Recent Advances in Combating Acne with Novel Drug Delivery Systems: A Review

Page: [16 - 29] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Acne vulgaris is an inflammatory disorder of the skin that occurs when hair follicles get clogged with sebum and dead skin cells resulting in pustules, papules, or nodules. This condition affects a large number of people throughout the world. Over time, various conventional therapies like topical, systemic and hormonal treatments have been prescribed by doctors to patients for managing acne. Amongst these, topical therapy is the first-line therapy dominated by retinoid and antibiotic drugs. However, conventional topical treatments have many drawbacks concerning physicochemical instability, poor ability to penetrate the skin, and wide-ranging side effects. Novel drug delivery systems are the formulations that were first devised to overcome the issues faced by traditional methods. Researchers have developed novel therapies for topical use, such as niosomes, transfersomes, solid lipid nanoparticles, microsponges, microemulsion, microspheres, nanocochleates, and liposomes, which can be used to target acne. These nanoparticulate systems aim to overcome the disadvantages of conventional treatment and provide higher safety and efficacy, along with an increase in the stability of the formulation. Many comparative studies have been conducted between the novel and conventional methods, which give us a better understanding of the safety and efficacy of drugs present in the formulation and prove that novel drug delivery systems are more favorable than their conventional counterparts. This review article provides a brief insight into the conventional methods, discusses in depth the earlier mentioned novel therapies that can be used successfully in treating acne, and provides patent information on the drug delivery systems.

Graphical Abstract

[1]
Fox, L.; Csongradi, C.; Aucamp, M.; du Plessis, J.; Gerber, M. Treatment modalities for acne. Molecules, 2016, 21(8), 1063.
[http://dx.doi.org/10.3390/molecules21081063] [PMID: 27529209]
[2]
Nawarathne, NW; Wijesekera, K; Wijayaratne, WMDGB; Napagoda, M Development of novel topical cosmeceutical formulations from nigella sativa l. with antimicrobial activity against acne-causing microorganisms. Sci. World J., 2019, 2019, 5985207.
[3]
Suva, M.A.; Patel, A.M.; Sharma, N.; Bhattacharya, C.; Mangi, R.K. A brief review on acne vulgaris: Pathogenesis, diagnosis and treatment. ResearchgateNet., 2014, 4(3), 1-12.
[4]
Zari, S.; Alrahmani, D. The association between stress and acne among female medical students in Jeddah, Saudi Arabia. Clin. Cosmet. Investig. Dermatol., 2017, 10, 503-506.
[http://dx.doi.org/10.2147/CCID.S148499] [PMID: 29255370]
[5]
Thielitz, A; Abdel-Naser, MB; Fluhr, JW; Zouboulis, CC; Gollnick, H Topische retinoide bei akne - Eine evidenzbasierte übersicht. J. German Soci. Dermatol., 2008, 6(12), 1023-1031.
[6]
Motamedi, M.; Chehade, A.; Sanghera, R.; Grewal, P. A clinician’s guide to topical retinoids. J. Cutan. Med. Surg., 2022, 26(1), 71-78.
[http://dx.doi.org/10.1177/12034754211035091] [PMID: 34292058]
[7]
Gollnick, H.P.M. From new findings in acne pathogenesis to new approaches in treatment. J. Eur. Acad. Dermatol. Venereol., 2015, 29(S5), 1-7.
[http://dx.doi.org/10.1111/jdv.13186] [PMID: 26059819]
[8]
Tang-Liu, D.D-S.; Matsumoto, R.M.; Usansky, J.I. Clinical pharmacokinetics and drug metabolism of tazarotene: A novel topical treatment for acne and psoriasis. Clin. Pharmacokinet., 1999, 37(4), 273-287.
[http://dx.doi.org/10.2165/00003088-199937040-00001] [PMID: 10554045]
[9]
Tan, A.U.; Schlosser, B.J.; Paller, A.S. A review of diagnosis and treatment of acne in adult female patients. Int. J. Womens Dermatol., 2018, 4(2), 56-71.
[http://dx.doi.org/10.1016/j.ijwd.2017.10.006] [PMID: 29872679]
[10]
Dreno, B.; Reynaud, A. Erythromycin-resistance of cutaneous bacterial flora in acne. Eur. J. Dermatol., 2001, 11(6), 549-553.
[11]
Russell, J.J. Topical therapy for acne. Am. Fam. Physician, 2000, 61(2), 357-366.
[12]
Mohiuddin, A.K. A Comprehensive Review of Acne Vulgaris. J. Clin. Res. Dermatol., 2019, 6(2), 1-34.
[http://dx.doi.org/10.15226/2378-1726/6/2/00186]
[13]
Kraft, J.; Freiman, A. Management of acne. CMAJ, 2011, 183(7), 090374.
[http://dx.doi.org/10.1503/cmaj.090374]
[14]
Tanghetti, E.A.; Popp, K.F. A current review of topical benzoyl peroxide: New perspectives on formulation and utilization. Dermatol. Clin., 2009, 27(1), 17-24.
[http://dx.doi.org/10.1016/j.det.2008.07.001] [PMID: 18984364]
[15]
Grobel, H.; Murphy, S.A. Acne vulgaris and acne rosacea. In: Integrative Medicine, 4th ed.; Elsevier, 2018; pp. 759-770.
[http://dx.doi.org/10.1016/B978-0-323-35868-2.00077-3]
[16]
Taraneh, M.; Marcus B., G. Benzoyl Peroxide; StatPearls: Treasure Island (FL), 2022.
[17]
Haibo, L.; Haiyan, Y. Topical azelaic acid, salicylic acid, nicotinamide, sulphur, zinc and fruit acid (alpha-hydroxy acid) for acne. Cochrane Database Syst. Rev., 2020, 5(5), CD011368.
[18]
Bagatin, E.; Freitas, T.H.P.; Rivitti-Machado, M.C.; Ribeiro, B.M.; Nunes, S.; Rocha, M.A.D.; Rocha, M.A.D.D. Adult female acne: A guide to clinical practice. An. Bras. Dermatol., 2019, 94(1), 62-75.
[http://dx.doi.org/10.1590/abd1806-4841.20198203] [PMID: 30726466]
[19]
Noaimi, A.; Al-Saadi, S.R. Treatment of acne vulgaris by topical spironolactone solution compared with clindamycin solution. Cureus, 2021, 13(8), e17606.
[http://dx.doi.org/10.7759/cureus.17606] [PMID: 34646657]
[20]
Santhosh, P.; George, M. Clascoterone: A new topical antiandrogen for acne management. Int. J. Dermatol., 2021, 60(12), 1561-1565.
[http://dx.doi.org/10.1111/ijd.15752] [PMID: 34242398]
[21]
Kumar Sonker, A.; Gidwani, B. Carrier-based drug delivery system for treatment of acne. Sci. World J., 2014, 2014, 1-14.
[22]
Sharadha M, ; Gowda, D.V.; Vishal Gupta, N.; Akhila, A.R. An overview on topical drug delivery system - Updated review. Int. J. Res. Pharmaceut. Sci., 2020, 11(1), 368-385.
[http://dx.doi.org/10.26452/ijrps.v11i1.1831]
[23]
Sanklecha, V.; Pande, V.; Pawar, S.; Pagar, O.; Jadhav, A. Review on niosomes. Austin Pharmacol. Pharm., 2018, 3(2), 1-7.
[24]
G., D.B.; P, V.L. Recent advances of non-ionic surfactant-based nano-vesicles (niosomes and proniosomes): A brief review of these in enhancing transdermal delivery of drug. Futur J. Pharm. Sci., 2020, 6(1), 100.
[25]
Yeo, P.L.; Lim, C.L.; Chye, S.M.; Kiong Ling, A.P.; Koh, R.Y. Niosomes: A review of their structure, properties, methods of preparation, and medical applications. Asian Biomed., 2018, 11(4), 301-314.
[http://dx.doi.org/10.1515/abm-2018-0002]
[26]
Katrolia, A.; Chauhan, S.B.; Shukla, V.K. Formulation and evaluation of metformin hydrochloride-loaded curcumin-lycopene niosomes. SN Appl. Sci., 2019, 1(12), 1703.
[http://dx.doi.org/10.1007/s42452-019-1768-6]
[27]
Ogiso, T.; Niinaka, N.; Iwaki, M.; Tanino, T. Mechanism for enhancement effect of lipid disperse system on percutaneous absorption. Int. J. Pharm., 1997, 152(2), 135-144.
[http://dx.doi.org/10.1016/S0378-5173(97)04919-3]
[28]
Fang, J.Y.; Hong, C.T.; Chiu, W.T.; Wang, Y.Y. Effect of liposomes and niosomes on skin permeation of enoxacin. Int. J. Pharm., 2001, 219(1-2), 61-72.
[http://dx.doi.org/10.1016/S0378-5173(01)00627-5] [PMID: 11337166]
[29]
Javadzadeh, Y.; Shokri, J.; Hallaj-Nezhadi, S.; Hamishehkar, H.; Nokhodchi, A. Enhancement of percutaneous absorption of Finasteride by cosolvents, cosurfactant and surfactants. Pharm. Dev. Technol., 2010, 15(6), 619-625.
[http://dx.doi.org/10.3109/10837450903397610] [PMID: 19929166]
[30]
Sahin, N.O. Niosomes as nanocarrier systems. In: Nanomaterials and Nanosystems for Biomedical Applications; Mozafari, M.R., Ed.; Springer: Dordrecht, 2007; pp. 67-81.
[http://dx.doi.org/10.1007/978-1-4020-6289-6_4]
[31]
Usman, R. Niosomes: A novel trend of drug delivery. EJBPS, 2017, 4(7), 436-442.
[32]
Mohammadi, S.; Badakhsh, H.; Badakhsh, H.; Pardakhti, A.; Pardakhti, A.; Khalili, M. Evaluation of efficacy of niosomal clindamycin phosphate 1% solution in comparison to conventional clindamycin phosphate 1% solution in the treatment of acne vulgaris: A randomized controlled trial. J. Pak. Assoc. Dermatol., 2020, 30(1), 64-71.
[33]
Shah, A.; Boldhane, S.; Pawar, A.; Bothiraja, C. Advanced development of a non-ionic surfactant and cholesterol material based niosomal gel formulation for the topical delivery of anti-acne drugs. Materials Advances, 2020, 1(6), 1763-1774.
[http://dx.doi.org/10.1039/D0MA00298D]
[34]
Hatem, A.S.; Fatma, M.M.; Amal, K.H.; Hossam, M.A.W.; Maha, H.R. Dapsone in topical niosomes for treatment of acne vulgaris. Afr. J. Pharm. Pharmacol., 2018, 12(18), 221-230.
[http://dx.doi.org/10.5897/AJPP2018.4925]
[35]
Cosmetic and pharmaceutical compositions containing niosomes and a water-soluble polyamide, and a process for preparing these compositions. US4830857A, 1985.
[36]
Apparatus and method for preparing cosmeceutical ingredients containing epi-dermal delivery mechanisms. US10342747B2, 2019.
[37]
Chaurasiya, P.; Ganju, E.; Upmanyu, N.; Ray, S.K.; Jain, P. Transfersomes: A novel technique for transdermal drug delivery. J. Drug Deliv. Ther., 2019, 9(1), 279-285.
[http://dx.doi.org/10.22270/jddt.v9i1.2198]
[38]
Rajan, R.; Vasudevan, D.T.; Biju Mukund, V.P.; Jose, S. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J. Adv. Pharm. Technol. Res., 2011, 2(3), 138-143.
[http://dx.doi.org/10.4103/2231-4040.85524] [PMID: 22171309]
[39]
Rai, S.; Pandey, V.; Rai, G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art. Nano Rev. Exp., 2017, 8(1), 1325708.
[http://dx.doi.org/10.1080/20022727.2017.1325708] [PMID: 30410704]
[40]
Opatha, S.A.T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics, 2020, 12(9), 855.
[http://dx.doi.org/10.3390/pharmaceutics12090855] [PMID: 32916782]
[41]
Madhumitha, V.; Sangeetha, S. Transfersomes: A novel vesicular drug delivery system for enhanced Permeation through Skin. Res. J. Pharma. Technol., 2020, 13(5), 2493-2501.
[http://dx.doi.org/10.5958/0974-360X.2020.00445.X]
[42]
Bhasin, B.; Patel, S.P.; Road, V.L.M.A.N. An overview of transfersomal drug delivery. IJPSR, 2018, 9(6), 2175-2184.
[43]
Vasanth, S.; Dubey, A.; G S, R.; Lewis, S.A.; Ghate, V.M.; El-Zahaby, S.A.; Hebbar, S. Development and investigation of vitamin C-enriched adapalene-loaded transfersome gel: A collegial approach for the treatment of acne vulgaris. AAPS PharmSciTech, 2020, 21(2), 61.
[http://dx.doi.org/10.1208/s12249-019-1518-5] [PMID: 31915948]
[44]
Shah, J.P.; Khan, A.I.; Maurya, R.; Shukla, A.K. Formulation development and evaluation of Transferosomal drug delivery for effective treatment of acne. Adv. Pharmaceut. J., 2019, 4(1), 26-34.
[http://dx.doi.org/10.31024/apj.2019.4.1.4]
[45]
Qushawy, M.; Nasr, A.; Abd-Alhaseeb, M.; Swidan, S. Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of candida skin infections. Pharmaceutics, 2018, 10(1), 26.
[http://dx.doi.org/10.3390/pharmaceutics10010026] [PMID: 29473897]
[46]
Gupta, M. Novel clindamycin loaded transfersomes formulation for effective management of acne. World J. Pharm. Res., 2017, 765-773.
[http://dx.doi.org/10.20959/wjpr20176-8494]
[47]
Zemtsov, A. Formulations and methods for treatment of acne and inflammatory skin conditions. US20150093445A1, 2013.
[48]
Mutyam Pallerla, S.; Prabhakar, B. A review on solid lipid nanoparticles. Int. J. Pharm. Sci. Rev. Res., 2013, 20(2), 196-206.
[49]
Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Siva Kumar, N.; Vekariya, R.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Advances, 2020, 10(45), 26777-26791.
[http://dx.doi.org/10.1039/D0RA03491F] [PMID: 35515778]
[50]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[51]
Mohammadi-Samani, S.; Ghasemiyeh, P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[52]
Gupta, S.; Wairkar, S.; Bhatt, L.K. Isotretinoin and α-tocopherol acetate-loaded solid lipid nanoparticle topical gel for the treatment of acne. J. Microencapsul., 2020, 37(8), 557-565.
[http://dx.doi.org/10.1080/02652048.2020.1823499] [PMID: 32924680]
[53]
Deshkar, S.S.; Bhalerao, S.G.; Jadhav, M.S.; Shirolkar, S.V. Formulation and optimization of topical solid lipid nanoparticles based gel of dapsone using design of experiment. Pharm. Nanotechnol., 2019, 6(4), 264-275.
[http://dx.doi.org/10.2174/2211738506666181105141522] [PMID: 30394227]
[54]
Layegh, P.; Mosallaei, N.; Bagheri, D.; Jaafari, M.R.; Golmohammadzadeh, S. The efficacy of isotretinoin-loaded solid lipid nanoparticles in comparison to Isotrex® on acne treatment Effect of Isotretinoin-loaded SLN on acne. Nanomed. J., 2013, 1(1), 38-47.
[55]
Lipid nanoparticle capsules. WO2011116963A3, 2011.
[56]
Claire Mallard M( F) ; CD, MS( F. United states patent composition containing same, Method for the production thereof , and use of same in dermatology (71) applicant : Galderma research & Development.
[57]
Jyoti, J.; Kumar, S. Innovative and novel strategy: Microsponges for topical drug delivery. J. Drug Deliv. Ther., 2018, 8(5), 28-34.
[http://dx.doi.org/10.22270/jddt.v8i5.1885]
[58]
Abd-Elala Radwa, M.A.; Elosailya Ghada, H. Drug delivery from microsponges: A review article. Records Pharmaceut. Biomed. Sci., 2020, 5(3), 21-27.
[59]
Ingale, D.J.; Aloorkar, N.H.; KulkarnI, A.S.; Patil, R.A.P. Microsponges as innovative drug delivery systems. Int. J. Pharmaceut. Sci. Nanotechnol., 2012, 5(1), 1597-1606.
[http://dx.doi.org/10.37285/ijpsn.2012.5.1.2]
[60]
Mahant, S.; Kumar, S.; Nanda, S.; Rao, R. Microsponges for dermatological applications: Perspectives and challenges. Asian J. Pharmaceut. Sci., 2020, 15(3), 273-291.
[http://dx.doi.org/10.1016/j.ajps.2019.05.004] [PMID: 32636947]
[61]
Kaity, S.; Maiti, S.; Ghosh, A.; Pal, D.; Ghosh, A.; Banerjee, S. Microsponges: A novel strategy for drug delivery system. J. Adv. Pharm. Technol. Res., 2010, 1(3), 283-290.
[http://dx.doi.org/10.4103/0110-5558.72416] [PMID: 22247859]
[62]
Sharma, S.; Sharma, A.; Kaur, C. Microsponges: As a topical drug delivery system. Int. J. Pharm. Sci. Res., 2020, 11(2), 524-534.
[63]
Wester, R.C.; Patel, R.; Nacht, S.; Leyden, J.; Melendres, J.; Maibach, H. Controlled release of benzoyl peroxide from a porous microsphere polymeric system can reduce topical irritancy. J. Am. Acad. Dermatol., 1991, 24(5), 720-726.
[http://dx.doi.org/10.1016/0190-9622(91)70109-F] [PMID: 1869643]
[64]
Osmani, R.; Aloorkar, N.; Kulkarni, A.; Kulkarni, P.; Hani, U.; Thirumaleshwar, S.; Bhosale, R. Novel cream containing microsponges of anti-acne agent: Formulation development and evaluation. Curr. Drug Deliv., 2015, 12(5), 504-516.
[http://dx.doi.org/10.2174/1567201812666150212122421] [PMID: 25675339]
[65]
Kumari, P.; Mishra, S.K. A comprehensive review on novel microsponges drug delivery approach. Asian J. Pharm. Clin. Res., 2016, 9, 25-30.
[66]
Patel, A.; Upadhayay, P.; Trivedi, J.; Shah, S.; Patel, J. Microsponges as the versatile tool for topical route: A review archana. Int. J. Pharm. Sci. Res., 2012, 3(05), 942-950.
[67]
Suhail, N.; Alzahrani, A.K.; Basha, W.J.; Kizilbash, N.; Zaidi, A.; Ambreen, J.; Khachfe, H.M. Microemulsions: Unique properties, pharmacological applications, and targeted drug delivery. Front. Nanotechnol., 2021, 3(November), 754889.
[http://dx.doi.org/10.3389/fnano.2021.754889]
[68]
Najafi-Taher, R.; Amani, A. Nanoemulsions: Colloidal topical delivery systems for antiacne agents- A Mini-Review. Nanomed. Res. J., 2017, 2(1), 49-56.
[69]
Shukla, T.; Upmanyu, N.; Agrawal, M.; Saraf, S.; Saraf, S.; Alexander, A. Biomedical applications of microemulsion through dermal and transdermal route. Biomed. Pharmacother., 2018, 108(August), 1477-1494.
[http://dx.doi.org/10.1016/j.biopha.2018.10.021] [PMID: 30372850]
[70]
Sibinovska, N.; Komoni, V.; Ancevska Netkovska, K.; Vranic, E.; Simonoska Crcarevska, M.; Glavas Dodov, M. Novel approaches in treatment of Acne vulgaris: Patents related to micro/nanoparticulated carrier systems. Maced. Pharmaceut. Bull., 2016, 62(2), 3-16.
[http://dx.doi.org/10.33320/maced.pharm.bull.2016.62.02.001]
[71]
Aftab, A.; Gulam, M.; Gopal Prasad, A. A microemulsion-based gel of isotretinoin and erythromycin estolate for the management of acne. J. Drug Deliv. Sci. Technol., 2022, 71, 103277.
[72]
Wani, A.; Sanghani, C.; Wani, S. Formulation, characterization, and in vitro evaluation of novel microemulsion-based spray for topical delivery of isotretinoin. Asian J. Pharm. Clin. Res., 2018, 11(10), 226-232.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i10.27019]
[73]
Patel, M.R.; Patel, R.B.; Parikh, J.R.; Patel, B.G. Novel microemulsion-based gel formulation of tazarotene for therapy of acne. Pharm. Dev. Technol., 2016, 21(8), 921-932.
[http://dx.doi.org/10.3109/10837450.2015.1081610] [PMID: 26334480]
[74]
Rathi, S. Acne vulgaris treatment: The current scenario. Indian J. Dermatol., 2011, 56(1), 7-13.
[http://dx.doi.org/10.4103/0019-5154.77543] [PMID: 21572783]
[75]
Transdermal delivery of large agents Patent Grant Edelson April 26, 2 [Eirion Therapeutics, Inc.]., 2016. Available from: https://uspto.report/patent/grant/11,311,496
[76]
Kshirsagar, D.S.; Saudagar, R.B. Microsphere: A review. Res. J. Top. Cosmet. Sci., 2016, 7(1), 27-37.
[http://dx.doi.org/10.5958/2321-5844.2016.00006.6]
[77]
Tanmay, M.; Das, S. A review on microsphere based topical drug delivery. Int. J. Res. Pharmaceut. Sci., 2020, 11(4), 5741-5747.
[78]
Midha, K.; Nagpal, M. Research article microspheres: A recent update. Int. J. Recent Sci. Res., 2015, 6(8), 5859-5867.
[79]
Gupta, B.; Sree Giri, P. Microspheres as drug delivery system - A review. J. Glob. Trends Pharm. Sci., 2014, 5(3), 1961-1972.
[80]
Karmakar, A; Maity, SD; Barua, S; Das, R Microsphere: A wander around drug delivery. Bionatura, 2022, 7(1), 13.
[http://dx.doi.org/10.21931/RB/2022.07.01.13]
[81]
Dogra, S.; Sumathy, T.K.; Nayak, C.; Ravichandran, G.; Vaidya, P.P.; Mehta, S.; Mittal, R.; Mane, A.; Charugulla, S.N. Efficacy and safety comparison of combination of 0.04% tretinoin microspheres plus 1% clindamycin versus their monotherapy in patients with acne vulgaris: A phase 3, randomized, double-blind study. J. Dermatolog. Treat., 2021, 32(8), 925-933.
[http://dx.doi.org/10.1080/09546634.2020.1720579] [PMID: 32020824]
[82]
Kaminska, EC Treatment of acne and acne-related scarring with fixed combination clindamycin phosphate and benzoyl peroxide gel (1.2%/3.75%) and tretinoin gel microsphere 0.06% in an Asian American transgender female. SAGE Open Med. Case Rep., 2020, 8, 2050313X2098403.
[83]
Qin Xiang, N Use of polymethylmethacrylate (PMMA) microspheres collagen to treat atrophic acne scars. Med. Hypotheses, 2017, 108, 115-116.
[84]
Retinoid formulations in porous microspheres for reduced irritation and enhanced stability. US5851538A, 1995.
[85]
Stable fixed dose topical formulation. EP2265268A2, 2010.
[86]
Papahadjopoulos, D.; Vail, W.J.; Jacobson, K.; Poste, G. Cochleate lipid cylinders: Formation by fusion of unilamellar lipid vesicles. Biochim. Biophys. Acta Biomembr., 1975, 394(3), 483-491.
[http://dx.doi.org/10.1016/0005-2736(75)90299-0] [PMID: 805602]
[87]
NAYEK, S.; VENKATACHALAM, A. Recent nanocochleate drug delivery system for cancer treatment: A review. Int. J. Curr. Pharm. Res., 2019, 11(6), 28-32.
[88]
Kale, M.R. Nanocochleate: A novel. Drug Deliv., 2016, 2016(3), 234-242.
[89]
Mahendra, R.P. A review on nanocochleate. World J. Pharmaceut. Life Sci. WJPLS., 2022, 8(9), 43-49.
[90]
Talke, S.; Salunkhe, K.S.; Chavan, M.J.; Hundiwale, J.C.; Harwalkar, M.; Waykar, M. A review on nanocochleates novel approach for drug delivery. World J. Pharm. Pharm. Sci., 2018, 7(7), 284-294.
[91]
NANOCOCHLEATE: A novel approach for delivery of biological molecules., Available from: https://ijpsr.com/bft-article/nanocochleate-a-novel-approach-for-delivery-of-biological-molecules/
[92]
Khairnar, S.B.; Saudagar, R.B. Nanococleates: An Overview. Int. J. Pharma Chem. Res., 2017, 3(1), 17-24.
[93]
Morales, J.O.; Valdés, K.; Morales, J.; Oyarzun-Ampuero, F. Lipid nanoparticles for the topical delivery of retinoids and derivatives. Nanomedicine, 2015, 10(2), 253-269.
[http://dx.doi.org/10.2217/nnm.14.159] [PMID: 25600970]
[94]
Pawar, S.F.; Bothara, S.S.; Mahaparale, P.R.; Musale, V.L. Nanocochleate - an important drug delivery system offering unique features. World J. Pharm. Res., 2020, 9(9), 621-637.
[95]
A kind of Terbinafine nano milk-like liquid antifungal medicine and preparation method thereof.. CN100548285C, 2006.
[96]
Rahman, M.; Alam, K.; Beg, S.; Anwar, F.; Kumar, V. Liposomes as topical drug delivery systems: State of the arts. In: Biomedical Applications of Nanoparticles; William Andrew, 2019; pp. 149-161.
[97]
Date, A.A.; Naik, B.; Nagarsenker, M.S. Novel drug delivery systems: Potential in improving topical delivery of antiacne agents. Skin Pharmacol. Physiol., 2006, 19(1), 2-16.
[http://dx.doi.org/10.1159/000089138] [PMID: 16247244]
[98]
Agarwal, R.; Iezhitsa, I.; Agarwal, P.; Abdul Nasir, N.A.; Razali, N.; Alyautdin, R.; Ismail, N.M. Liposomes in topical ophthalmic drug delivery: An update. Drug Deliv., 2016, 23(4), 1075-1091.
[http://dx.doi.org/10.3109/10717544.2014.943336] [PMID: 25116511]
[99]
Kamra, M.; Diwan, A.; Sardana, S. Topical liposomal gel: A review. Int. J. Pharm. Sci. Res., 2017, 8(6), 2408-2414.
[100]
Hua, S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front. Pharmacol., 2015, 6(SEP), 219.
[http://dx.doi.org/10.3389/fphar.2015.00219] [PMID: 26483690]
[101]
Karami, N.; Moghimipour, E.; Salimi, A. Liposomes as a novel drug delivery system: Fundamental and pharmaceutical application. Asian J. Pharm., 2018, 12(1), S31-S41.
[102]
Htwe, M.M.; Teanpaisan, R.; Khongkow, P.; Amnuaikit, T. Liposomes of probiotic’s lyophilized cell free supernatant; a potential cosmeceutical product. Pharmazie, 2019, 74(8), 462-466.
[PMID: 31526437]
[103]
Madan, S.; Nehate, C.; Barman, T.K.; Rathore, A.S.; Koul, V. Design, preparation, and evaluation of liposomal gel formulations for treatment of acne:In vivo studies. Drug Dev. Ind. Pharm., 2019, 45(3), 395-404.
[http://dx.doi.org/10.1080/03639045.2018.1546310] [PMID: 30442066]
[104]
Ingebrigtsen, S.G.; Škalko-Basnet, N.; de Albuquerque Cavalcanti Jacobsen, C.; Holsæter, A.M. Successful co-encapsulation of benzoyl peroxide and chloramphenicol in liposomes by a novel manufacturing method - dual asymmetric centrifugation. Eur. J. Pharm. Sci., 2017, 97, 192-199.
[http://dx.doi.org/10.1016/j.ejps.2016.11.017] [PMID: 27866016]
[105]
Eroğlu, İ.; Aslan, M.; Yaman, Ü.; Gultekinoglu, M.; Çalamak, S.; Kart, D.; Ulubayram, K. Liposome-based combination therapy for acne treatment. J. Liposome Res., 2020, 30(3), 263-273.
[http://dx.doi.org/10.1080/08982104.2019.1630646] [PMID: 31185768]
[106]
Reimer, K. Use of pvp-iodine liposomes for treatment of acne verwendung von pvp-iod liposomen zur behandlung von akne utilisation de liposomes de polyvidone iodee pour le traitement de l’acne (84). Available from: https://patentimages.storage.googleapis.com/3a/f5/ad/7d1563e688c3d6/EP1596876B1.pdf
[107]
Peter Ladislaus Dorogi, D.B.V.J.P.M. Skin treatment compositions containing copper-pigment complexes. US20100247628A1, 2010.
[108]
Patel, M.; Jain, S.A.N. An inclusive review on novel drug delivery strategies for an effectual delivery of bio-active drug molecules in the treatment of acne. J. Adv. Sci. Res., 2021, 11(S4), 01-15.
[109]
Purdon, C.H.; Haigh, J.M.; Surber, C.; Smith, E.W. Foam drug delivery in dermatology. Am. J. Drug Deliv., 2012, 1(1), 71-75.
[110]
Parsa, M.; Trybala, A.; Malik, D.J.; Starov, V. Foam in pharmaceutical and medical applications. Curr. Opin. Colloid Interface Sci., 2019, 44, 153-167.
[http://dx.doi.org/10.1016/j.cocis.2019.10.007]
[111]
Del Rosso, JQ The use of sodium sulfacetamide 10%-sulfur 5% emollient foam in the treatment of acne vulgaris. J. Clin. Aesthet. Dermatol., 2009, 2(8), 26-29.
[112]
Kircik, L; Rosso, JQ; Del, ; Weiss, JS; Stakias, V; London, A; Keynan, R Formulation and profile of fmx101 4% minocycline topical foam for the treatment of acne vulgaris. J. Clin. Aesthet. Dermatol., 2020, 13(4), 14-21.
[113]
Trumbore, M.W.; Schilling, W.; Varanasi, R.K. Aerosol foams comprising clindamycin phosphate. US8592380B2, 2011.
[114]
Tamarkin, D.; Gazal, E.; Papiashvili, I.; Hazot, Y.; Schuz, D.; Keynan, R. Surfactant-free water-free foamable compositions, breakable foams and gels and their uses. US20190134204A1, 2015.
[115]
Tamarkin, D.; Eini, M.; Hazot, Y.; Shirvan, M.; Kedem, T.H.; Keynan, R. Compositions and methods for treating rosacea and acne. US10849847B2, 2020.
[116]
Tamarkin, D.; Gazal, E.; Keynan, R.; Eini, M.; Schuz, D. Compositions for the improved treatment of acne and related disorders. US20140121188A1, 2020.
[117]
Tamarkin, D. Foam: A unique delivery vehicle for topically applied formulations. In: Handbook of Formulating Dermal Applications: A Definitive Practical Guide; Scrivener Publishing LLC., 2016.
[http://dx.doi.org/10.1002/9781119364221.ch9]
[118]
Minocycline foam - Journey Medical Corporation. 2022. Available from: https://adisinsight.springer.com/drugs/800033938
[119]
Lee, S.Y.; You, C.E.; Park, M.Y. Blue and red light combination LED phototherapy for acne vulgaris in patients with skin phototype IV. Lasers Surg. Med., 2007, 39(2), 180-188.
[http://dx.doi.org/10.1002/lsm.20412] [PMID: 17111415]
[120]
Diogo, M.L.G.; Campos, T.M.; Fonseca, E.S.R.; Pavani, C.; Horliana, A.C.R.T.; Fernandes, K.P.S. Effect of blue light on acne vulgaris: A systematic review. Sensors, 2021, 21(20), 6943.
[http://dx.doi.org/10.3390/s21206943]
[121]
Charakida, A.; Seaton, E.D.; Charakida, M.; Mouser, P.; Avgerinos, A.; Chu, A.C. Phototherapy in the treatment of acne vulgaris: what is its role? Am. J. Clin. Dermatol., 2004, 5(4), 211-216.
[http://dx.doi.org/10.2165/00128071-200405040-00001] [PMID: 15301568]
[122]
Sigurdsson, V.; Knulst, A.C.; van Weelden, H. Phototherapy of acne vulgaris with visible light. Dermatology, 1997, 194(3), 256-260.
[http://dx.doi.org/10.1159/000246114] [PMID: 9187844]
[123]
Baugh, W.P.; Kucaba, W.D. Nonablative phototherapy for acne vulgaris using the KTP 532 nm laser. Dermatol. Surg., 2005, 31(10), 1290-1296.
[http://dx.doi.org/10.1097/00042728-200510000-00005] [PMID: 16188181]
[124]
Seaton, E.D.; Charakida, A.; Mouser, P.E.; Grace, I.; Clement, R.M.; Chu, A.C. Pulsed-dye laser treatment for inflammatory acne vulgaris: Randomised controlled trial. Lancet, 2003, 362(9393), 1347-1352.
[http://dx.doi.org/10.1016/S0140-6736(03)14629-6] [PMID: 14585635]