NiO@PANI based Nanocomposites as an Advanced Functional Material: Experimental and Computational Approach

Article ID: e081023221875 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Individually, metal nanoparticles (NPs) and conducting polymers show unique properties due to small size, large surface area, and high order of conductivity. But their combination may result in a synergistic effect in properties.

Methods: The NiO NPs and conducting polymer Polyaniline were prepared by modified Sol-gel and chemical oxidative methods, respectively. Powder XRD, FTIR, TEM, and UV-visible methods were used for the structural evaluation. The computational (DFT) study was performed to support experimental results. The NiO/Polyaniline (PANI) nanocomposites (NCs) were explored as corrosion inhibitors, electrical conductors, and photocatalytic agents.

Results: The NiO/Polyaniline NCs showed 91.52% corrosion inhibition efficiency at 1000 ppm concentration. The photocatalytic activity was investigated against methylene blue dye under ultraviolet light. The NiO/Polyaniline NCs decompose 90% of organic dye. The NCs exhibit good conducting, corrosion inhibition, and photocatalytic activity.

Conclusion: The metal oxide (NiO NPs) and PANI-based NCs can be used as corrosion inhibitors, conducting material, and for the degradation of organic compounds (dyes) in impure water.

[1]
Zhang, B.; Zhao, B.; Huang, S.; Zhang, R.; Xu, P.; Wang, H.L. One-pot interfacial synthesis of Au nanoparticles and Au–polyaniline nanocomposites for catalytic applications. CrystEngComm, 2012, 14(5), 1542-1544.
[http://dx.doi.org/10.1039/c2ce06396d]
[2]
El Rhazi, M.; Majid, S.; Elbasri, M.; Salih, F.E.; Oularbi, L.; Lafdi, K. Recent progress in nanocomposites based on conducting polymer: Application as electrochemical sensors. Int. Nano Lett., 2018, 8(2), 79-99.
[http://dx.doi.org/10.1007/s40089-018-0238-2]
[3]
Sharma, R.; Malik, R.; Lamba, S.; Annapoorni, S. Metal oxide/polyaniline nanocomposites: Cluster size and composition dependent structural and magnetic properties. Bull. Mater. Sci., 2008, 31(3), 409-413.
[http://dx.doi.org/10.1007/s12034-008-0064-7]
[4]
Sivakumar, K.; Senthil Kumar, V.; Shim, J.J.; Haldorai, Y. Conducting copolymer/ZnO nanocomposite: Synthesis, characterization, and its photocatalytic activity for the removal of pollutants, Synth. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2014, 44(10), 1414-1420.
[http://dx.doi.org/10.1080/15533174.2013.809743]
[5]
Wang, Y.; Cai, L.; Li, Y.; Tang, Y.; Xie, C. Structural and photo-electro-catalytic characteristic of ZnO/ZnWO4/WO3 nanocomposites with double heterojunctions. Phys. E. Low-dimensional Syst. Nanostruct, 2010, 43, 503-509.
[http://dx.doi.org/10.1016/j.physe.2010.09.005]
[6]
Jiang, X.; Zhao, X.; Duan, L.; Shen, H.; Liu, H.; Hou, T.; Wang, F. Enhanced photoluminescence and photocatalytic activity of ZnO-ZnWO4 nanocomposites synthesized by a precipitation method. Ceram. Int., 2016, 42(14), 15160-15165.
[http://dx.doi.org/10.1016/j.ceramint.2016.05.098]
[7]
Yosefi, L.; Haghighi, M. Fabrication of nanostructured flowerlike p-BiOI/p-NiO heterostructure and its efficient photocatalytic performance in water treatment under visible-light irradiation. Appl. Catal. B, 2018, 220, 367-378.
[http://dx.doi.org/10.1016/j.apcatb.2017.08.028]
[8]
Anitha, S.; Suganya, M.; Prabha, D.; Srivind, J.; Balamurugan, S.; Balu, A.R. Synthesis and characterization of NiO-CdO composite materials towards photoconductive and antibacterial applications. Mater. Chem. Phys., 2018, 211, 88-96.
[http://dx.doi.org/10.1016/j.matchemphys.2018.01.048]
[9]
Kumar, H.; Rani, R.; Rahul, Yadav, A.; Rahul, Yadav, A.; Rajni, Synthesis, characterization, and influence of reduced Graphene Oxide (rGO) on the performance of mixed metal oxide nanocomposite as optoelectronic material and corrosion inhibitor. Chem. Data Collect, 2020 Oct;, 29, 100527.
[http://dx.doi.org/10.1016/j.cdc.2020.100527]
[10]
Kumar, H.; Boora, A.; Yadav, A.; Rajni; Rahul Polyaniline-metal oxide-nano-composite as a nano-electronics, opto-electronics, heat resistance and anticorrosive material. Results in Chemistry, 2020 Jan;, 2, 100046.
[http://dx.doi.org/10.1016/j.rechem.2020.100046]
[11]
Zhang, M.; Xu, Y.; Fan, H.; Zhao, N.; Yan, B.; Wang, C.; Ma, J.; Yadav, A.K.; Zhang, W.; Du, Z.; Zheng, X.; Li, M.; Dong, G.; Wang, W. In situ synthesis of 3D Co@Co3O4 nanosheet arrays for hybrid supercapacitors with ultra-high rate performance. J. Alloys Compd., 2020 Jun 15;, 826, 154115.
[http://dx.doi.org/10.1016/j.jallcom.2020.154115]
[12]
Ren, X.; Fan, H.; Ma, J.; Wang, C.; Zhang, M.; Zhao, N. Hierarchical Co3O4/PANI hollow nanocages: Synthesis and application for electrode materials of supercapacitors. Appl. Surf. Sci., 2018 May 31;, 441, 194-203.
[http://dx.doi.org/10.1016/j.apsusc.2018.02.013]
[13]
Ma, L.; Fan, H.; Wei, X.; Chen, S.; Hu, Q.; Liu, Y.; Zhi, C.; Lu, W.; Zapien, J.A.; Huang, H. Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co 3 O 4 @polypyrrole core–shell nanorod bundle array electrodes. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(39), 19058-19065.
[http://dx.doi.org/10.1039/C8TA07477A]
[14]
Hashemi Monfared, A.; Jamshidi, M. Synthesis of polyaniline/titanium dioxide nanocomposite (PAni/TiO2) and its application as photocatalyst in acrylic pseudo paint for benzene removal under UV/VIS lights. Prog. Org. Coat., 2019 Aug;, 136, 105257.
[http://dx.doi.org/10.1016/j.porgcoat.2019.105257]
[15]
Ambalagi, S.M.; Devendrappa, M.; Nagaraja, S.; Sannakki, B. Dielectric properties of PANI with metal oxide nanocomposites, Emerging Technologies: Micro to Nano (ETMN-2017). AIP Conf. Proc., 2018, 020002-, 020002-020006.
[http://dx.doi.org/10.1063/1.5047678]
[16]
Dooley, K.M.; Chen, S.Y.; Ross, J.R.H. Stable nickel-containing catalysts for the oxidative coupling of methane. J. Catal., 1994, 145(2), 402-408.
[http://dx.doi.org/10.1006/jcat.1994.1050]
[17]
Yang, H.X.; Dong, Q.F.; Hu, X.H.; Ai, X.P.; Li, S.X. Preparation and characterization of LiNiO2 synthesized from Ni(OH)2 and LiOH·H2O. J. Power Sources, 1999, 79(2), 256-261.
[http://dx.doi.org/10.1016/S0378-7753(99)00158-5]
[18]
Hotový, I.; Huran, J.; Spiess, L.; Čapkovic, R.; Haščík, Š. Preparation and characterization of NiO thin films for gas sensor applications. Vacuum, 2000, 58(2-3), 300-307.
[http://dx.doi.org/10.1016/S0042-207X(00)00182-2]
[19]
Miller, E.L.; Rocheleau, R.E. Electrochemical behavior of reactively sputtered iron-doped nickel oxide. J. Electrochem. Soc., 1997, 144(9), 3072-3077.
[http://dx.doi.org/10.1149/1.1837961]
[20]
Wang, G.; Lu, X.; Zhai, T.; Ling, Y.; Wang, H.; Tong, Y.; Li, Y. Free-standing nickel oxide nanoflake arrays: Synthesis and application for highly sensitive non-enzymatic glucose sensors. Nanoscale, 2012, 4(10), 3123-3127.
[http://dx.doi.org/10.1039/c2nr30302g]
[21]
Ichiyanagi, Y.; Wakabayashi, N.; Yamazaki, J.; Yamada, S.; Kimishima, Y.; Komatsu, E.; Tajima, H. Magnetic properties of NiO nanoparticles. Physica B, 2003, 329–333, 862-863.
[22]
Makhlouf, S.A.; Parker, F.T.; Spada, F.E.; Berkowitz, A.E. Magnetic anomalies in NiO nanoparticles. J. Appl. Phys., 1997, 81(8), 5561-5563.
[http://dx.doi.org/10.1063/1.364661]
[23]
Klaiklang, P.; Khongthon, S.; Chueachot, R.; Nakhowong, R. A facile two-step synthesis of Ag/CuCo2O4 supported on nickel foam as a high-performance electrocatalyst for oxygen evolution reaction. Mater. Lett., 2020, 275, 128094.
[http://dx.doi.org/10.1016/j.matlet.2020.128094]
[24]
Yadav, A.; Kumar, H.; Sharma, R.; Kumari, R.; Singh, D.; Hamed, O.A. Metal oxide decorated polyaniline based multifunctional nanocomposites: An experimental and theoretical approach. Results in Engineering, 2023, 18, 101161.
[http://dx.doi.org/10.1016/j.rineng.2023.101161]
[25]
Rossignatti, B.C.; Vieira, A.P.; Barbosa, M.S.; Abegão, L.M.G.; Mello, H.J.N.P.D. Thin films of polyaniline-based nanocomposites with CeO2 and WO3 metal oxides applied to the impedimetric and capacitive transducer stages in chemical sensors. Polymers, 2023, 15(3), 578.
[http://dx.doi.org/10.3390/polym15030578]
[26]
Zare, E.N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A.; Perale, G. Progress in conductive polyaniline-based nanocomposites for biomedical applications: A review. J. Med. Chem., 2020, 63(1), 1-22.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00803]
[27]
Ćirić-Marjanović, G. Progress in polyaniline composites with transition metal oxides. in fundamentals of conjugated polymer blends, copolymers, and composites; Saini, P., Ed.; , 2015.
[http://dx.doi.org/10.1002/9781119137160.ch2]
[28]
Largo, F.; Haounati, R.; Ouachtak, H.; Hafid, N.; Jada, A.; Addi, A.A. Design of organically modified sepiolite and its use as adsorbent for hazardous malachite green dye removal from water. Water Air Soil Pollut., 2023, 234(3), 183.
[http://dx.doi.org/10.1007/s11270-023-06185-z]
[29]
Ouachtak, H.; El Guerdaoui, A.; El Haouti, R.; Haounati, R.; Ighnih, H.; Toubi, Y.; Alakhras, F.; Rehman, R.; Hafid, N.; Addi, A.A.; Taha, M.L. Combined molecular dynamics simulations and experimental studies of the removal of cationic dyes on the eco-friendly adsorbent of activated carbon decorated montmorillonite Mt@AC. RSC Adv., 2023, 13(8), 5027-5044.
[http://dx.doi.org/10.1039/D2RA08059A]
[30]
Haounati, R.; Ighnih, H.; Ouachtak, H.; Malekshah, R.E.; Hafid, N.; Jada, A.; Ait Addi, A. Z-Scheme g-C3N4/Fe3O4/Ag3PO4 @Sep magnetic nanocomposites as heterojunction photocatalysts for green malachite degradation and dynamic molecular studies. Colloids Surf. A Physicochem. Eng. Asp., 2023, 671, 131509-131509.
[http://dx.doi.org/10.1016/j.colsurfa.2023.131509]
[31]
Redouane, H.; Hamza, I.; Rahime, E.M.; Said, A.; Fadi, A.; Eman, A.; Alghamdi, H.; Haounati, R.; Ighnih, H.; Malekshah, R.E.; Alahiane, S.; Alakhras, F.; Alabbad, E.; Alghamdi, H.; Ouachtak, H.; Addi, A.A.; Jada, A. Exploring ZnO/Montmorillonite photocatalysts for the removal of hazardous RhB Dye: A combined study using molecular dynamics simulations and experiments. Mater. Today Commun., 2023, 35, 105915-105915.
[http://dx.doi.org/10.1016/j.mtcomm.2023.105915]
[32]
Kumar, H.; Yadav, V.; Kumari, A. Adsorption, corrosion inhibition mechanism, and computational studies of Azadirachta indica extract for protecting mild steel: Sustainable and green approach. J. Phys. Chem. Solids, 2022, 165, 110690.
[http://dx.doi.org/10.1016/j.jpcs.2022.110690]
[33]
Jia, S.; Wang, Q.; Wang, S. Ni-MOF/PANI-derived CN-doped NiO nanocomposites for high sensitive nonenzymic electrochemical detection. J. Inorg. Organomet. Polym. Mater., 2021, 31(2), 865-874.
[http://dx.doi.org/10.1007/s10904-020-01767-4]
[34]
Ahmad, S.; Ali khan, M.M.; Mohammad, F. Graphene/Nickel the oxide-based nanocomposite of polyaniline with special reference to ammonia sensing. ACS Omega, 2018, 3(8), 9378-9387.
[http://dx.doi.org/10.1021/acsomega.8b00825]
[35]
Deyab, M.A.; Mele, G.; Bloise, E.; Mohsen, Q. Novel nanocomposites of Ni-Pc/polyaniline for the corrosion safety of the aluminum current collector in the Li-ion battery electrolyte. Sci. Rep., 2021, 11(1), 12371.
[http://dx.doi.org/10.1038/s41598-021-91688-0]
[36]
Sarkar, K.; Debnath, A.; Deb, K.; Bera, A.; Saha, B. Effect of NiO incorporation in charge transport of polyaniline: Improved polymer based thermoelectric generator. Energy, 2019, 177(C), 203-210.
[http://dx.doi.org/10.1016/j.energy.2019.04.045]
[37]
Redouane, H.; Fadi, A.; Ouachtak, H.; Saleh, T.A.; Naima, H.; Abdelaziz, A.A. Arab. J. Sci. Eng., 2022, 48(1), 169-179.
[http://dx.doi.org/10.1007/s13369-022-06899-y]
[38]
Redouane, H.; Anouar El, G.; Ouachtak, H.R.; El, H.; A., B.; Naima, H.; Bahcine, B.; Diogo, M.F.S.; M. L., T.; Jada, A.; Abdelaziz A., A. Separ. Purif. Tech., 2021, 277, 119399-119399.
[http://dx.doi.org/10.1016/j.seppur.2021.119399]