Serum Levels of Long Non-coding RNAs NEAT1, GAS5, and GAPLINC Altered in Rheumatoid Arthritis

Page: [182 - 190] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Rheumatoid arthritis (RA), an autoimmune joint inflammatory disease, presents a significant challenge due to its prevalence, particularly among women, affecting around 6% of individuals over the age of 65. Novel insights into disease mechanisms are crucial for improved diagnostic and therapeutic approaches.

Objective: Long non-coding RNAs (lncRNAs) have emerged as potential contributors to the pathogenesis of various autoimmune diseases, including RA. This study aims to investigate the unique roles of four lncRNAs-NEAT1, GAS5, TMEVPG1, and GAPLINC-in the etiology of RA.

Methods: Leveraging isolated serum samples from RA patients and healthy controls, we comprehensively evaluated the expression profiles of these lncRNAs.

Results: Notably, our findings unveil a distinctive landscape of lncRNA expressions in RA. Among them, GAPLINC exhibited a significantly elevated average expression in the serum samples of RA patients, suggesting a potential biomarker candidate for disease stratification. Importantly, reduced expression of NEAT1 and GAS5 was observed in RA patients, highlighting their possible roles as diagnostic and prognostic markers. Conversely, TMEVPG1 displayed unaltered expression levels in RA samples.

Conclusion: Our study introduces a novel dimension to RA research by identifying NEAT1, GAS5, and GAPLINC as promising serological biomarkers. These findings hold significant clinical implications, offering potential avenues for improved diagnosis, disease monitoring, and therapeutic interventions in RA.

Graphical Abstract

[1]
Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis. JAMA 2018; 320(13): 1360-72.
[http://dx.doi.org/10.1001/jama.2018.13103] [PMID: 30285183]
[2]
Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res 2018; 6(1): 15.
[http://dx.doi.org/10.1038/s41413-018-0016-9] [PMID: 29736302]
[3]
Bullock J, Rizvi SAA, Saleh AM, et al. Rheumatoid arthritis: A brief overview of the treatment. Med Princ Pract 2018; 27(6): 501-7.
[http://dx.doi.org/10.1159/000493390] [PMID: 30173215]
[4]
Yao RW, Wang Y, Chen LL. Cellular functions of long noncoding RNAs. Nat Cell Biol 2019; 21(5): 542-51.
[http://dx.doi.org/10.1038/s41556-019-0311-8] [PMID: 31048766]
[5]
Xu F, Jin L, Jin Y, Nie Z, Zheng H. Long noncoding RNAs in autoimmune diseases. J Biomed Mater Res A 2019; 107(2): 468-75.
[http://dx.doi.org/10.1002/jbm.a.36562] [PMID: 30478988]
[6]
Wu GC, Pan HF, Leng RX, et al. Emerging role of long noncoding RNAs in autoimmune diseases. Autoimmun Rev 2015; 14(9): 798-805.
[http://dx.doi.org/10.1016/j.autrev.2015.05.004] [PMID: 25989481]
[7]
Miao C, Bai L, Yang Y, Huang J. Dysregulation of lncRNAs in rheumatoid arthritis: Biomarkers, pathogenesis and potential therapeutic targets. Front Pharmacol 2021; 12: 652751.
[http://dx.doi.org/10.3389/fphar.2021.652751] [PMID: 33776780]
[8]
Qian C, Chen J, Xu X, et al. Measurement of synovium and serum dual specificity phosphatase 22 level: Their inter-correlation and potency as biomarkers in rheumatoid arthritis. J Clin Lab Anal 2022; 36(1): e24111.
[http://dx.doi.org/10.1002/jcla.24111] [PMID: 34811816]
[9]
Gerosa M, De Angelis V, Riboldi P, Meroni PL. Rheumatoid arthritis: A female challenge. Womens Health 2008; 4(2): 195-201.
[http://dx.doi.org/10.2217/17455057.4.2.195] [PMID: 19072521]
[10]
Wang J, Peng H, Tian J, et al. Upregulation of long noncoding RNA TMEVPG1 enhances T helper type 1 cell response in patients with Sjögren syndrome. Immunol Res 2016; 64(2): 489-96.
[http://dx.doi.org/10.1007/s12026-015-8715-4] [PMID: 26440590]
[11]
Collier SP, Collins PL, Williams CL, Boothby MR, Aune TM. Cutting edge: Influence of Tmevpg1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J Immunol 2012; 189(5): 2084-8.
[http://dx.doi.org/10.4049/jimmunol.1200774] [PMID: 22851706]
[12]
Fouad NA, Abdelaleem OO, Magdy MM, Senara SH. Assessment of long non-coding RNA (THRIL and TMEVPG1) among Behçets’ disease patients. Egypt Rheumatol 2022; 44(1): 5-9.
[http://dx.doi.org/10.1016/j.ejr.2021.07.001]
[13]
Diao L, Wang S, Sun Z. Long noncoding RNA GAPLINC promotes gastric cancer cell proliferation by acting as a molecular sponge of miR-378 to modulate MAPK1 expression. OncoTargets Ther 2018; 11: 2797-804.
[http://dx.doi.org/10.2147/OTT.S165147] [PMID: 29785127]
[14]
Mo BY, Guo XH, Yang MR, et al. Long non-coding RNA GAPLINC promotes tumor-like biologic behaviors of fibroblast-like synoviocytes as microRNA sponging in rheumatoid arthritis patients. Front Immunol 2018; 9: 702.
[http://dx.doi.org/10.3389/fimmu.2018.00702] [PMID: 29692777]
[15]
Tang Y, Yan JH, Ge ZW, Fei AH, Zhang YC. LncRNA Gaplinc promotes the pyroptosis of vascular endothelial cells through SP1 binding to enhance NLRP3 transcription in atherosclerosis. Cell Signal 2022; 99: 110420.
[http://dx.doi.org/10.1016/j.cellsig.2022.110420] [PMID: 35901931]
[16]
Wang H, Zhang M, Sun G. Long non-coding RNA NEAT1 regulates the proliferation, migration and invasion of gastric cancer cells via targeting miR-335-5p/ROCK1 axis. Pharmazie 2018; 73(3): 150-5.
[PMID: 29544562]
[17]
Chen DD, Hui LL, Zhang XC, Chang Q. NEAT1 contributes to ox-LDL-induced inflammation and oxidative stress in macrophages through inhibiting miR-128. J Cell Biochem 2019; 120(2): 2493-501.
[http://dx.doi.org/10.1002/jcb.27541] [PMID: 30203508]
[18]
Morchikh M, Cribier A, Raffel R, et al. HEXIM1 and NEAT1 long non-coding RNA form a multi-subunit complex that regulates DNA-mediated innate immune response. Mol Cell 2017; 67(3): 387-399.e385.
[19]
Liu R, Tang A, Wang X, et al. Inhibition of lncRNA NEAT1 suppresses the inflammatory response in IBD by modulating the intestinal epithelial barrier and by exosome-mediated polarization of macrophages. Int J Mol Med 2018; 42(5): 2903-13.
[http://dx.doi.org/10.3892/ijmm.2018.3829] [PMID: 30132508]
[20]
Zhang F, Wu L, Qian J, et al. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. J Autoimmun 2016; 75: 96-104.
[http://dx.doi.org/10.1016/j.jaut.2016.07.012] [PMID: 27481557]
[21]
Guo T, Xing Y, Chen Z, et al. Long non-coding RNA NEAT1 knockdown alleviates rheumatoid arthritis by reducing IL-18 through p300/CBP repression. Inflammation 2021; 1-16.
[PMID: 34773548]
[22]
Yang J, Wang S, Liu L, Wang J, Shao Y. Long non-coding RNA NEAT1 and its targets (microRNA-21 and microRNA-125a) in rheumatoid arthritis: Altered expression and potential to monitor disease activity and treatment outcome. J Clin Lab Anal 2021; 35(12): e24076.
[http://dx.doi.org/10.1002/jcla.24076] [PMID: 34708894]
[23]
Ye L, Shi H, Yu C, et al. LncRNA Neat1 positively regulates MAPK signaling and is involved in the pathogenesis of Sjögren’s syndrome. Int Immunopharmacol 2020; 88: 106992.
[http://dx.doi.org/10.1016/j.intimp.2020.106992] [PMID: 33182021]
[24]
Yacqub-Usman K, Pickard MR, Williams GT. Reciprocal regulation of GAS5 lncRNA levels and mTOR inhibitor action in prostate cancer cells. Prostate 2015; 75(7): 693-705.
[http://dx.doi.org/10.1002/pros.22952] [PMID: 25650269]
[25]
Mayama T, Marr A, Kino T. Differential expression of glucocorticoid receptor noncoding RNA repressor Gas5 in autoimmune and inflammatory diseases. Horm Metab Res 2016; 48(8): 550-7.
[http://dx.doi.org/10.1055/s-0042-106898] [PMID: 27214311]
[26]
Elamir A, Senara S, Abdelghaffar N, Gaber S, El Sayed H. Diagnostic role of lncRNA GAS5 and its genetic polymorphisms rs2067079, rs6790 and rs17359906 in rheumatoid arthritis. Biomed Rep 2021; 15(5): 93.
[http://dx.doi.org/10.3892/br.2021.1469] [PMID: 34631048]
[27]
Wu J, Zhang TP, Zhao YL, et al. Decreased H19, GAS5, and linc0597 expression and association analysis of related gene polymorphisms in rheumatoid arthritis. Biomolecules 2019; 10(1): 55.
[http://dx.doi.org/10.3390/biom10010055] [PMID: 31905737]