Chitosan-based Nanomedicine in the Management of Age-related Macular Degeneration: A Review

Page: [13 - 27] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Age-related macular degeneration (AMD) is a leading cause of permanent blindness globally. Due to the various obstacles, highly invasive intravitreal (IVT) injections are the primary method used to deliver medications to the tissues of the posterior eye. An utmost patientfriendly topical ocular delivery approach has been extensively researched in recent years. Mucoadhesive compositions extend precorneal residence time while reducing precorneal clearance. They increase the likelihood of adhesion to corneal and conjunctival surfaces and, as a result, allow for enhanced delivery to the posterior eye segment. Due to its remarkable mucoadhesive characteristics, chitosan (CS) has undergone the most extensive research of any mucoadhesive polymer. Drug delivery to the front and back of the eye is still difficult. The pharmaceutical industry has shown greater interest in drug delivery systems (DDSs) based on nanotechnology (NT) in recent years, particularly those made from natural polymers like chitosan, alginate, etc. Because of their incredible adaptability, higher biological effects, and favourable physicochemical properties, CS-oriented nanomaterials (NMs) are explored by researchers as prospective nanocarriers. CS are the right substrates to develop pharmaceutical products, such as hydrogels, nanoparticles (NP), microparticles, and nanofibers, whether used alone or in composite form. CS-based nanocarriers deliver medicine, such as peptides, growth factors, vaccines, and genetic materials in regulated and targeted form. This review highlights current developments and challenges in chitosan- mediated nano therapies associated with AMD.

Graphical Abstract

[1]
Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2014; 2(2): e106-16.
[http://dx.doi.org/10.1016/S2214-109X(13)70145-1] [PMID: 25104651]
[2]
Holz FG, Schmitz-Valckenberg S, Fleckenstein M. Recent developments in the treatment of age-related macular degeneration. J Clin Invest 2014; 124(4): 1430-8.
[http://dx.doi.org/10.1172/JCI71029] [PMID: 24691477]
[3]
Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degeneration. Lancet 2018; 392(10153): 1147-59.
[http://dx.doi.org/10.1016/S0140-6736(18)31550-2] [PMID: 30303083]
[4]
Grossniklaus HE, Ling JX, Wallace TM, et al. Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization. Mol Vis 2002; 8: 119-26.
[PMID: 11979237]
[5]
Carneiro Â, Andrade JP. Nutritional and lifestyle interventions for age-related macular degeneration: A review. Oxid Med Cell Longev 2017; 2017: 6469138.
[PMID: 28154734]
[6]
de Koning-Backus APM, Buitendijk GHS, Kiefte-de Jong JC, et al. Intake of vegetables, fruit, and fish is beneficial for age-related macular degeneration. Am J Ophthalmol 2019; 198: 70-9.
[http://dx.doi.org/10.1016/j.ajo.2018.09.036] [PMID: 30312575]
[7]
Velilla S, García-Medina JJ, García-Layana A, et al. Smoking and age-related macular degeneration: Review and update. J Ophthalmol 2013; 2013: 1-11.
[http://dx.doi.org/10.1155/2013/895147] [PMID: 24368940]
[8]
Maugeri A, Barchitta M, Mazzone MG, Giuliano F, Agodi A. Complement system and age-related macular degeneration: Implications of gene-environment interaction for preventive and personalized medicine. BioMed Res Int 2018; 2018: 1-13.
[http://dx.doi.org/10.1155/2018/7532507] [PMID: 30225264]
[9]
Merle H, Béral L, Rocher M, et al. Class II human leukocyte antigen (HLA) and susceptibility to polypoidal choroidal vasculopathy in afro-caribbean descent. Clin Ophthalmol 2022; 16: 1047-53.
[http://dx.doi.org/10.2147/OPTH.S337084] [PMID: 35418742]
[10]
Korb CA, Elbaz H, Schuster AK, et al. Five-year cumulative incidence and progression of age-related macular degeneration: Results from the German population-based Gutenberg Health Study (GHS). Graefes Arch Clin Exp Ophthalmol 2022; 260(1): 55-64.
[http://dx.doi.org/10.1007/s00417-021-05312-y] [PMID: 34424371]
[11]
Flores R, Carneiro Â, Vieira M, Tenreiro S, Seabra MC. Age-Related macular degeneration: Pathophysiology, management, and future perspectives. IntJ ophthal 2021; 244(6): 495-511.
[12]
Fernandes AR. Zielińska A, Sanchez-Lopez E, et al. Exudative versus nonexudative age-related macular degeneration: Physiopathology and treatment options. Int J Mol Sci 2022; 23(5): 2592.
[http://dx.doi.org/10.3390/ijms23052592] [PMID: 35269743]
[13]
Kwon YH, Kim YA, Yoo YH. Loss of pigment epithelial cells is prevented by autophagy Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging. Elsevier 2017; pp. 105-17.
[http://dx.doi.org/10.1016/B978-0-12-805420-8.00003-2]
[14]
Yonekawa Y, Kim IK. Clinical characteristics and current treatment of age-related macular degeneration. Cold Spring Harb Perspect Med 2015; 5(1): a017178.
[http://dx.doi.org/10.1101/cshperspect.a017178] [PMID: 25280900]
[15]
Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: Impacts of membranes and barriers. Expert Opin Drug Deliv 2008; 5(5): 567-81.
[http://dx.doi.org/10.1517/17425247.5.5.567] [PMID: 18491982]
[16]
Agrahari V, Mandal A, Agrahari V, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res 2016; 6(6): 735-54.
[http://dx.doi.org/10.1007/s13346-016-0339-2] [PMID: 27798766]
[17]
Sánchez-López E, Egea MA, Davis BM, Guo L, Espina M, Silva AM, et al. Memantine-loaded pegylated biodegradable nanoparticles for the treatment of glaucoma. Small 2018; 14(2)
[http://dx.doi.org/10.1002/smll.201701808]
[18]
Mahaling B, Katti DS. Understanding the influence of surface properties of nanoparticles and penetration enhancers for improving bioavailability in eye tissues in vivo. Int J Pharm 2016; 501(1-2): 1-9.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.053] [PMID: 26821059]
[19]
Okabe K, Kimura H, Okabe J, et al. Effect of benzalkonium chloride on transscleral drug delivery. Invest Ophthalmol Vis Sci 2005; 46(2): 703-8.
[http://dx.doi.org/10.1167/iovs.03-0934] [PMID: 15671302]
[20]
Johnson LN, Cashman SM, Kumar-Singh R. Cell-penetrating peptide for enhanced delivery of nucleic acids and drugs to ocular tissues including retina and cornea. Mol Ther 2008; 16(1): 107-14.
[http://dx.doi.org/10.1038/sj.mt.6300324]
[21]
Lindsey JD, Crowston JG, Tran A, Morris C, Weinreb RN. Direct matrix metalloproteinase enhancement of transscleral permeability. Invest Ophthalmol Vis Sci 2007; 48(2): 752-5.
[http://dx.doi.org/10.1167/iovs.06-0334] [PMID: 17251474]
[22]
Aihara M, Lindsey JD, Weinreb RN. Enhanced FGF-2 movement through human sclera after exposure to latanoprost. Invest Ophthalmol Vis Sci 2001; 42(11): 2554-9.
[PMID: 11581197]
[23]
Burgalassi S, Chetoni P, Monti D, Saettone MF. Cytotoxicity of potential ocular permeation enhancers evaluated on rabbit and human corneal epithelial cell lines. Toxicol Lett 2001; 122(1): 1-8.
[http://dx.doi.org/10.1016/S0378-4274(01)00261-2] [PMID: 11397552]
[24]
Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 14(1): 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[25]
Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010; 9(8): 615-27.
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616808]
[26]
Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release 2010; 145(3): 182-95.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.036]
[27]
Iwase T, Fu J, Yoshida T, Muramatsu D, Miki A, Hashida N, et al. Sustained delivery of a HIF-1 antagonist for ocular neovascularization. J control rel offJ Control Rel Soc 2013; 172(3): 625-33.
[28]
Fu J, Sun F, Liu W, et al. Subconjunctival delivery of dorzolamide-loaded poly(ether-anhydride) microparticles produces sustained lowering of intraocular pressure in rabbits. Mol Pharm 2016; 13(9): 2987-95.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00343] [PMID: 27336794]
[29]
Mahaling B, Srinivasarao DA, Raghu G, Kasam RK, Bhanuprakash Reddy G, Katti DS. A non-invasive nanoparticle mediated delivery of triamcinolone acetonide ameliorates diabetic retinopathy in rats. Nanoscale 2018; 10(35): 16485-98.
[http://dx.doi.org/10.1039/C8NR00058A] [PMID: 29897081]
[30]
Tyagi P, Barros M, Stansbury JW, Kompella UB. Light-activated, in situ forming gel for sustained suprachoroidal delivery of bevacizumab. Mol Pharm 2013; 10(8): 2858-67.
[http://dx.doi.org/10.1021/mp300716t] [PMID: 23734705]
[31]
Inokuchi Y, Hironaka K, Fujisawa T, et al. Physicochemical properties affecting retinal drug/coumarin-6 delivery from nanocarrier systems via eyedrop administration. Invest Ophthalmol Vis Sci 2010; 51(6): 3162-70.
[http://dx.doi.org/10.1167/iovs.09-4697] [PMID: 20053972]
[32]
Mahaling B, Katti DS. Physicochemical properties of core–shell type nanoparticles govern their spatiotemporal biodistribution in the eye. Nanomedicine 2016; 12(7): 2149-60.
[http://dx.doi.org/10.1016/j.nano.2016.05.017] [PMID: 27288669]
[33]
Farshchi E, Pirsa S, Roufegarinejad L, Alizadeh M, Rezazad M. Photocatalytic/biodegradable film based on carboxymethyl cellulose, modified by gelatin and TiO2-Ag nanoparticles. Carbohydr Polym 2019; 216: 189-96.
[http://dx.doi.org/10.1016/j.carbpol.2019.03.094] [PMID: 31047056]
[34]
Kolangare IM, Isloor AM, Karim ZA, et al. Antibiofouling hollow-fiber membranes for dye rejection by embedding chitosan and silver-loaded chitosan nanoparticles. Environ Chem Lett 2019; 17(1): 581-7.
[http://dx.doi.org/10.1007/s10311-018-0799-3]
[35]
Pathak N, Singh P, Singh PK, et al. Biopolymeric nanoparticles based effective delivery of bioactive compounds toward the sustainable development of anticancerous therapeutics. Front Nutr 2022; 9: 963413.
[http://dx.doi.org/10.3389/fnut.2022.963413] [PMID: 35911098]
[36]
Sarkar S, Ponce NT, Banerjee A, Bandopadhyay R, Rajendran S, Lichtfouse E. Green polymeric nanomaterials for the photocatalytic degradation of dyes: A review. Environ Chem Lett 2020; 18(5): 1569-80.
[http://dx.doi.org/10.1007/s10311-020-01021-w] [PMID: 32837482]
[37]
Morin-Crini N, Lichtfouse E, Torri G, Crini G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ Chem Lett 2019; 17(4): 1667-92.
[http://dx.doi.org/10.1007/s10311-019-00904-x]
[38]
Karati D. A concise review on bio-responsive polymers in targeted drug delivery system. Polym Bull 2022; 1-23.
[39]
Bawa P, Pillay V, Choonara YE, du Toit LC. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 2009; 4(2): 022001.
[http://dx.doi.org/10.1088/1748-6041/4/2/022001] [PMID: 19261988]
[40]
Nilsson D. Eye evolution and its functional basis. Vis Neurosci 2013; 30(1-2): 5-20.
[http://dx.doi.org/10.1017/S0952523813000035] [PMID: 23578808]
[41]
Goel M, Picciani RG, Lee RK, Bhattacharya SK. Aqueous humor dynamics: A review. Open Ophthalmol J 2010; 4(1): 52-9.
[http://dx.doi.org/10.2174/1874364101004010052] [PMID: 21293732]
[42]
Jager RD, Mieler WF, Miller JW. Age-related macular degeneration. N Engl J Med 2008; 358(24): 2606-17.
[http://dx.doi.org/10.1056/NEJMra0801537] [PMID: 18550876]
[43]
Carrasco-León A, Amundarain A, Gómez-Echarte N, Prósper F, Agirre X. The Role of lncRNAs in the pathobiology and clinical behavior of multiple myeloma. Cancers 2021; 13(8): 1976.
[http://dx.doi.org/10.3390/cancers13081976] [PMID: 33923983]
[44]
Spaide RF, Jaffe GJ, Sarraf D, et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data: Consensus on neovascular age-related macular degeneration nomenclature study group. Ophthalmology 2020; 127(5): 616-36.
[http://dx.doi.org/10.1016/j.ophtha.2019.11.004] [PMID: 31864668]
[45]
Gayton J. Etiology, prevalence, and treatment of dry eye disease. Clin Ophthalmol 2009; 3: 405-12.
[http://dx.doi.org/10.2147/OPTH.S5555] [PMID: 19688028]
[46]
Watt K, Swarbrick HA. Microbial keratitis in overnight orthokeratology: Review of the first 50 cases. Eye Contact Lens 2005; 31(5): 201-8.
[http://dx.doi.org/10.1097/01.icl.0000179705.23313.7e] [PMID: 16163011]
[47]
Azari AA, Barney NP. Conjunctivitis. JAMA 2013; 310(16): 1721-9.
[http://dx.doi.org/10.1001/jama.2013.280318] [PMID: 24150468]
[48]
Toh TY, Morton J, Coxon J, Elder MJ. Medical treatment of cataract. Clin Exp Ophthalmol 2007; 35(7): 664-71.
[http://dx.doi.org/10.1111/j.1442-9071.2007.01559.x] [PMID: 17894689]
[49]
McCluskey PJ, Towler HM, Lightman S. Regular review: Management of chronic uveitis. BMJ 2000; 320(7234): 555-8.
[http://dx.doi.org/10.1136/bmj.320.7234.555] [PMID: 10688564]
[50]
Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: A review. JAMA 2014; 311(18): 1901-11.
[http://dx.doi.org/10.1001/jama.2014.3192] [PMID: 24825645]
[51]
Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY. Age-related macular degeneration. Lancet 2012; 379(9827): 1728-38.
[http://dx.doi.org/10.1016/S0140-6736(12)60282-7] [PMID: 22559899]
[52]
Katz J, d’Albis MA, Boisgontier J, et al. Similar white matter but opposite grey matter changes in schizophrenia and high-functioning autism. Acta Psychiatr Scand 2016; 134(1): 31-9.
[http://dx.doi.org/10.1111/acps.12579] [PMID: 27105136]
[53]
Ciulla TA, Amador AG, Zinman B. Diabetic retinopathy and diabetic macular edema: Pathophysiology, screening, and novel therapies. Diabetes Care 2003; 26(9): 2653-64.
[http://dx.doi.org/10.2337/diacare.26.9.2653] [PMID: 12941734]
[54]
Karati D, Kumar Shaw T. Pharmacological importance of Bacopa monnieri on Neurological disease (Alzheimer’s Disease) and Diabetic neuropathy: A concise review. Res J Pharm Technol 2022; 15(8): 3790-5.
[http://dx.doi.org/10.52711/0974-360X.2022.00636]
[55]
Beli E, Yan Y, Moldovan L, et al. Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db Mice. Diabetes 2018; 67(9): 1867-79.
[http://dx.doi.org/10.2337/db18-0158] [PMID: 29712667]
[56]
Wong TY, Cheung CMG, Larsen M, Sharma S, Simó R. Diabetic retinopathy. Nat Rev Dis Primers 2016; 2(1): 16012.
[http://dx.doi.org/10.1038/nrdp.2016.12] [PMID: 27159554]
[57]
Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis 2015; 2(1): 17.
[http://dx.doi.org/10.1186/s40662-015-0026-2] [PMID: 26605370]
[58]
Yau JWY, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012; 35(3): 556-64.
[http://dx.doi.org/10.2337/dc11-1909] [PMID: 22301125]
[59]
Congdon N, Zheng Y, He M. The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol 2012; 60(5): 428-31.
[http://dx.doi.org/10.4103/0301-4738.100542] [PMID: 22944754]
[60]
Kernt M, Kampik A. Endophthalmitis: Pathogenesis, clinical presentation, management, and perspectives. Clin Ophthalmol 2010; 4: 121-35.
[http://dx.doi.org/10.2147/OPTH.S6461] [PMID: 20390032]
[61]
Beck RW, Cleary PA, Anderson MM Jr, et al. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. N Engl J Med 1992; 326(9): 581-8.
[http://dx.doi.org/10.1056/NEJM199202273260901] [PMID: 1734247]
[62]
Borchert M, Liu GT, Pineles S, Waldman AT. Pediatric optic neuritis: What is new. J neuro-ophthal offic J North Am Neuro-Ophthalmol Soc 2017; 37(Suppl 1): S14-22.
[63]
Ghaffarieh A, Levin LA. Optic nerve disease and axon pathophysiology. Int Rev Neurobiol 2012; 105: 1-17.
[http://dx.doi.org/10.1016/B978-0-12-398309-1.00002-0] [PMID: 23206593]
[64]
Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet 2006; 368(9549): 1795-809.
[http://dx.doi.org/10.1016/S0140-6736(06)69740-7] [PMID: 17113430]
[65]
Dimaras H, Kimani K, Dimba EAO, et al. Retinoblastoma. Lancet 2012; 379(9824): 1436-46.
[http://dx.doi.org/10.1016/S0140-6736(11)61137-9] [PMID: 22414599]
[66]
Shah PK, Naik AS, Jyothi S. Retinoblastoma: A comprehensive review. Keral J Ophthal 2016; 28(3): 164-70.
[http://dx.doi.org/10.4103/kjo.kjo_11_17]
[67]
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 2020; 37: 101799.
[http://dx.doi.org/10.1016/j.redox.2020.101799] [PMID: 33248932]
[68]
Yan J, Peng X, Cai Y, Cong W. Development of facile drug delivery platform of ranibizumab fabricated PLGA-PEGylated magnetic nanoparticles for age-related macular degeneration therapy. J Photochem Photobiol B 2018; 183: 133-6.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.04.033] [PMID: 29704861]
[69]
Bruning U, Morales-Rodriguez F, Kalucka J, et al. Impairment of angiogenesis by fatty acid synthase inhibition involves mTOR malonylation. Cell Metab 2018; 28(6): 866-880.e15.
[http://dx.doi.org/10.1016/j.cmet.2018.07.019] [PMID: 30146486]
[70]
Schoors S, Bruning U, Missiaen R, et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 2015; 520(7546): 192-7.
[http://dx.doi.org/10.1038/nature14362] [PMID: 25830893]
[71]
Huang H, Vandekeere S, Kalucka J, et al. Role of glutamine and interlinked asparagine metabolism in vessel formation. EMBO J 2017; 36(16): 2334-52.
[http://dx.doi.org/10.15252/embj.201695518] [PMID: 28659375]
[72]
Dong A, Xie B, Shen J, et al. Oxidative stress promotes ocular neovascularization. J Cell Physiol 2009; 219(3): 544-52.
[http://dx.doi.org/10.1002/jcp.21698] [PMID: 19142872]
[73]
de Jong PTVM. Age-related macular degeneration. N Engl J Med 2006; 355(14): 1474-85.
[http://dx.doi.org/10.1056/NEJMra062326] [PMID: 17021323]
[74]
Anderson DH, Radeke MJ, Gallo NB, et al. The pivotal role of the complement system in aging and age-related macular degeneration: Hypothesis re-visited. Prog Retin Eye Res 2010; 29(2): 95-112.
[http://dx.doi.org/10.1016/j.preteyeres.2009.11.003] [PMID: 19961953]
[75]
Armento A, Ueffing M, Clark SJ. The complement system in age-related macular degeneration. Cell Mol Life Sci 2021; 78(10): 4487-505.
[http://dx.doi.org/10.1007/s00018-021-03796-9] [PMID: 33751148]
[76]
Park DH, Connor KM, Lambris JD. The challenges and promise of complement therapeutics for ocular diseases. Front Immunol 2019; 10: 1007.
[http://dx.doi.org/10.3389/fimmu.2019.01007] [PMID: 31156618]
[77]
Hadziahmetovic M, Malek G. Age-related macular degeneration revisited: From pathology and cellular stress to potential therapies. Front Cell Dev Biol 2021; 8: 612812.
[http://dx.doi.org/10.3389/fcell.2020.612812] [PMID: 33569380]
[78]
Cabrera FJ, Wang DC, Reddy K, Acharya G, Shin CS. Challenges and opportunities for drug delivery to the posterior of the eye. Drug Discov Today 2019; 24(8): 1679-84.
[http://dx.doi.org/10.1016/j.drudis.2019.05.035] [PMID: 31175955]
[79]
Skelly A, Bezlyak V, Liew G, Kap E, Sagkriotis A. Treat and extend treatment interval patterns with anti-vegf therapy in namd patients. In: Vision. 2019; 3.(3)
[http://dx.doi.org/10.3390/vision3030041]
[80]
Radhakrishnan K, Sonali N, Moreno M, et al. Protein delivery to the back of the eye: Barriers, carriers and stability of anti-VEGF proteins. Drug Discov Today 2017; 22(2): 416-23.
[http://dx.doi.org/10.1016/j.drudis.2016.10.015] [PMID: 27818255]
[81]
Battaglia L, Gallarate M, Serpe L, Foglietta F, Muntoni E, del Pozo Rodriguez A, et al. Ocular delivery of solid lipid nanoparticlesLipid Nanocarriers for Drug Targeting. Elsevier 2018; pp. 269-312.
[http://dx.doi.org/10.1016/B978-0-12-813687-4.00007-4]
[82]
Pikuleva IA, Curcio CA. Cholesterol in the retina: The best is yet to come. Prog Retin Eye Res 2014; 41: 64-89.
[http://dx.doi.org/10.1016/j.preteyeres.2014.03.002] [PMID: 24704580]
[83]
Peyman GA, Ganiban GJ. Delivery systems for intraocular routes. Adv Drug Deliv Rev 1995; 16(1): 107-23.
[http://dx.doi.org/10.1016/0169-409X(95)00018-3]
[84]
Janoria KG, Gunda S, Boddu SHS, Mitra AK. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv 2007; 4(4): 371-88.
[http://dx.doi.org/10.1517/17425247.4.4.371] [PMID: 17683251]
[85]
Duvvuri S, Majumdar S, Mitra AK. Drug delivery to the retina: Challenges and opportunities. Expert Opin Biol Ther 2003; 3(1): 45-56.
[http://dx.doi.org/10.1517/14712598.3.1.45] [PMID: 12718730]
[86]
Sahu T, Ratre YK, Chauhan S, Bhaskar LVKS, Nair MP, Verma HK. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol 2021; 63: 102487.
[http://dx.doi.org/10.1016/j.jddst.2021.102487]
[87]
Khiev D, Mohamed ZA, Vichare R, et al. Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials 2021; 11(1): 173.
[http://dx.doi.org/10.3390/nano11010173] [PMID: 33445545]
[88]
Jain A, Prajapati SK, Kumari A, Mody N, Bajpai M. Engineered nanosponges as versatile biodegradable carriers: An insight. J Drug Deliv Sci Technol 2020; 57: 101643.
[http://dx.doi.org/10.1016/j.jddst.2020.101643]
[89]
Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures & Nano-Objects 2019; 20: 100397.
[http://dx.doi.org/10.1016/j.nanoso.2019.100397]
[90]
Buse J, El-Aneed A. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: Current research and advances. Nanomedicine 2010; 5(8): 1237-60.
[http://dx.doi.org/10.2217/nnm.10.107] [PMID: 21039200]
[91]
Kraft JC, Freeling JP, Wang Z, Ho RJY. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 2014; 103(1): 29-52.
[http://dx.doi.org/10.1002/jps.23773] [PMID: 24338748]
[92]
Ojea-Jiménez I, Comenge J, García-Fernández L, Megson Z, Casals E, Puntes V. Engineered inorganic nanoparticles for drug delivery applications. Curr Drug Metab 2013; 14(5): 518-30.
[http://dx.doi.org/10.2174/13892002113149990008] [PMID: 23116108]
[93]
Vaneev A, Tikhomirova V, Chesnokova N, et al. Nanotechnology for topical drug delivery to the anterior segment of the eye. Int J Mol Sci 2021; 22(22): 12368.
[http://dx.doi.org/10.3390/ijms222212368] [PMID: 34830247]
[94]
Han X, Wang C, Liu Z. Red blood cells as smart delivery systems. Bioconjug Chem 2018; 29(4): 852-60.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00758] [PMID: 29298380]
[95]
Abd Elkodous M, El-Husseiny HM, El-Sayyad GS, et al. Recent advances in waste-recycled nanomaterials for biomedical applications: Waste-to-wealth. Nanotechnol Rev 2021; 10(1): 1662-739.
[http://dx.doi.org/10.1515/ntrev-2021-0099]
[96]
Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm 2011; 8(6): 2101-41.
[http://dx.doi.org/10.1021/mp200394t] [PMID: 21974749]
[97]
Nwabor OF, Singh S, Paosen S, Vongkamjan K, Voravuthikunchai SP. Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive Eucalyptus leaf extracts. Food Biosci 2020; 36: 100609.
[http://dx.doi.org/10.1016/j.fbio.2020.100609]
[98]
Eze FN, Jayeoye TJ, Singh S. Fabrication of intelligent pH-sensing films with antioxidant potential for monitoring shrimp freshness via the fortification of chitosan matrix with broken Riceberry phenolic extract. Food Chem 2022; 366: 130574.
[http://dx.doi.org/10.1016/j.foodchem.2021.130574] [PMID: 34303209]
[99]
Mohite P, Shah SR, Singh S, et al. Chitosan and chito-oligosaccharide: A versatile biopolymer with endless grafting possibilities for multifarious applications. Front Bioeng Biotechnol 2023; 11: 1190879.
[http://dx.doi.org/10.3389/fbioe.2023.1190879] [PMID: 37274159]
[100]
Singh S, Nwabor OF, Syukri DM, Voravuthikunchai SP. Chitosan-poly(vinyl alcohol) intelligent films fortified with anthocyanins isolated from Clitoria ternatea and Carissa carandas for monitoring beverage freshness. Int J Biol Macromol 2021; 182: 1015-25.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.027] [PMID: 33839180]
[101]
Kumar A, Yadav S, Pramanik J, et al. Chitosan-based composites: Development and perspective in food preservation and biomedical applications. Polymers 2023; 15(15): 3150.
[http://dx.doi.org/10.3390/polym15153150] [PMID: 37571044]
[102]
Mohite P, Rahayu P, Munde S, et al. Chitosan-based hydrogel in the management of dermal infections: A review. Gels 2023; 9(7): 594.
[http://dx.doi.org/10.3390/gels9070594] [PMID: 37504473]
[103]
Tanito M, Kaidzu S, Takai Y, Ohira A. Correlation between systemic oxidative stress and intraocular pressure level. PLoS One 2015; 10(7): e0133582.
[http://dx.doi.org/10.1371/journal.pone.0133582] [PMID: 26186651]
[104]
Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B 2017; 7(3): 281-91.
[http://dx.doi.org/10.1016/j.apsb.2016.09.001] [PMID: 28540165]
[105]
Mann BK, Stirland DL, Lee HK, Wirostko BM. Ocular translational science: A review of development steps and paths. Adv Drug Deliv Rev 2018; 126: 195-203.
[http://dx.doi.org/10.1016/j.addr.2018.01.012] [PMID: 29355668]
[106]
Chang E. Relevance of nanotechnology to retinal disease. Retin Physician 2017; 14: 44-6.
[107]
Madni A, Rahem MA, Tahir N, et al. Non-invasive strategies for targeting the posterior segment of eye. Int J Pharm 2017; 530(1-2): 326-45.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.065] [PMID: 28755994]
[108]
Formica ML, Real JP, Allemandi D, Palma YS. Nano technological drug release approaches for the treatment of eye diseases: Myth, reality or challenge. J pharmacol clin res 2018; 5(1): 5-7.
[http://dx.doi.org/10.19080/JPCR.2018.05.555654]
[109]
Bucolo C, Drago F, Salomone S. Ocular drug delivery: A clue from nanotechnology. Front Pharmacol 2012; 3: 188.
[http://dx.doi.org/10.3389/fphar.2012.00188] [PMID: 23125835]
[110]
Kiernan DF, Lim JI. Topical drug delivery for posterior segment disease. Retina Today 2010; 5(4): 48-51.
[111]
Barar J, Aghanejad A, Fathi M, Omidi Y. Advanced drug delivery and targeting technologies for the ocular diseases. Bioimpacts 2016; 6(1): 49-67.
[http://dx.doi.org/10.15171/bi.2016.07] [PMID: 27340624]
[112]
Sahoo S, Sahoo R, Nayak P. Mucoadhesive nanopolymers for posterior segment drug delivery. Retina Today 2011; 3: 60-3.
[113]
Diebold Y, Calonge M. Applications of nanoparticles in ophthalmology. Prog Retin Eye Res 2010; 29(6): 596-609.
[http://dx.doi.org/10.1016/j.preteyeres.2010.08.002] [PMID: 20826225]
[114]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[115]
Arroyo CM, Quinteros D, Cózar-Bernal MJ, Palma SD, Rabasco AM, González-Rodríguez ML. Ophthalmic administration of a 10-fold-lower dose of conventional nanoliposome formulations caused levels of intraocular pressure similar to those induced by marketed eye drops. Europ J pharmac sci 2018; 111: 186-94.
[116]
Shimazaki H, Hironaka K, Fujisawa T, et al. Edaravone-loaded liposome eyedrops protect against light-induced retinal damage in mice. Invest Ophthalmol Vis Sci 2011; 52(10): 7289-97.
[http://dx.doi.org/10.1167/iovs.11-7983] [PMID: 21849425]
[117]
Zhang R, Qian J, Li X, Yuan Y. Treatment of experimental autoimmune uveoretinitis with intravitreal injection of infliximab encapsulated in liposomes. Br J Ophthalmol 2017; 101(12): 1731-8.
[http://dx.doi.org/10.1136/bjophthalmol-2016-310044] [PMID: 28986343]
[118]
Khalil M, Hashmi U, Riaz R, Rukh Abbas S. Chitosan coated liposomes (CCL) containing triamcinolone acetonide for sustained delivery: A potential topical treatment for posterior segment diseases. Int J Biol Macromol 2020; 143: 483-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.256] [PMID: 31759018]
[119]
Gorantla S, Rapalli VK, Waghule T, et al. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Advances 2020; 10(46): 27835-55.
[http://dx.doi.org/10.1039/D0RA04971A] [PMID: 35516960]
[120]
Bravo-Osuna I, Andrés-Guerrero V, Pastoriza Abal P, Molina-Martínez IT, Herrero-Vanrell R. Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug Deliv Transl Res 2016; 6(6): 686-707.
[http://dx.doi.org/10.1007/s13346-016-0336-5] [PMID: 27766598]
[121]
Qamar Z, Qizilbash FF, Iqubal MK, et al. Nano-based drug delivery system: Recent strategies for the treatment of ocular disease and future perspective. Recent Pat Drug Deliv Formul 2020; 13(4): 246-54.
[http://dx.doi.org/10.2174/1872211314666191224115211] [PMID: 31884933]
[122]
Chaiyasan W, Srinivas SP, Tiyaboonchai W. Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery. Mol Vis 2015; 21: 1224-34.
[PMID: 26604662]
[123]
Fernandes AR, Vidal LB, Sánchez-López E, et al. Customized cationic nanoemulsions loading triamcinolone acetonide for corneal neovascularization secondary to inflammatory processes. Int J Pharm 2022; 623: 121938.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121938] [PMID: 35728716]
[124]
Araújo J, Garcia ML, Mallandrich M, Souto EB, Calpena AC. Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): In vitro and ex vivo studies. Nanomedicine 2012; 8(6): 1034-41.
[http://dx.doi.org/10.1016/j.nano.2011.10.015] [PMID: 22115598]
[125]
Araújo J, Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int J Pharm 2010; 393(1-2): 168-76.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.034] [PMID: 20362042]
[126]
Sánchez-López E, Esteruelas G, Ortiz A, et al. Dexibuprofen biodegradable nanoparticles: One step closer towards a better ocular interaction study. Nanomaterials 2020; 10(4): 720.
[http://dx.doi.org/10.3390/nano10040720] [PMID: 32290252]
[127]
Sánchez-López E, Egea MA, Cano A, et al. PEGylated PLGA nanospheres optimized by design of experiments for ocular administration of dexibuprofen in vitro, ex vivo and in vivo characterization. Colloids Surf B Biointerfaces 2016; 145: 241-50.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.054] [PMID: 27187188]
[128]
Sharma P, Mittal S. Nanotechnology: Revolutionizing the delivery of drugs to treat age-related macular degeneration. Expert Opin Drug Deliv 2021; 18(8): 1131-49.
[http://dx.doi.org/10.1080/17425247.2021.1888925] [PMID: 33691548]
[129]
Suri R, Nag TC, Mehra N, et al. Sirolimus loaded chitosan functionalized PLGA nanoparticles protect against sodium iodate-induced retinal degeneration. J Drug Deliv Sci Technol 2023; 82: 104369.
[http://dx.doi.org/10.1016/j.jddst.2023.104369]
[130]
Elsaid N, Jackson TL, Elsaid Z, Alqathama A, Somavarapu S. PLGA microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab. Mol Pharm 2016; 13(9): 2923-40.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00335] [PMID: 27286558]
[131]
Zhao R, Li J, Wang J, Yin Z, Zhu Y, Liu W. Development of timolol-loaded galactosylated chitosan nanoparticles and evaluation of their potential for ocular drug delivery. AAPS PharmSciTech 2017; 18(4): 997-1008.
[http://dx.doi.org/10.1208/s12249-016-0669-x] [PMID: 28101726]
[132]
Katiyar S, Pandit J, Mondal RS, et al. In situ gelling dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma. Carbohydr Polym 2014; 102: 117-24.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.079] [PMID: 24507263]
[133]
Fathalla ZMA, Khaled KA, Hussein AK, Alany RG, Vangala A. Formulation and corneal permeation of ketorolac tromethamine-loaded chitosan nanoparticles. Drug Dev Ind Pharm 2016; 42(4): 514-24.
[http://dx.doi.org/10.3109/03639045.2015.1081236] [PMID: 26407208]
[134]
Wassmer S, Rafat M, Fong WG, Baker AN, Tsilfidis C. Chitosan microparticles for delivery of proteins to the retina. Acta Biomater 2013; 9(8): 7855-64.
[http://dx.doi.org/10.1016/j.actbio.2013.04.025] [PMID: 23623991]
[135]
Xu X, Weng Y, Xu L, Chen H. Sustained release of avastin® from polysaccharides cross-linked hydrogels for ocular drug delivery. Int J Biol Macromol 2013; 60: 272-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.05.034] [PMID: 23748006]
[136]
Pandit J, Sultana Y, Aqil M. Chitosan-coated PLGA nanoparticles of bevacizumab as novel drug delivery to target retina: Optimization, characterization, and in vitro toxicity evaluation. Artif Cells Nanomed Biotechnol 2017; 45(7): 1397-407.
[http://dx.doi.org/10.1080/21691401.2016.1243545] [PMID: 27855494]
[137]
Mateescu MA, Ispas-Szabo P, Assaad E. Chitosan and its derivatives as self-assembled systems for drug deliveryControlled Drug Delivery 1st. Cambridge: Woodhead Publishing Limited 2015; pp. 86-119.
[138]
Supper S, Anton N, Boisclair J, Seidel N, Riemenschnitter M, Curdy C, et al. Chitosan/glucose 1-phosphate as new stable in situ forming depot system for controlled drug delivery. Eur J Pharm Biopharm 2014; 88(2): 361-73.
[139]
Szymańska E, Winnicka K. Stability of chitosan: A challenge for pharmaceutical and biomedical applications. Mar Drugs 2015; 13(4): 1819-46.
[http://dx.doi.org/10.3390/md13041819] [PMID: 25837983]
[140]
Varshosaz J, Tabbakhian M, Salmani Z. Designing of a thermosensitive chitosan/poloxamer in situ gel for ocular delivery of ciprofloxacin. The Open Drug Deliv J 2008; 2(1)
[141]
Hurler J, Škalko-Basnet N. Potentials of chitosan-based delivery systems in wound therapy: Bioadhesion study. J Funct Biomater 2012; 3(1): 37-48.
[http://dx.doi.org/10.3390/jfb3010037] [PMID: 24956514]
[142]
Cheng YH, Tsai TH, Jhan YY, et al. Thermosensitive chitosan-based hydrogel as a topical ocular drug delivery system of latanoprost for glaucoma treatment. Carbohydr Polym 2016; 144: 390-9.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.080] [PMID: 27083831]
[143]
Popa L, Ghica MV, Dinu-Pîrvu CE, Irimia T. Chitosan: A good candidate for sustained release ocular drug delivery systems. Myriad Functionalities in Science and Technology. Intechopen 2018.
[http://dx.doi.org/10.5772/intechopen.76039]
[144]
Chen X, Li X, Zhou Y, et al. Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: Preparation, characterization, and in vivo evaluation. J Biomater Appl 2012; 27(4): 391-402.
[http://dx.doi.org/10.1177/0885328211406563] [PMID: 21750179]
[145]
Jain D, Kumar V, Singh S, Mullertz A, Bar-Shalom D. Newer trends in in situ gelling systems for controlled ocular drug delivery. J Anal Pharm Res 2016; 2(3): 00022.
[http://dx.doi.org/10.15406/japlr.2016.02.00022]
[146]
Wang K, Mitra RN, Zheng M, Han Z. Nanoceria-loaded injectable hydrogels for potential age-related macular degeneration treatment. J Biomed Mater Res A 2018; 106(11): 2795-804.
[http://dx.doi.org/10.1002/jbm.a.36450] [PMID: 29752862]
[147]
Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 2014; 39(2): 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[148]
Nishiyama N, Iriyama A, Jang WD, et al. Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat Mater 2005; 4(12): 934-41.
[http://dx.doi.org/10.1038/nmat1524] [PMID: 16299510]
[149]
Yavuz B, Pehlivan SB. Vural İ Ünlü N. In Vitro/In Vivo evaluation of dexamethasone—pamam dendrimer complexes for retinal drug delivery. J Pharm Sci 2015; 104(11): 3814-23.
[http://dx.doi.org/10.1002/jps.24588] [PMID: 26227825]
[150]
Lancina MG III, Wang J, Williamson GS, Yang H. Dentimol as a dendrimeric timolol analogue for glaucoma therapy: Synthesis and preliminary efficacy and safety assessment. Mol Pharm 2018; 15(7): 2883-9.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00401] [PMID: 29767982]
[151]
Vyas S, Singh R, Jain S, et al. Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B. Int J Pharm 2005; 296(1-2): 80-6.
[http://dx.doi.org/10.1016/j.ijpharm.2005.02.016] [PMID: 15885458]
[152]
Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J Control Release 2014; 185: 22-36.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.015]
[153]
Abdelkader H, Ismail S, Kamal A, Alany RG. Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery. J Pharm Sci 2011; 100(5): 1833-46.
[http://dx.doi.org/10.1002/jps.22422] [PMID: 21246556]
[154]
Ge Y, Zhang A, Sun R, et al. Penetratin-modified lutein nanoemulsion in-situ gel for the treatment of age-related macular degeneration. Expert Opin Drug Deliv 2020; 17(4): 603-19.
[http://dx.doi.org/10.1080/17425247.2020.1735348] [PMID: 32105151]
[155]
Laradji AM, Kolesnikov AV, Karakoçak BB, Kefalov VJ, Ravi N. Redox-responsive hyaluronic acid-based nanogels for the topical delivery of the visual chromophore to retinal photoreceptors. ACS Omega 2021; 6(9): 6172-84.
[http://dx.doi.org/10.1021/acsomega.0c05535] [PMID: 33718708]
[156]
Torchilin VP. Micellar nanocarriers: Pharmaceutical perspectives. Pharm Res 2006; 24(1): 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[157]
Vaishya RD, Khurana V, Patel S, Mitra AK. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014; 6(5): 422-37.
[http://dx.doi.org/10.1002/wnan.1272] [PMID: 24888969]
[158]
Grimaudo MA, Pescina S, Padula C, et al. Poloxamer 407/TPGS mixed micelles as promising carriers for cyclosporine ocular delivery. Mol Pharm 2018; 15(2): 571-84.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00939] [PMID: 29313693]
[159]
Klaver CC, Wolfs RC, Vingerling JR, Hofman A, de Jong PT. Age-specific prevalence and causes of blindness and visual impairment in an older population: The rotterdam study. Arch Ophthalmol 1998; 116(5): 653-8.
[http://dx.doi.org/10.1001/archopht.116.5.653]
[160]
Zhang P, Liu X, Hu W, Bai Y, Zhang L. Preparation and evaluation of naringenin-loaded sulfobutylether-β-cyclodextrin/chitosan nanoparticles for ocular drug delivery. Carbohydr Polym 2016; 149: 224-30.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.115] [PMID: 27261746]
[161]
da Silva SB, Ferreira D, Pintado M, Sarmento B. Chitosan-based nanoparticles for rosmarinic acid ocular delivery In vitro tests. Int J Biol Macromol 2016; 84: 112-20.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.070] [PMID: 26645149]
[162]
Lu Y, Zhou N, Huang X, et al. Effect of intravitreal injection of bevacizumab-chitosan nanoparticles on retina of diabetic rats. Int J Ophthalmol 2014; 7(1): 1-7.
[PMID: 24634856]
[163]
Selvaraj K, Kuppusamy G, Krishnamurthy J, Mahalingam R, Singh SK, Gulati M. Repositioning of itraconazole for the management of ocular neovascularization through surface-modified nanostructured lipid carriers. Assay Drug Dev Technol 2019; 17(4): 178-90.
[http://dx.doi.org/10.1089/adt.2018.898] [PMID: 30835139]
[164]
Cheng T, Li J, Cheng Y, Zhang X, Qu Y. Triamcinolone acetonide-chitosan coated liposomes efficiently treated retinal edema as eye drops. Exp Eye Res 2019; 188: 107805.
[http://dx.doi.org/10.1016/j.exer.2019.107805] [PMID: 31526807]
[165]
Kalantar-zadeh K, Ou JZ, Daeneke T, Strano MS, Pumera M, Gras SL. Two‐dimensional transition metal dichalcogenides in biosystems. Adv Funct Mater 2015; 25(32): 5086-99.
[http://dx.doi.org/10.1002/adfm.201500891]
[166]
Mohammed M, Syeda J, Wasan K, Wasan E. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 2017; 9(4): 53.
[http://dx.doi.org/10.3390/pharmaceutics9040053] [PMID: 29156634]
[167]
Opanasopit P, Aumklad P, Kowapradit J, et al. Effect of salt forms and molecular weight of chitosans on in vitro permeability enhancement in intestinal epithelial cells (Caco-2). Pharm Dev Technol 2007; 12(5): 447-55.
[http://dx.doi.org/10.1080/10837450701555901] [PMID: 17963144]
[168]
Hassanen EI, Khalaf AA, Tohamy AF, Mohammed ER, Farroh KY. Toxicopathological and immunological studies on different concentrations of chitosan-coated silver nanoparticles in rats. Int J Nanomedicine 2019; 14: 4723-39.
[http://dx.doi.org/10.2147/IJN.S207644] [PMID: 31308655]
[169]
Mao S, Shuai X, Unger F, Wittmar M, Xie X, Kissel T. Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials 2005; 26(32): 6343-56.
[http://dx.doi.org/10.1016/j.biomaterials.2005.03.036] [PMID: 15913769]
[170]
Duan H, Nie S. Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J Am Chem Soc 2007; 129(11): 3333-8.
[http://dx.doi.org/10.1021/ja068158s] [PMID: 17319667]
[171]
Nagpal K, Singh SK, Mishra DN. Chitosan nanoparticles: A promising system in novel drug delivery. Chem Pharm Bull 2010; 58(11): 1423-30.
[http://dx.doi.org/10.1248/cpb.58.1423] [PMID: 21048331]
[172]
Li Y, Raza F, Liu Y, et al. Clinical progress and advanced research of red blood cells based drug delivery system. Biomaterials 2021; 279: 121202.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121202] [PMID: 34749072]
[173]
Prow TW, Bhutto I, Kim SY, et al. Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomedicine 2008; 4(4): 340-9.
[http://dx.doi.org/10.1016/j.nano.2008.06.003] [PMID: 18640079]
[174]
Paliwal R, Paliwal SR, Sulakhiya K, Kurmi BD, Kenwat R, Mamgain A. Chitosan-based nanocarriers for ophthalmic applicationsPolysaccharide Carriers for Drug Delivery. Elsevier 2019; pp. 79-104.
[http://dx.doi.org/10.1016/B978-0-08-102553-6.00004-0]
[175]
Fernandez MJA, Rey MBS, De la Fuente Freire M, Pena AIV. Nanoparticles of chitosan and hyaluronan for the administration of active molecules. US20110142890A1, 2011.
[176]
Desai Tejal A, Chirra Hariharasudhan D. Univ california, assignee. bioactive agent delivery devices and methods of making and using the same. EP2856259B1, 2013.
[177]
Hebert R. Water-soluble indole-3-propionic acid. US20040029830 A1, 2004.