[1]
N.T. Van, L.T. Sach, and T.N. Thinh, "Temporal features learning using autoencoder for anomaly detection in network traffic", In: International conference on green technology and sustainable development, Springer: Cham, 2020, pp. 15-26.
[4]
Y. Wei, J. Jang-Jaccard, W. Xu, F. Sabrina, S. Camtepe, and M. Boulic, "LSTM-Autoencoder based anomaly detection for indoor air quality time series data", arXiv:2204.06701., 2022.
[6]
X. Du, D. Liu, S. Ding, Z. Liu, X. Yuan, T. Li, and H. Deng, "Design of an autoencoder -based anomaly detection for the doh traffic system", In In 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design, 04-06 May, Hangzhou, China, 2022, pp. 763-768
[11]
V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection: Asurvey", ACM Comput. Surv., vol. 41, no. 3, pp. 1-58, 2009.
[12]
N. Görnitz, M. Kloft, K. Rieck, and U. Brefeld, "Toward supervised anomaly detection", J. Artif. Intell. Res., vol. 46, p. 235262, 2013.
[13]
O. Chapelle, B. Scholkopf, and A. Zien, Semisupervised learning (Chapelle, O. et al., Eds.; 2006) [Book reviews]. IEEE Trans. Neural Netw, vol. 20, no. 3, pp. 542-542, year. 2009.
[14]
T. Schlegl, P. Seeböck, S.M. Waldstein, U. SchmidtErfurth, and G. Langs, "Unsupervised anomaly detection with generative adversarial networks to guide marker discovery", In: Proc. Int. Conf. Inf. Process. Med. Imag., Cham, Switzerland, Springer, 2017, p. 146157.
[19]
W.T. Lunardi, M.A. Lopez, and J.P. Giacalone, "ARCADE: Adversarially regularized convolutional autoencoder for network anomaly detection", arXiv:2205.01432., 2022.
[22]
Y. Yin, J. Jang-Jaccard, F. Sabrina, and J. Kwak, "Improving Multilayer-Perceptron (MLP)-based Network Anomaly Detection with Birch Clustering on CICIDS-2017 Dataset", arXiv:2208.09711., 2022.
[23]
A. Singh, and J. Jang-Jaccard, "Autoencoderbased unsupervised intrusion detection using multiscale convolutional recurrent networks", arXiv: 2204.03779, 2022.
[24]
X. Liang, Y. Gao, and S. Xu, "ASE: Anomaly scoring based ensemble learning for imbalanced datasets", arXiv:2203.10769., 2022.
[28]
S.Y. Wang, "Ensemble2: Anomaly Detection via EVT-Ensemble Framework for Seasonal KPIs in Communication Network", arXiv:2205.14305., 2022.
[37]
J. Kong, W. Kowalczyk, S. Menzel, and T. Bäck, "Improving imbalanced classification by anomaly detection", In 16th International Conference, PPSN 2020, September 5-9, Leiden, The Netherlands, Cham, 2020, pp. 512-523
[39]
A. Özgür, and H. Erdem, "“A review of KDD99 dataset usage in intrusion detection and machine learning between 2010 and 2015”, PeerJ", Preprints, vol. 4, 1954.
[44]
S. Revathi, and A. Malathi, "A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion detection", Int. J. Eng. Res. Technol., vol. 2, no. 12, p. 18481853, 2013.
[46]
A. Roy, and K.J. Singh, "Multi-classification of UNSWNB15 dataset for network anomaly detection system", In: Proceedings of International Conference on Communication and Computational Technologies, Springer., 2021, pp. 429-451.
[47]
A. Shiravi, Toward developing a systematic approach to generate benchmark datasets for intrusion detection computers & security., vol. 31, no. 3, pp. 357-374, 2012.
[53]
R. Singh, and G. Srivastav, "Novel Framework for Anomaly Detection Using Machine Learning Technique on CIC-IDS2017 Dataset", In In 2021 International Conference on Technological Advancements and Innovations. 10-12 Nov., 2021.