 725-33.
[http://dx.doi.org/10.1089/dna.2018.4541] [PMID: 31140862]
[62]
Ma S, Mao Q, Yi L, Zhao M, Chen J. Apoptosis, autophagy, and pyroptosis: Immune escape strategies for persistent infection and pathogenesis of classical swine fever virus. Pathogens 2019; 8(4): 239.
[http://dx.doi.org/10.3390/pathogens8040239] [PMID: 31744077]
[63]
Kesavardhana S, Malireddi RS, Kanneganti TD. Caspases in cell death, inflammation, and gasdermin-induced pyroptosis. Annu Rev Immunol 2020; 38: 567-95.
[http://dx.doi.org/10.1146/annurev-immunol-073119-095439] [PMID: 32017655]
[64]
Ryter SW, Choi AMK. Cell death and repair in lung disease. In: Pathology of Human Disease. Elsevier Publications 2014; pp. 2558-74.
[http://dx.doi.org/10.1016/B978-0-12-386456-7.05302-8]
[65]
Gao H, Gao X. Brain targeted drug delivery systems: A focus on Nanotechnology and Nanoparticulates. Academic Press, Elsevier 2019.
[66]
den Hartigh AB, Fink SL. Detection of inflammasome activation and pyroptotic cell death in murine bone marrow-derived macrophages. J Vis Exp 2018; 135(135): e57463.
[PMID: 29863661]
[67]
Duris K, Splichal Z, Jurajda M. The role of inflammatory response in stroke associated programmed cell death. Curr Neuropharmacol 2018; 16(9): 1365-74.
[http://dx.doi.org/10.2174/1570159X16666180222155833] [PMID: 29473512]
[68]
Vande Walle L, Lamkanfi M. Pyroptosis. Curr Biol 2016; 26(13): R568-72.
[http://dx.doi.org/10.1016/j.cub.2016.02.019] [PMID: 27404251]
[69]
Nozaki K, Li L, Miao EA. Innate sensors trigger regulated cell death to combat intracellular infection. Annu Rev Immunol 2022; 40(1): 469-98.
[http://dx.doi.org/10.1146/annurev-immunol-101320-011235] [PMID: 35138947]
[70]
Xue Y, Enosi Tuipulotu D, Tan WH, Kay C, Man SM. Emerging activators and regulators of inflammasomes and pyroptosis. Trends Immunol 2019; 40(11): 1035-52.
[http://dx.doi.org/10.1016/j.it.2019.09.005] [PMID: 31662274]
[71]
Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 2017; 42(4): 245-54.
[http://dx.doi.org/10.1016/j.tibs.2016.10.004] [PMID: 27932073]
[72]
Brokatzky D, Mostowy S. Pyroptosis in host defence against bacterial infection. Dis Model Mech 2022; 15(7): dmm049414.
[http://dx.doi.org/10.1242/dmm.049414] [PMID: 35801644]
[73]
Fritsch M, Günther SD, Schwarzer R, et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 2019; 575(7784): 683-7.
[http://dx.doi.org/10.1038/s41586-019-1770-6] [PMID: 31748744]
[74]
Lee BL, Stowe IB, Gupta A, et al. Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation. J Exp Med 2018; 215(9): 2279-88.
[http://dx.doi.org/10.1084/jem.20180589] [PMID: 30135078]
[75]
Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995; 146(1): 3-15.
[PMID: 7856735]
[76]
J Castejón O. Electron microscopy study of nerve cell death types in some central nervous system diseases. A Review. Am J Biomed Sci 2019; 3(1): 73-83.
[http://dx.doi.org/10.34297/AJBSR.2019.03.000637]
[77]
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal cell death. Physiol Rev 2018; 98(2): 813-80.
[http://dx.doi.org/10.1152/physrev.00011.2017] [PMID: 29488822]
[78]
Guan R, Chen Y, Zeng L, et al. Oncosis-inducing cyclometalated iridium( iii ) complexes. Chem Sci 2018; 9(23): 5183-90.
[http://dx.doi.org/10.1039/C8SC01142G] [PMID: 29997872]
[79]
Xiong TQ, Guo CY, Tan B, Gui Y, Li YC. The temporal and spatial changes of microtubule cytoskeleton in the CA1 stratum radiatum following global transient ischemia. J Chem Neuroanat 2019; 101: 101682.
[http://dx.doi.org/10.1016/j.jchemneu.2019.101682] [PMID: 31494221]
[80]
Cao H, Wu J, Luan N, Wang Y, Lin K, Liu C. Evaluation of a bivalent recombinant vaccine candidate targeting norovirus and rotavirus: Antibodies to rotavirus NSP4 exert antidiarrheal effects without virus neutralization. J Med Virol 2022; 94(8): 3847-56.
[http://dx.doi.org/10.1002/jmv.27809] [PMID: 35474320]
[81]
Chang-Graham AL, Perry JL, Strtak AC, et al. Rotavirus calcium dysregulation manifests as dynamic calcium signaling in the cytoplasm and endoplasmic reticulum. Sci Rep 2019; 9(1): 10822.
[http://dx.doi.org/10.1038/s41598-019-46856-8] [PMID: 31346185]
[82]
Reinhart R, Rohner L, Wicki S, Fux M, Kaufmann T. BH3 mimetics efficiently induce apoptosis in mouse basophils and mast cells. Cell Death Differ 2018; 25(1): 204-16.
[http://dx.doi.org/10.1038/cdd.2017.154] [PMID: 28960207]
[83]
Naz Z, Moin ST. Investigation of the structural and dynamical properties of human uncoupling protein 2 through molecular dynamics simulations. J Mol Graph Model 2022; 114: 108203.
[http://dx.doi.org/10.1016/j.jmgm.2022.108203] [PMID: 35512626]
[84]
Lopina OD, Tverskoi AM, Klimanova EA, Sidorenko SV, Orlov SN. Ouabain-induced cell death and survival. Role of α1-Na, K-ATPase-mediated signaling and [Na+] i/[K+] i-dependent gene expression. Front Physiol 2020; 11: 1060.
[http://dx.doi.org/10.3389/fphys.2020.01060] [PMID: 33013454]
[85]
Liu L, Li J, Ke Y, et al. The key players of parthanatos: Opportunities for targeting multiple levels in the therapy of parthanatos-based pathogenesis. Cell Mol Life Sci 2022; 79(1): 60.
[http://dx.doi.org/10.1007/s00018-021-04109-w] [PMID: 35000037]
[86]
Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 2014; 171(8): 2000-16.
[http://dx.doi.org/10.1111/bph.12416] [PMID: 24684389]
[87]
Summers DW, DiAntonio A, Milbrandt J. Mitochondrial dysfunction induces Sarm1-dependent cell death in sensory neurons. J Neurosci 2014; 34(28): 9338-50.
[http://dx.doi.org/10.1523/JNEUROSCI.0877-14.2014] [PMID: 25009267]
[88]
Radosevich JA. Apoptosis and Beyond: The Many Ways Cells Die. Wiley publishers 2018; pp. 343-66.
[http://dx.doi.org/10.1002/9781119432463]
[89]
Kim E, Lee DM, Seo MJ, Lee HJ, Choi KS. Intracellular Ca2+ imbalance critically contributes to paraptosis. Front Cell Dev Biol 2021; 8: 607844.
[http://dx.doi.org/10.3389/fcell.2020.607844] [PMID: 33585447]
[90]
Zohar-Fux M, Ben-Hamo-Arad A, Arad T, et al. The phagocytic cyst cells in Drosophila testis eliminate germ cell progenitors via phagoptosis. Sci Adv 2022; 8(24): eabm4937.
[http://dx.doi.org/10.1126/sciadv.abm4937] [PMID: 35714186]
[91]
Serizier SB, Peterson JS, McCall K. Non-autonomous cell death induced by the Draper phagocytosis receptor requires signaling through the JNK and SRC pathways. J Cell Sci 2022; 135(20): jcs250134.
[http://dx.doi.org/10.1242/jcs.250134] [PMID: 36177600]
[92]
Nah J, Zablocki D, Sadoshima J. Autosis. JACC Basic Transl Sci 2020; 5(8): 857-69.
[http://dx.doi.org/10.1016/j.jacbts.2020.04.014] [PMID: 32875173]
[93]
Liu Y, Shoji-Kawata S, Sumpter RM Jr, et al. Autosis is a Na +, K + -ATPase–regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia–ischemia. Proc Natl Acad Sci USA 2013; 110(51): 20364-71.
[http://dx.doi.org/10.1073/pnas.1319661110] [PMID: 24277826]
[94]
Nah J, Sung EA, Zhai P, Zablocki D, Sadoshima J. Tfeb-mediated transcriptional regulation of autophagy induces autosis during ischemia/reperfusion in the heart. Cells 2022; 11(2): 258.
[http://dx.doi.org/10.3390/cells11020258] [PMID: 35053374]
[95]
Zimmerman T, Ibrahim SA. Autolysis and cell death is affected by pH in L. reuteri DSM 20016 cells. Foods 2021; 10(5): 1026.
[http://dx.doi.org/10.3390/foods10051026] [PMID: 34065120]
[96]
Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochimica et Biophysica Acta (BBA)-. Mol Cell Res 2013; 1833(12): 3481.
[97]
Anoikis GA. Cell Death Differ 2005; 12 (Suppl. 2): 1473-7.
[http://dx.doi.org/10.1038/sj.cdd.4401723] [PMID: 16247493]
[98]
Vorobjeva NV, Chernyak BV. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry 2020; 85(10): 1178-90.
[http://dx.doi.org/10.1134/S0006297920100065] [PMID: 33202203]
[99]
de Bont CM, Boelens WC, Pruijn GJM. NETosis, complement, and coagulation: A triangular relationship. Cell Mol Immunol 2019; 16(1): 19-27.
[http://dx.doi.org/10.1038/s41423-018-0024-0] [PMID: 29572545]
[100]
Thiam HR, Wong SL, Wagner DD, Waterman CM. Cellular mechanisms of NETosis. Annu Rev Cell Dev Biol 2020; 36(1): 191-218.
[http://dx.doi.org/10.1146/annurev-cellbio-020520-111016] [PMID: 32663035]
[101]
Lal S, Verma R, Chauhan A, et al. Antioxidant, antimicrobial, and photocatalytic activity of green synthesized ZnO-NPs from Myrica esculenta fruits extract. Inorg Chem Commun 2022; 141: 109518.
[http://dx.doi.org/10.1016/j.inoche.2022.109518]
[102]
Yuvaraj S, Ajeeth AK, Puhari SSM, et al. Chrysin protects cardiac H9c2 cells against H2O2-induced endoplasmic reticulum stress by up-regulating the Nrf2/PERK pathway. Mol Cell Biochem 2023; 478(3): 539-53.
[http://dx.doi.org/10.1007/s11010-022-04531-z] [PMID: 35943656]
[103]
Agraharam G, Girigoswami A, Girigoswami K. Nanoencapsulated myricetin to improve antioxidant activity and bioavailability: A study on zebrafish embryos. Chemistry 2021; 4(1): 1-17. b
[http://dx.doi.org/10.3390/chemistry4010001] [PMID: 37117617]
[104]
De S, Gopikrishna A, Keerthana V, Girigoswami A, Girigoswami K. An overview of nanoformulated nutraceuticals and their therapeutic approaches. Curr Nutr Food Sci 2021; 17(4): 392-407.
[http://dx.doi.org/10.2174/1573401316999200901120458]