Progress in Zero-gravity Unloading Test and System Research of Solar Wing

Article ID: e091023221893 Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Aim: The solar wing undertakes the important task of providing energy for spacecraft. The deployment test of the solar wing in a zero gravity environment using a zero gravity system on the ground is an important link to ensure the safe and stable deployment of the solar wing in space. This article briefly describes the development process and research progress of solar wings, introduces the ground zero gravity test methods and test platforms for solar wings, including some patents for improving the ground zero gravity test platform for solar wings, and points out some urgent problems that need to be solved in the zero gravity unloading test and system at present.

Background: The solar wing needs to be deployed in the weightlessness environment of space before working.

Objective: The objective of this study is to summarize the zero gravity experimental methods and systems of solar wings, introduce their categories, characteristics, and development.

Methods: This article summarizes various scientific research achievements in the zero gravity test of solar wings, and introduces the advantages and disadvantages of the zero gravity test method of solar wings.

Results: This article analyzes the zero gravity test methods for solar wings, compares them among various test methods, analyzes the main problems in their development, and looks forward to the development trend of zero gravity test methods for solar wings.

Conclusion: Although research on zero-gravity unloading test systems for solar wings is continuously advancing, there are still several technological bottlenecks that need to be overcome in terms of system precision, payload capacity, dynamic simulation, method optimization, diversifying zero-gravity test methods and system universality for different types of solar panel unloading.

Graphical Abstract

[1]
Z. Liu, S. Yang, and H. Pu, "Development and trend of space solar array technology", Hangtianqi Gongcheng, vol. 21, no. 06, pp. 112-118, 2012.
[2]
H. Yu, W. Zhang, X. Cui, and Y. Wu, "Recent research and developing trend of space solar array technology", Dianyuan Jishu, vol. 44, no. 10, pp. 1552-1557, 2020.
[3]
J. Piszczor, "Trends in solar array technology development". 39th Aerospace Sciences Meeting and Exhibit, January 8-11, Reno, United States, 2001, p. 1150.
[4]
D. Eacret, and S. White, "ST8 validation experiment: Ultraflex-175 solar array technology advance: Deployment kinematics and deployed dynamics ground testing and model validation". 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 4-7 January Orlando, Florida, 2010, p. 1497.
[5]
Z. Zhou, Y. Wu, J. Wang, Y. Liu, Z. Yan, and C. Huang, "Development and trend of circular solar array", Hangtianqi Gongcheng, vol. 24, no. 06, pp. 116-122, 2015.
[6]
D. Allen, and D. Allen, "A survey of next generation solar arrays". 35th Aerospace Sciences Meeting and Exhibit, 6-8 January, Reno, Nevada, USA,, 1997, p. 86.
[http://dx.doi.org/ 10.2514/6.1997-86]
[7]
B. Spence, S. White, N. Wilder, T. Gregory, M. Douglas, R. Takeda, N. Mardesich, T. Peterson, B. Hillard, P. Sharps, and N. Fatemi, "Next generation ultraflex solar array for NASA’s new millennium program space technology 8". 2005 IEEE Aerospace Conference , Big Sky, MT, USA, 2005, pp. 824-836.
[http://dx.doi.org/10.1109/AERO.2005.1559374]
[8]
S. White, B. Spence, T. Trautt, and P. Cronin, "Ultraflex-175 on space technology 8 (ST8)–validating the next-generation in lightweight solar arrays". Proceedings of NASA Science and Technology Conference, Jun 19-21, Maryland, USA, 2007.
[http://dx.doi.org/ 10.1016/j.jasms.2008.07.015] [PMID: 18715800]
[9]
D. Murphy, "MegaFlex - The scaling potential of UltraFlex technology". 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 20th-26th April, Honolulu, Hawaii, 2012.
[http://dx.doi.org/10.2514/6.2012-1581 ]
[10]
T. Zhu, "Contact/collision dynamics of space membranestructures described by absolute nodal coordinate formulation", Master's Thesis, Beijing Institute of Technology, 2015.
[11]
Z. Liu, "Deployment dynamic analysis and modal analysis ofcircular membrane solar arrays", M.S. Thesis, Beijing Institute of Technology, 2017.
[12]
Z. Wu, Z. Liu, J. Rong, Y. Wu, P. Xin, and Q. Luo, "Modal simulation and experimental research on circular solar arrays", J. Astronaut, vol. 41, no. 12, pp. 1516-1524, 2020.
[13]
Y. Zhang, and Z. Wu, "Research on nonlinear dynamics of expandable circular solar wing".The 18th National Conference on Nonlinear Vibration and the 15th National Conference on Nonlinear Dynamics and Motion Stability (NVND2021), Guangzhou, Guangdong, China, 2021, p. 148.
[http://dx.doi.org/10.26914/c.cnkihy.2021.055612]
[14]
T. Sun, H. Wu, Y. Wu, W. Xiao, J. Liu, Q. Yang, and L. Zhao, "Forming and properties of wing spar in spacecraft circular solar array", AMT, vol. 4, pp. 55-59, 2021.
[15]
B. Hoang, S. White, B. Spence, and S. Kiefer, "Commercialization of deployable space systems’ roll-out solar array (ROSA) technology for space systems loral (SSL) solar arrays". 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 2016, pp. 1-12.
[http://dx.doi.org/10.1109/AERO.2016.7500723]
[16]
J. Yang, Q. Gao, L. Liu, Q. Cao, and Z. Wu, "A flexible solar cell array adapted to rolled solar wings", C.N. Patent 112909110A, 2021.
[17]
L. Li, X. Lan, and L. Liu, ""International First! New flexible solar cells can unfold like a scroll in space"", Available From: https://baijiahao.baidu.com/s?id=1667794818221986493&wfr=spider&for=pc (accessed 2020-05-27).
[18]
"Scientific highlights "Tianhe Core Module Black Technology:" accordion "Flexible Solar Cell Wing.""", Available From: https://www.sohu.com/a/464947244_120043313(accessed 2021-05- 06, 2021).
[19]
""The financial industry China's research and development of new satellite solar wings gives "one arrow, multiple stars". more possibilities"", Available From: https://www.sohu.com/a/413529082_114984(accessed 2020-08-17, 2020).
[20]
Y. Yao, Research on 3-d gravity compensation and equipment of space floating objective simulation., University of Science and Technology of China, 2006.
[21]
A. Flores-Abad, O. Ma, K. Pham, and S. Ulrich, "A review of space robotics technologies for on-orbit servicing", Prog. Aerosp. Sci., vol. 68, pp. 1-26, 2014.
[http://dx.doi.org/10.1016/j.paerosci.2014.03.002]
[22]
N. Inaba, and M. Oda, "Autonomous satellite capture by a space robot: World first on-orbit experiment on a Japanese robot satellite ETS-VII", Proceedings 2000 ICRA. Millennium conference. IEEE international conference on robotics and automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 2. 2000, pp. 1169-1174.
[http://dx.doi.org/10.1109/ROBOT.2000.844757]
[23]
N. Qi, W. Zhang, J. Gao, and M. Huo, "The primary discussion for the ground simulation system of spatial microgravity", Hangtian Kongzhi, vol. 29, no. 03, pp. 95-100, 2011.
[http://dx.doi.org/10.16804/j.cnki.issn1006-3242.2011.03.019]
[24]
Z. Jia, M. Wang, H. Li, W. Zhang, J. Wang, and F. Ren, "Review of micro-gravity test technology for aerospace vehicle", Structure & Environment Engineering, vol. 46, no. 05, pp. 7-17, 2019.
[http://dx.doi.org/10.19447/j.cnki.11-1773/v.2019.05.002]
[25]
B. Qu, Q. Wang, H. Wang, and X. Jia, "Zero-G aircraft flight method research", Flight Dynamics, vol. 2, pp. 65-67, 2007.
[26]
D. Whitfield, and A. Jameson, "Three-dimensional Euler equation simulation of propeller-wing interaction in transonic flow", 21st Aerospace Sciences Meeting, 13 January, Reno, Nevada,, 1983, p. 236.
[http://dx.doi.org/10.2514/6.1983-236]
[27]
L. Tian, "15 years of the US space shuttle", Aerospace J., vol. 7, pp. 20-22, 1996.
[28]
C. Lv, L. Xi, G. Zhao, and Y. Zhang, "Experimental microgravity system for zero gravity airplane", Qinghua Daxue Xuebao. Ziran Kexue Ban, no. 08, pp. 1064-1068, 2003.
[http://dx.doi.org/10.16511/j.cnki.qhdxxb.2003.08.016]
[29]
M. Hillebrandt, S. Meyer, M. Stegmaier, M. Straubel, M.E. Zander, and C. Hühne, “Zero-G deployment testing of a new rollable and retractable solar array”, AIAA SCITECH, 23-27 January., National Harbour, 2023, p. 1882.
[http://dx.doi.org/10.2514/6.2023-1882]
[30]
Y. Yang, L. Zhang, and J. Shang, "Research on gravity compensation in motion control of multi-joint robot". 2020 International Conference on Intelligent Computing, Automation and Systems (ICICAS), 11-13 Dec, Chongqing, China, 2020, pp. 238-242.
[http://dx.doi.org/10.1109/ICICAS51530.2020.00056]
[31]
T. Heyden, and C. Woernle, "Dynamics and flatness-based control of a kinematically undetermined cable suspension manipulator", Multibody Syst. Dyn., vol. 16, no. 2, pp. 155-177, 2006.
[http://dx.doi.org/10.1007/s11044-006-9023-5]
[32]
G.C. White, and Yangsheng Xu, "An active vertical-direction gravity compensation system", IEEE Trans. Instrum. Meas., vol. 43, no. 6, pp. 786-792, 1994.
[http://dx.doi.org/10.1109/19.368066]
[33]
Yangsheng Xu, H.B. Brown, M. Friedman, and T. Kanade, "Control system of the self-mobile space manipulator", IEEE Trans. Control Syst. Technol., vol. 2, no. 3, pp. 207-219, 1994.
[http://dx.doi.org/10.1109/87.317978]
[34]
Y. Sato, A. Ejiri, Y. Iida, S. Kanda, T. Maruyama, T. Uchiyama, and H. Fujii, "Micro-G emulation system using constant-tension suspension for a space manipulator", 1991 IEEE International Conference on Robotics and Automation, 9-11 April, Sacramento, California, 1991, p. 1893.
[http://dx.doi.org/10.1109/ROBOT.1991.131902]
[35]
X. Huang, B. Liang, J. Chen, and H. Wu, "Analysis of kinematics and workspace of EMR robot", Control Eng, vol. 3, p. -62000.1, .
[36]
C. Li, and B. Liang, "Event-based adaptive planning and control method for EMR teleoperation", Hangtian Kongzhi, 2001, no. 03, pp. 17-22.
[http://dx.doi.org/10.16804/j.cnki.issn1006-3242.2001.03.004]
[37]
K. Gao, "Research on the ground passive suspension systems for the large-scale space end effector", M.S. Thesis, Harbin Institute of Technology, 2010.
[38]
Q. Dong, Q. Chen, K. Huang, W. Xing, and B. Shen, "A three-dimensional follow-up system for a spacecraft low-gravity simulation test platform", Qinghua Daxue Xuebao. Ziran Kexue Ban, vol. 63, no. 03, pp. 449-460, 2023.
[http://dx.doi.org/10.16511/j.cnki.qhdxxb.2022.26.056]
[39]
C. Ma, L. Liu, and H. Yang, "Research and experiment on local modal vibration of suspension spring of a microgravity simulation device", J. Vib. Shock, vol. 42, no. 4, pp. 279-285, 2023.
[http://dx.doi.org/10.13465/j.cnki.jvs.2023.04.033]
[40]
C.D.R. Ferrer, H. Shishido, I. Kitahara, and Y. Kameda, "Visual exploratory activity under microgravity conditions in VR: An exploratory study during a parabolic flight", 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), March 23-27, Osaka, Japan,, 2019, pp. 1136-1137.
[http://dx.doi.org/10.1109/VR.2019.8798253]
[41]
S. Li, H. Gao, and Z. Deng, "Kinematics modeling of rocker-bogie lunar rover and suspension parameter optimization", J. Xi’an Jiaotong Univ, vol. 43, no. 09, pp. 62-66, 2009.
[42]
F. Gao, W. Yi, T. Guo, R. Du, and F. Meng, "A micro-gravity suspension test facility for space manipulators", Spacecraft Environment Engineering, vol. 31, no. 01, pp. 52-56, 2014.
[43]
F. Nie, "The measure development sysment on space manipulator movement posture on tank", M.S. Thesis. Harbin Institute of Technology, 2015.
[44]
S. Tian, X. Tang, and Y. Li, "Analysis and evaluation on unloading ratio of zero-g simulation system based on torques of space manipulator", Robotica, vol. 37, no. 8, pp. 1332-1345, 2019.
[http://dx.doi.org/10.1017/S0263574718001546]
[45]
G. Luo, A. Das, and G. Bochmann, "Software testing based on SDL specifications with save", IEEE Trans. Softw. Eng., vol. 20, no. 1, pp. 72-87, 1994.
[http://dx.doi.org/10.1109/32.263756]
[46]
E. LeMaster, D. Schaechter, and C. Carrington, "Experimental demonstration of technologies for autonomous on-orbit robotic assembly", Space, 2006, p. 7428.
[http://dx.doi.org/10.2514/6.2006-7428]
[47]
K. Yoshida, "Experimental study on the dynamics and control of a space robot with experimental free-floating robot satellite", Adv. Robot., vol. 9, no. 6, pp. 583-602, 1994.
[http://dx.doi.org/10.1163/156855395X00319]
[48]
Y. Yang, L. Wang, Y. Liu, and S. Jia, "Dynamics of circular thin membrane solar arrays based on ground zerogravity simulation test" 1st International Conference on Mechanical System Dynamics (ICMSD 2022), August 24-27 Nanjing, China, 2022, pp. 847-851.
[http://dx.doi.org/10.1049/icp.2022.1925]
[49]
C.R. Carignan, and D.L. Akin, "The reaction stabilization of on-orbit robots", IEEE Control Syst., vol. 20, no. 6, pp. 19-33, 2000.
[http://dx.doi.org/10.1109/37.887446]
[50]
J.C. Parrish, D.L. Akin, and G.G. Gefke, "The ranger telerobotic shuttle experiment: Implications for operational eva/robotic cooperation", SAE Technical Paper, 2000.
[http://dx.doi.org/10.4271/2000-01-2359]
[51]
Y. Zhang, N. Li, G. Yang, and W. Ru, "Dynamic analysis of the deployment for mesh reflector deployable antennas with the cable-net structure", Acta Astronaut., vol. 131, pp. 182-189, 2017.
[http://dx.doi.org/10.1016/j.actaastro.2016.11.038]
[52]
M. Chen, L. Zeng, Y. Jin, C. Zhu, Y. Zhang, and X. Zhang, "Design and verification of microgravity simulation system for space station manipulator", 2021 3rd International Symposium on Robotics & Intelligent Manufacturing Technology (ISRIMT), Sept. 24-26, Changzhou, China, 2021, p. 439.
[http://dx.doi.org/10.1109/ISRIMT53730.2021.9597139]
[53]
Y. He, F. Zhang, M. Yang, and Z. Xu, "Design of tracking suspension gravity compensation system for satellite antenna deployable manipulator", Robot, vol. 40. 2018, no. 3, pp. 377-384.
[http://dx.doi.org/10.13973/j.cnki.robot.170437]
[54]
X. Lin, "Intelligent control method based on CMAC theory and its application on microgravity compensation system", Ph.D. Thesis. University of Science and Technology of China, 2006.
[55]
J. Zhang, H. Wang, Y. Li, L. Jiang, D. Li, and P. He, "Gravity compensation technology of solar array based on vacuum negative pressure adsorption", J. Mech. Eng., vol. 56, no. 5, pp. 202-210, 2020.
[56]
B. Siriguleng, W. Zhang, T. Liu, and Y.Z. Liu, "Vibration modal experiments and modal interactions of a large space deployable antenna with carbon fiber material and ring-truss structure", Eng. Struct., vol. 207, p. 109932, 2020.
[http://dx.doi.org/10.1016/j.engstruct.2019.109932]
[57]
W. Su, S. Yang, Y. Lan, W. Sun, and H. Bai, "Research on gravity unloading of spaceborne large-diameter mesh antenna", Machinery, vol. 57, no. 06, pp. 67-69, 2019.
[58]
H. Peng, and B. He, "A new gravity compensation method of space-borne perimeter truss deployable reflectors", China Mech. Eng., vol. 30, no. 4, pp. 379-384, 2019.
[59]
Z. Zhao, K. Fu, M. Li, J. Li, and Y. Xiao, "Gravity compensation system of mesh antennas for in-orbit prediction of deployment dynamics", Acta Astronaut., vol. 167, pp. 1-13, 2020.
[http://dx.doi.org/10.1016/j.actaastro.2019.10.021]
[60]
Z. Sun, X. Sun, Q. Zhou, B. Zou, G. Liu, and H. Dong, "An air floating suspension microgravity simulator for multi specification of spaceborne SAR", 2021 2nd China International SAR Symposium (CISS), Shanghai, China, 2021, pp. 1-7.
[http://dx.doi.org/10.23919/CISS51089.2021.9652291]
[61]
T. Rybus, and K. Seweryn, "Planar air-bearing microgravity simulators: Review of applications, existing solutions and design parameters", Acta Astronaut., vol. 120, pp. 239-259, 2016.
[http://dx.doi.org/10.1016/j.actaastro.2015.12.018]
[62]
Y. Wu, Q. Luo, X. Wang, Y. Liu, and J. Sun, "Design and verification of air-floating suspension gravity compensation device for solar wing", J. Mech. Eng., vol. 56, no. 13, pp. 149-155, 2020.
[63]
M. Zhou, H. Zhang, and X. Song, Available From: https://kns.cnki.net/kcms/detail/43.1409.O2.20201224.1607.004.html
[64]
H.C. Schubert, and J.P. How, Space construction: An experimental testbed to develop enabling technologies. Telemanipulator and Telepresence Technologies IV., vol. 3206. SPIE, 1997, pp. 179-188.
[http://dx.doi.org/10.1117/12.295583]
[65]
G. Yang, H. Wang, J. Xiao, Z. Wang, and L. Ling, "Research on a hierarchical and simultaneous gravity unloading method for antenna pointing mechanism", Mech Sci, vol. 8. 2017, no. 1, pp. 51-63.
[http://dx.doi.org/10.5194/ms-8-51-2017]
[66]
G. Yang, H. Wang, J. Xiao, and F. Yang, Similarity analysis of antenna pointing mechanism running states in space and on the micro-gravity simulator2016 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER) Chengdu, China, 2016, pp. 77-81.
[http://dx.doi.org/10.1109/CYBER.2016.7574799]
[67]
G. Yang, H. Wang, Y. Jiang, L. Ling, Y. Chang, F. Gao, and F. Yang, Available From: https://kns.cnki.net/kcms/detail/11.2187.TH.20180904.1444.016.html
[68]
N. Sato, and Y. Wakabayashi, "JEMRMS design features and topics from testing", 6th International symposium on artificial intelligence, robotics and automation in space (iSAIRAS), Quebec, Canada, June 18-22, 2001.
[69]
Y. Hu, Z. Cheng, G. Wang, Z. Zang, P. Duan, and S. Wang, "Research on zero gravity test technology of solar array with complex deployment Path", Aerospace Mfg. Tech, no. 05, pp. 41-45, 2020.
[70]
Y. Chen, Z. Cheng, H. Li, Z. Zang, and Y. Hu, "Research on zero gravity test technology for solar array with step-by-step expansion", Aerospace Manufacturing Technology, no. 02, pp. 63-66, 2019.
[71]
M. Huo, "The research of the Satellite formation flyingphysical simulation system", M.S. Thesis. Harbin Institute of Technology, 2011.
[72]
Ch. Qu, "Research and Implementation of Ground Microgravity Simulation System of Space Robotic Arm", Master's Thesis. Harbin Institute of Technology, 2014.
[73]
X. Cao, X. Dong, J. Zhang, Z. Yang, and D. Ye, "Modeling and robust controller design for formation flight ground tests based on air-bearing table", J. Astronaut, vol. 33, no. 05, pp. 612-619, 2012.
[74]
K. Zhai, X. Qu, Z. Li, and X. Chen, "Ground test and relative attitude determination algorithms of non-cooperative spacecraft", J. Harbin Inst. Technol., vol. 46, no. 03, pp. 61-65, 2014.
[75]
S. Sun, L. Zhao, and Y. Jia, "Similitude design method for motion reconstruction of space cooperative vehicles", J. Astronaut, vol. 35, no. 07, pp. 802-810, 2014.
[76]
[77]
D. Liu, H. Liu, and Z. Li, "Calibration strategy of space manipulator system on-orbit servicing fine operation", J. Astronaut, vol. 38, no. 06, pp. 630-637, 2017.
[78]
Z. Li, "The design and analysis of moving simulator for space robotic arm’s capture experiment", M.S. Thesis. Harbin Institute of Technology, 2018.
[79]
Y. Li, F. Zhang, N. Yan, Q. Tang, and K. Tong, "Review of ground test for space debris approach and capture technology", Space Debris Research, vol. 18, no. 03, pp. 43-50, 2018.
[80]
H. Yao, W. Ren, O. Ma, T. Chen, and Z. Zhao, "Understanding the true dynamics of space manipulators from air-bearing based ground testing", J. Guid. Control Dyn., vol. 41, no. 11, pp. 2425-2434, 2018.
[http://dx.doi.org/10.2514/1.G003501]
[81]
X. Song, Q. Yang, X. Shen, Y. Yu, S. Ren, J. Wang, J. Ma, and Z. Yan, "A ground deployable flexible solar wing gravity unloading device", C.N. Patent 105836158A, 2016.
[82]
X. Zuo, "A pole scale solar wing 360° zero gravity deployment system", C.N. Patent 207536140U, 2017.
[83]
L. Wang, Y. Wu, H. Liang, L. Tan, Y. Chen, and X. Wang, "An air floating full angle multi-level zero gravity unloading system", CN114408231A, 2015.
[84]
H. Liang, L. Wang, S. Liu, P. Li, Y. Zhang, and Z. Guan, "Active following circular solar wing zero gravity unloading system", C.N. Patent 114701675A, 2020.
[85]
Q. Yu, M. Yuan, Q. Li, and Z. Guan, "A zero gravity unloading rocker arm spindle center adjustment device for circular solar wings", C.N. Patent 217033001U, 2019.
[86]
N. Qi, K. Sun, Y. Wang, Y. Liu, M. Huo, W. Yao, and P. Gao, "Micro/low gravity simulation and experiment technology for spacecraft", J. Astronaut, vol. 41, no. 06, pp. 770-779, 2020.