Current Stem Cell Research & Therapy

Author(s): Emily J. Du and Marcus O. Muench*

DOI: 10.2174/011574888X263597231001164351

A Monocytic Barrier to the Humanization of Immunodeficient Mice

Page: [959 - 980] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Mice with severe immunodeficiencies have become very important tools for studying foreign cells in an in vivo environment. Xenotransplants can be used to model cells from many species, although most often, mice are humanized through the transplantation of human cells or tissues to meet the needs of medical research. The development of immunodeficient mice is reviewed leading up to the current state-of-the-art strains, such as the NOD-scid-gamma (NSG) mouse. NSG mice are excellent hosts for human hematopoietic stem cell transplants or immune reconstitution through transfusion of human peripheral blood mononuclear cells. However, barriers to full hematopoietic engraftment still remain; notably, the survival of human cells in the circulation is brief, which limits overall hematological and immune reconstitution. Reports have indicated a critical role for monocytic cells – monocytes, macrophages, and dendritic cells – in the clearance of xenogeneic cells from circulation. Various aspects of the NOD genetic background that affect monocytic cell growth, maturation, and function that are favorable to human cell transplantation are discussed. Important receptors, such as SIRPα, that form a part of the innate immune system and enable the recognition and phagocytosis of foreign cells by monocytic cells are reviewed. The development of humanized mouse models has taken decades of work in creating more immunodeficient mice, genetic modification of these mice to express human genes, and refinement of transplant techniques to optimize engraftment. Future advances may focus on the monocytic cells of the host to find ways for further engraftment and survival of xenogeneic cells.

Graphical Abstract

[1]
Goyama S, Wunderlich M, Mulloy JC. Xenograft models for normal and malignant stem cells. Blood 2015; 125(17): 2630-40.
[http://dx.doi.org/10.1182/blood-2014-11-570218] [PMID: 25762176]
[2]
Abarrategi A, Mian SA, Passaro D, Rouault-Pierre K, Grey W, Bonnet D. Modeling the human bone marrow niche in mice: From host bone marrow engraftment to bioengineering approaches. J Exp Med 2018; 215(3): 729-43.
[http://dx.doi.org/10.1084/jem.20172139] [PMID: 29453226]
[3]
Mehler VJ, Burns C, Moore ML. Concise review: Exploring immunomodulatory features of mesenchymal stromal cells in humanized mouse models. Stem Cells 2019; 37(3): 298-305.
[http://dx.doi.org/10.1002/stem.2948] [PMID: 30395373]
[4]
Alves da Costa T, Lang J, Torres RM, Pelanda R. The development of human immune system mice and their use to study tolerance and autoimmunity. J Transl Autoimmun 2019; 2: 100021.
[http://dx.doi.org/10.1016/j.jtauto.2019.100021] [PMID: 32743507]
[5]
Tyagi AM, Yu M, Darby TM, et al. The microbial metabolite butyrate stimulates bone formation via t regulatory cell-mediated regulation of WNT10B expression. Immunity 2018; 49(6): 1116-1131.e7.
[http://dx.doi.org/10.1016/j.immuni.2018.10.013] [PMID: 30446387]
[6]
Minkah NK, Schafer C, Kappe SHI. Humanized mouse models for the study of human malaria parasite biology, pathogenesis, and immunity. Front Immunol 2018; 9: 807.
[http://dx.doi.org/10.3389/fimmu.2018.00807] [PMID: 29725334]
[7]
Ernst W. Humanized mice in infectious diseases. Comp Immunol Microbiol Infect Dis 2016; 49: 29-38.
[http://dx.doi.org/10.1016/j.cimid.2016.08.006] [PMID: 27865261]
[8]
Kremsdorf D, Strick-Marchand H. Modeling hepatitis virus infections and treatment strategies in humanized mice. Curr Opin Virol 2017; 25: 119-25.
[http://dx.doi.org/10.1016/j.coviro.2017.07.029] [PMID: 28858692]
[9]
Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: Progress, promise and challenges. Nat Rev Immunol 2012; 12(11): 786-98.
[http://dx.doi.org/10.1038/nri3311] [PMID: 23059428]
[10]
McIntosh BE, Brown ME. No irradiation required: The future of humanized immune system modeling in murine hosts. Chimerism 2015; 6(1-2): 40-5.
[http://dx.doi.org/10.1080/19381956.2016.1162360] [PMID: 27171577]
[11]
Brehm MA, Shultz LD, Luban J, Greiner DL. Overcoming current limitations in humanized mouse research. J Infect Dis 2013; 208(S2): S125-30.
[http://dx.doi.org/10.1093/infdis/jit319]
[12]
Blessinger SA, Tran JQ, Jackman RP, et al. Immunodeficient mice are better for modeling the transfusion of human blood components than wild-type mice. PLoS One 2020; 15(7): e0237106.
[http://dx.doi.org/10.1371/journal.pone.0237106] [PMID: 32735605]
[13]
Care AS, Diener KR, Jasper MJ, Brown HM, Ingman WV, Robertson SA. Macrophages regulate corpus luteum development during embryo implantation in mice. J Clin Invest 2013; 123(8): 3472-87.
[http://dx.doi.org/10.1172/JCI60561] [PMID: 23867505]
[14]
Scott EW, Simon MC, Anastasi J, Singh H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 1994; 265(5178): 1573-7.
[http://dx.doi.org/10.1126/science.8079170] [PMID: 8079170]
[15]
Flanagan SP. ‘Nude’, a new hairless gene with pleiotropic effects in the mouse. Genet Res 1966; 8(3): 295-309.
[http://dx.doi.org/10.1017/S0016672300010168] [PMID: 5980117]
[16]
Pantelouris EM. Absence of thymus in a mouse mutant. Nature 1968; 217(5126): 370-1.
[http://dx.doi.org/10.1038/217370a0] [PMID: 5639157]
[17]
Eckels DD, Gershwin ME, Drago J, Faulkin L. Comparative patterns of serum immunoglobulin levels in specific-pathogen-free congenitally athymic (nude), hereditarily asplenic (Dh/+), congenitally athymic-asplenic (lasat) and splenectomized athymic mice. Immunology 1979; 37(4): 777-83.
[PMID: 159256]
[18]
Lozzio BB. The lasat mouse: a new model for transplantation of human tissues. Biomedicine (Paris) 1976; 24(3): 144-7.
[PMID: 11005]
[19]
Gershwin ME, Ikeda RM, Erickson K, Owens R. Enhancement of heterotransplanted human tumor graft survival in nude mice treated with antilymphocyte serum and in congenitally athymic-asplenic (Lasat) mice. J Natl Cancer Inst 1978; 61(1): 245-8.
[http://dx.doi.org/10.1093/jnci/61.1.245] [PMID: 276631]
[20]
Machado EA, Gerard DA, Lozzio CB, Lozzio BB, Mitchell JR, Golde DW. Proliferation and differentiation of human myeloid leukemic cells in immunodeficient mice: Electron microscopy and cytochemistry. Blood 1984; 63(5): 1015-22.
[http://dx.doi.org/10.1182/blood.V63.5.1015.1015] [PMID: 6324924]
[21]
Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature 1983; 301(5900): 527-30.
[http://dx.doi.org/10.1038/301527a0] [PMID: 6823332]
[22]
Biedermann KA, Sun JR, Giaccia AJ, Tosto LM, Brown JM. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. Proc Natl Acad Sci USA 1991; 88(4): 1394-7.
[http://dx.doi.org/10.1073/pnas.88.4.1394] [PMID: 1996340]
[23]
McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. The SCID-hu mouse: Murine model for the analysis of human hematolymphoid differentiation and function. Science 1988; 241(4873): 1632-9.
[http://dx.doi.org/10.1126/science.2971269] [PMID: 2971269]
[24]
Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988; 335(6187): 256-9.
[http://dx.doi.org/10.1038/335256a0] [PMID: 2970594]
[25]
Kyoizumi S, Baum CM, Kaneshima H, McCune JM, Yee EJ, Namikawa R. Implantation and maintenance of functional human bone marrow in SCID-hu mice. Blood 1992; 79(7): 1704-11.
[http://dx.doi.org/10.1182/blood.V79.7.1704.1704] [PMID: 1558966]
[26]
Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 1992; 255(5048): 1137-41.
[http://dx.doi.org/10.1126/science.1372131] [PMID: 1372131]
[27]
Shultz LD, Schweitzer PA, Christianson SW, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 1995; 154(1): 180-91.
[http://dx.doi.org/10.4049/jimmunol.154.1.180] [PMID: 7995938]
[28]
Larochelle A, Vormoor J, Hanenberg H, et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: Implications for gene therapy. Nat Med 1996; 2(12): 1329-37.
[http://dx.doi.org/10.1038/nm1296-1329] [PMID: 8946831]
[29]
Pflumio F, Izac B, Katz A, Shultz LD, Vainchenker W, Coulombel L. Phenotype and function of human hematopoietic cells engrafting immune- deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood 1996; 88(10): 3731-40.
[http://dx.doi.org/10.1182/blood.V88.10.3731.bloodjournal88103731] [PMID: 8916937]
[30]
Kataoka S, Satoh J, Fujiya H, et al. Immunologic aspects of the nonobese diabetic (NOD) mouse. Abnormalities of cellular immunity. Diabetes 1983; 32(3): 247-53.
[http://dx.doi.org/10.2337/diab.32.3.247] [PMID: 6298042]
[31]
Suzuki T, Yamada T, Fujimura T, et al. Diabetogenic Effects of Lymphocyte Transfusion on the NOD or NOD Nude Mouse. 5th International Workshop, Copenhagen.
[http://dx.doi.org/10.1159/000413303]
[32]
Serreze DV, Leiter EH. Defective activation of T suppressor cell function in nonobese diabetic mice. Potential relation to cytokine deficiencies. J Immunol 1988; 140(11): 3801-7.
[http://dx.doi.org/10.4049/jimmunol.140.11.3801] [PMID: 2897395]
[33]
Baxter AG, Cooke A. Complement lytic activity has no role in the pathogenesis of autoimmune diabetes in NOD mice. Diabetes 1993; 42(11): 1574-8.
[http://dx.doi.org/10.2337/diab.42.11.1574] [PMID: 8405697]
[34]
Serreze DV, Gaskins HR, Leiter EH. Defects in the differentiation and function of antigen presenting cells in NOD/Lt mice. J Immunol 1993; 150(6): 2534-43.
[http://dx.doi.org/10.4049/jimmunol.150.6.2534] [PMID: 8450229]
[35]
Serreze DV, Gaedeke JW, Leiter EH. Hematopoietic stem-cell defects underlying abnormal macrophage development and maturation in NOD/Lt mice: Defective regulation of cytokine receptors and protein kinase C. Proc Natl Acad Sci 1993; 90(20): 9625-9.
[http://dx.doi.org/10.1073/pnas.90.20.9625] [PMID: 8415751]
[36]
Jacob CO, Aiso S, Michie SA, McDevitt HO, Acha-Orbea H. Prevention of diabetes in nonobese diabetic mice by tumor necrosis factor (TNF): similarities between TNF-alpha and interleukin 1. Proc Natl Acad Sci 1990; 87(3): 968-72.
[http://dx.doi.org/10.1073/pnas.87.3.968] [PMID: 2405400]
[37]
Prochazka M, Serreze DV, Frankel WN, Leiter EH. NOR/Lt mice: MHC-matched diabetes-resistant control strain for NOD mice. Diabetes 1992; 41(1): 98-106.
[http://dx.doi.org/10.2337/diab.41.1.98] [PMID: 1727742]
[38]
Lee MS, Kwon HJ, Kim HS. Macrophages from nonobese diabetic mouse have a selective defect in IFN-γ but not IFN-α/β receptor pathway. J Clin Immunol 2012; 32(4): 753-61.
[http://dx.doi.org/10.1007/s10875-012-9682-3] [PMID: 22396045]
[39]
Kim HS, Park JM, Lee MS. A defect in cell death of macrophages is a conserved feature of nonobese diabetic mouse. Biochem Biophys Res Commun 2012; 421(1): 145-51.
[http://dx.doi.org/10.1016/j.bbrc.2012.04.017] [PMID: 22510411]
[40]
Rumore-Maton B, Elf J, Belkin N, et al. M-CSF and GM-CSF regulation of STAT5 activation and DNA binding in myeloid cell differentiation is disrupted in nonobese diabetic mice. Clin Dev Immunol 2008; 2008: 1-8.
[http://dx.doi.org/10.1155/2008/769795] [PMID: 19165346]
[41]
Koike K, Ogawa M, Ihle JN, et al. Recombinant murine granulocyte-macrophage (GM) colony-stimulating factor supports formation of GM and multipotential blast cell colonies in culture: Comparison with the effects of interleukin-3. J Cell Physiol 1987; 131(3): 458-64.
[http://dx.doi.org/10.1002/jcp.1041310319] [PMID: 3298286]
[42]
McNiece IK, Robinson BE, Quesenberry PJ. Stimulation of murine colony-forming cells with high proliferative potential by the combination of GM-CSF and CSF-1. Blood 1988; 72(1): 191-5.
[http://dx.doi.org/10.1182/blood.V72.1.191.191] [PMID: 3291980]
[43]
Muench MO, Schneider JG, Moore MA. Interactions among colony-stimulating factors, IL-1 β, IL-6, and kit-ligand in the regulation of primitive murine hematopoietic cells. Exp Hematol 1992; 20(3): 339-49.
[PMID: 1373685]
[44]
Coleman DL, Chodakewitz JA, Bartiss AH, Mellors JW. Granulocyte-macrophage colony-stimulating factor enhances selective effector functions of tissue-derived macrophages. Blood 1988; 72(2): 573-8.
[http://dx.doi.org/10.1182/blood.V72.2.573.573] [PMID: 3042043]
[45]
Akagawa KS, Kamoshita K, Tokunaga T. Effects of granulocyte- macrophage colony-stimulating factor and colony-stimulating factor-1 on the proliferation and differentiation of murine alveolar macrophages. J Immunol 1988; 141(10): 3383-90.
[http://dx.doi.org/10.4049/jimmunol.141.10.3383] [PMID: 3053898]
[46]
Morrissey PJ, Grabstein KH, Reed SG, Conlon PJ. Granulocyte/macrophage colony stimulating factor. A potent activation signal for mature macrophages and monocytes. Int Arch Allergy Immunol 1989; 88(1-2): 40-5.
[http://dx.doi.org/10.1159/000234745] [PMID: 2496041]
[47]
Jarmin DI, Nibbs RJB, Jamieson T, de Bono JS, Graham GJ. Granulocyte macrophage colony-stimulating factor and interleukin-3 regulate chemokine and chemokine receptor expression in bone marrow macrophages. Exp Hematol 1999; 27(12): 1735-45.
[http://dx.doi.org/10.1016/S0301-472X(99)00115-0] [PMID: 10641591]
[48]
Santiago-Schwarz F, Belilos E, Diamond B, Carsons SE. TNF in combination with GM-CSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages. J Leukoc Biol 1992; 52(3): 274-81.
[http://dx.doi.org/10.1002/jlb.52.3.274] [PMID: 1387891]
[49]
Scheicher C, Mehlig M, Zecher R, Reske K, Seiler F, Hintz-Obertreis P. Recombinant GM-CSF induces in vitro differentiation of dendritic cells from mouse bone marrow. Adv Exp Med Biol 1993; 329: 269-73.
[http://dx.doi.org/10.1007/978-1-4615-2930-9_45] [PMID: 8379381]
[50]
Hilligan KL, Ronchese F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol Immunol 2020; 17(6): 587-99.
[http://dx.doi.org/10.1038/s41423-020-0465-0] [PMID: 32433540]
[51]
Lee M, Kim AY, Kang Y. Defects in the differentiation and function of bone marrow-derived dendritic cells in non-obese diabetic mice. J Korean Med Sci 2000; 15(2): 217-23.
[http://dx.doi.org/10.3346/jkms.2000.15.2.217] [PMID: 10803701]
[52]
Morin J, Chimènes A, Boitard C, Berthier R, Boudaly S. Granulocyte-dendritic cell unbalance in the non-obese diabetic mice. Cell Immunol 2003; 223(1): 13-25.
[http://dx.doi.org/10.1016/S0008-8749(03)00154-0] [PMID: 12914754]
[53]
Boudaly S, Morin J, Berthier R, Marche P, Boitard C. Altered dendritic cells (DC) might be responsible for regulatory T cell imbalance and autoimmunity in nonobese diabetic (NOD) mice. Eur Cytokine Netw 2002; 13(1): 29-37.
[PMID: 11956018]
[54]
Feili-Hariri M, Morel PA. Phenotypic and functional characteristics of BM-derived DC from NOD and non-diabetes-prone strains. Clin Immunol 2001; 98(1): 133-42.
[http://dx.doi.org/10.1006/clim.2000.4959] [PMID: 11141336]
[55]
Weaver DJ Jr, Poligone B, Bui T, Abdel-Motal UM, Baldwin AS Jr, Tisch R. Dendritic cells from nonobese diabetic mice exhibit a defect in NF-kappa B regulation due to a hyperactive I kappa B kinase. J Immunol 2001; 167(3): 1461-8.
[http://dx.doi.org/10.4049/jimmunol.167.3.1461] [PMID: 11466366]
[56]
Simpson PB, Mistry MS, Maki RA, et al. Cuttine edge: diabetes-associated quantitative trait locus, Idd4, is responsible for the IL-12p40 overexpression defect in nonobese diabetic (NOD) mice. J Immunol 2003; 171(7): 3333-7.
[http://dx.doi.org/10.4049/jimmunol.171.7.3333] [PMID: 14500624]
[57]
Manirarora JN, Parnell SA, Hu YH, Kosiewicz MM, Alard P. NOD dendritic cells stimulated with Lactobacilli preferentially produce IL-10 versus IL-12 and decrease diabetes incidence. Clin Dev Immunol 2011; 2011: 1-12.
[http://dx.doi.org/10.1155/2011/630187] [PMID: 21716731]
[58]
O’Brien BA, Huang Y, Geng X, Dutz JP, Finegood DT. Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced. Diabetes 2002; 51(8): 2481-8.
[http://dx.doi.org/10.2337/diabetes.51.8.2481] [PMID: 12145161]
[59]
Ishikawa F, Yasukawa M, Lyons B, et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chainnull mice. Blood 2005; 106(5): 1565-73.
[http://dx.doi.org/10.1182/blood-2005-02-0516] [PMID: 15920010]
[60]
Shultz LD, Lyons BL, Burzenski LM, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005; 174(10): 6477-89.
[http://dx.doi.org/10.4049/jimmunol.174.10.6477] [PMID: 15879151]
[61]
Sugamura K, Asao H, Kondo M, et al. The interleukin-2 receptor gamma chain: Its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol 1996; 14(1): 179-205.
[http://dx.doi.org/10.1146/annurev.immunol.14.1.179] [PMID: 8717512]
[63]
Shultz LD, Goodwin N, Ishikawa F, Hosur V, Lyons BL, Greiner DL. Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb Protoc 2014; 2014(7): pdb.top073585.
[http://dx.doi.org/10.1101/pdb.top073585] [PMID: 24987146]
[64]
Shinkai Y, Rathbun G, Lam KP, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992; 68(5): 855-67.
[http://dx.doi.org/10.1016/0092-8674(92)90029-C] [PMID: 1547487]
[65]
Shultz LD, Lang PA, Christianson SW, et al. NOD/LtSz-Rag1null mice: an immunodeficient and radioresistant model for engraftment of human hematolymphoid cells, HIV infection, and adoptive transfer of NOD mouse diabetogenic T cells. J Immunol 2000; 164(5): 2496-507.
[http://dx.doi.org/10.4049/jimmunol.164.5.2496] [PMID: 10679087]
[66]
Song J, Willinger T, Rongvaux A, et al. A mouse model for the human pathogen Salmonella typhi. Cell Host Microbe 2010; 8(4): 369-76.
[http://dx.doi.org/10.1016/j.chom.2010.09.003] [PMID: 20951970]
[67]
Wunderlich M, Chou FS, Sexton C, et al. Improved multilineage human hematopoietic reconstitution and function in NSGS mice. PLoS One 2018; 13(12): e0209034.
[http://dx.doi.org/10.1371/journal.pone.0209034] [PMID: 30540841]
[68]
Brehm MA, Racki WJ, Leif J, et al. Engraftment of human HSCs in nonirradiated newborn NOD-scid IL2rγnull mice is enhanced by transgenic expression of membrane-bound human SCF. Blood 2012; 119(12): 2778-88.
[http://dx.doi.org/10.1182/blood-2011-05-353243] [PMID: 22246028]
[69]
Strowig T, Rongvaux A, Rathinam C, et al. Transgenic expression of human signal regulatory protein alpha in Rag2 −/− γ c−/− mice improves engraftment of human hematopoietic cells in humanized mice. Proc Natl Acad Sci 2011; 108(32): 13218-23.
[http://dx.doi.org/10.1073/pnas.1109769108] [PMID: 21788509]
[70]
Rongvaux A, Willinger T, Martinek J, et al. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 2014; 32(4): 364-72.
[http://dx.doi.org/10.1038/nbt.2858] [PMID: 24633240]
[71]
Beyer AI, Muench MO. Comparison of human hematopoietic reconstitution in different strains of immunodeficient mice. Stem Cells Dev 2017; 26(2): 102-12.
[http://dx.doi.org/10.1089/scd.2016.0083] [PMID: 27758159]
[72]
Schmidt MR, Appel MC, Giassi LJ, Greiner DL, Shultz LD, Woodland RT. Human BLyS facilitates engraftment of human PBL derived B cells in immunodeficient mice. PLoS One 2008; 3(9): e3192.
[http://dx.doi.org/10.1371/journal.pone.0003192] [PMID: 18784835]
[73]
Ishihara C, Tsuji M, Hagiwara K, Hioki K, Arikawa J, Azuma I. Transfusion with xenogeneic erythrocytes into SCID mice and their clearance from the circulation. J Vet Med Sci 1994; 56(6): 1149-54.
[http://dx.doi.org/10.1292/jvms.56.1149] [PMID: 7696408]
[74]
Abe M, Cheng J, Qi J, et al. Elimination of porcine hemopoietic cells by macrophages in mice. J Immunol 2002; 168(2): 621-8.
[http://dx.doi.org/10.4049/jimmunol.168.2.621] [PMID: 11777954]
[75]
de Back DZ, Kostova EB, van Kraaij M, van den Berg TK, van Bruggen R. Of macrophages and red blood cells; a complex love story. Front Physiol 2014; 5: 9.
[http://dx.doi.org/10.3389/fphys.2014.00009] [PMID: 24523696]
[76]
Walker W, Gallagher G. The in vivo production of specific human antibodies by vaccination of human-PBL-SCID mice. Immunology 1994; 83(2): 163-70.
[PMID: 7530687]
[77]
Berges BK, Wheat WH, Palmer BE, Connick E, Akkina R. HIV-1 infection and CD4 T cell depletion in the humanized Rag2-/-γc-/-(RAG-hu) mouse model. Retrovirology 2006; 3(1): 76.
[http://dx.doi.org/10.1186/1742-4690-3-76] [PMID: 17078891]
[78]
King M, Pearson T, Shultz LD, et al. A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene. Clin Immunol 2008; 126(3): 303-14.
[http://dx.doi.org/10.1016/j.clim.2007.11.001] [PMID: 18096436]
[79]
King MA, Covassin L, Brehm MA, et al. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft- versus -host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol 2009; 157(1): 104-18.
[http://dx.doi.org/10.1111/j.1365-2249.2009.03933.x] [PMID: 19659776]
[80]
Kim KC, Choi BS, Kim KC, et al. A simple mouse model for the study of human immunodeficiency virus. AIDS Res Hum Retroviruses 2016; 32(2): 194-202.
[http://dx.doi.org/10.1089/aid.2015.0211] [PMID: 26564392]
[81]
Hoffmann-Fezer G, Kranz B, Gall C, Thierfelder S. Peritoneal sanctuary for human lymphopoiesis in SCID mice injected with human peripheral blood lymphocytes from Epstein-Barr virus-negative donors. Eur J Immunol 1992; 22(12): 3161-6.
[http://dx.doi.org/10.1002/eji.1830221220] [PMID: 1359971]
[82]
Hesselton RM, Koup RA, Cromwell MA, Graham BS, Johns M, Sullivan JL. Human peripheral blood xenografts in the SCID mouse: Characterization of immunologic reconstitution. J Infect Dis 1993; 168(3): 630-40.
[http://dx.doi.org/10.1093/infdis/168.3.630] [PMID: 8354904]
[83]
Wallgren AC, Karlsson-Parra A, Korsgren O. The main infiltrating cell in xenograft rejection is a CD4+ macrophage and not a T lymphocyte. Transplantation 1995; 60(6): 594-601.
[http://dx.doi.org/10.1097/00007890-199509270-00013] [PMID: 7570957]
[84]
Korsgren O, Wallgren A, Ridderstad A, Satake M, Möller E, Karlsson-Parra A. The CD4+ effector cell in islet xenotransplantation is a macrophage and not a T-lymphocyte. Transplant Proc 1995; 27(1): 251.
[PMID: 7878989]
[85]
Wu GS, Korsgren O, Zhang JG, Song ZS, Van Rooijen N, Tibell A. Role of macrophages and natural killer cells in the rejection of pig islet xenografts in mice. Transplant Proc 2000; 32(5): 1069.
[http://dx.doi.org/10.1016/S0041-1345(00)01127-1] [PMID: 10936361]
[86]
van Rooijen N, van Nieuwmegen R. Elimination of phagocytic cells in the spleen after intravenous injection of liposome-encapsulated dichloromethylene diphosphonate. Cell Tissue Res 1984; 238(2): 355-8.
[http://dx.doi.org/10.1007/BF00217308] [PMID: 6239690]
[87]
van Rooijen N, van Nieuwmegen R, Kamperdijk EW. Elimination of phagocytic cells in the spleen after intravenous injection of liposome-encapsulated dichloromethylene diphosphonate. Ultrastructural aspects of elimination of marginal zone macrophages. Virchows Arch B Cell Pathol Incl Mol Pathol 1985; 49(4): 375-83.
[http://dx.doi.org/10.1007/BF02912114] [PMID: 2867636]
[88]
Mönkkönen J, Rooijen N, Ylitalo P. Effects of clodronate and pamidronate on splenic and hepatic phagocytic cells of mice. Pharmacol Toxicol 1991; 68(4): 284-6.
[http://dx.doi.org/10.1111/j.1600-0773.1991.tb01240.x] [PMID: 1830965]
[89]
van Rooijen N, Bakker J, Sanders N. Transient suppression of macrophage functions by liposome-encapsulated drugs. Trends Biotechnol 1997; 15(5): 178-85.
[http://dx.doi.org/10.1016/S0167-7799(97)01019-6] [PMID: 9161052]
[90]
Frith JC, Mönkkönen J, Blackburn GM, Russell RGG, Rogers MJ. Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5′-(beta, gamma-dichloromethylene) triphosphate, by mammalian cells in vitro. J Bone Miner Res 1997; 12(9): 1358-67.
[http://dx.doi.org/10.1359/jbmr.1997.12.9.1358] [PMID: 9286751]
[91]
van Rooijen N, Kors N, Kraal G. Macrophage subset repopulation in the spleen: Differential kinetics after liposome-mediated elimination. J Leukoc Biol 1989; 45(2): 97-104.
[http://dx.doi.org/10.1002/jlb.45.2.97] [PMID: 2521666]
[92]
Wijffels JFAM, De Rover Z, Beelen RHJ, Kraal G, Rooijen NV. Macrophage subpopulations in the mouse spleen renewed by local proliferation. Immunobiology 1994; 191(1): 52-64.
[http://dx.doi.org/10.1016/S0171-2985(11)80267-6] [PMID: 7806258]
[93]
Fraser CC, Chen BP, Webb S, van Rooijen N, Kraal G. Circulation of human hematopoietic cells in severe combined immunodeficient mice after Cl2MDP-liposome-mediated macrophage depletion. Blood 1995; 86(1): 183-92.
[http://dx.doi.org/10.1182/blood.V86.1.183.bloodjournal861183] [PMID: 7795223]
[94]
Terpstra W, Leenen PJM, van den Bos C, et al. Facilitated engraftment of human hematopoietic cells in severe combined immunodeficient mice following a single injection of Cl2MDP liposomes. Leukemia 1997; 11(7): 1049-54.
[http://dx.doi.org/10.1038/sj.leu.2400694] [PMID: 9204990]
[95]
Verstegen MMA, van Hennik PB, Terpstra W, et al. Transplantation of human umbilical cord blood cells in macrophage-depleted SCID mice: evidence for accessory cell involvement in expansion of immature CD34+CD38- cells. Blood 1998; 91(6): 1966-76.
[http://dx.doi.org/10.1182/blood.V91.6.1966] [PMID: 9490679]
[96]
van Rijn RS, Simonetti ER, Hagenbeek A, et al. A new xenograft model for graft-versus-host disease by intravenous transfer of human peripheral blood mononuclear cells in RAG2-/- γc-/- double- mutant mice. Blood 2003; 102(7): 2522-31.
[http://dx.doi.org/10.1182/blood-2002-10-3241] [PMID: 12791667]
[97]
Hu Z, Van Rooijen N, Yang YG. Macrophages prevent human red blood cell reconstitution in immunodeficient mice. Blood 2011; 118(22): 5938-46.
[http://dx.doi.org/10.1182/blood-2010-11-321414] [PMID: 21926352]
[98]
Hu Z, Yang YG. Full reconstitution of human platelets in humanized mice after macrophage depletion. Blood 2012; 120(8): 1713-6.
[http://dx.doi.org/10.1182/blood-2012-01-407890] [PMID: 22773384]
[99]
Uribe-Querol E, Rosales C. Phagocytosis: Our Current Understanding of a Universal Biological Process. Front Immunol 2020; 11: 1066.
[http://dx.doi.org/10.3389/fimmu.2020.01066] [PMID: 32582172]
[100]
Qian Q, Jutila MA, Van Rooijen N, Cutler JE. Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. J Immunol 1994; 152(10): 5000-8.
[101]
Tsuji M, Ishihara C, Arai S, Hiratai R, Azuma I. Establishment of a SCID mouse model having circulating human red blood cells and a possible growth of Plasmodium falciparum in the mouse. Vaccine 1995; 13(15): 1389-92.
[http://dx.doi.org/10.1016/0264-410X(95)00081-B] [PMID: 8578814]
[102]
Fens MHAM, van Wijk R, Andringa G, et al. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology. Haematologica 2012; 97(4): 500-8.
[http://dx.doi.org/10.3324/haematol.2011.048694] [PMID: 22102700]
[103]
Chen B, Fan W, Zou J, et al. Complement depletion improves human red blood cell reconstitution in immunodeficient mice. Stem Cell Reports 2017; 9(4): 1034-42.
[http://dx.doi.org/10.1016/j.stemcr.2017.08.018] [PMID: 28966117]
[104]
Culemann S, Knab K, Euler M, et al. Stunning of neutrophils accounts for the anti-inflammatory effects of clodronate liposomes. J Exp Med 2023; 220(6): e20220525.
[http://dx.doi.org/10.1084/jem.20220525] [PMID: 36976180]
[105]
Palis J, Robertson S, Kennedy M, Wall C, Keller G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 1999; 126(22): 5073-84.
[http://dx.doi.org/10.1242/dev.126.22.5073] [PMID: 10529424]
[106]
Hashimoto D, Chow A, Noizat C, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 2013; 38(4): 792-804.
[http://dx.doi.org/10.1016/j.immuni.2013.04.004] [PMID: 23601688]
[107]
Gomez Perdiguero E, Klapproth K, Schulz C, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015; 518(7540): 547-51.
[http://dx.doi.org/10.1038/nature13989] [PMID: 25470051]
[108]
Hoeffel G, Chen J, Lavin Y, et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 2015; 42(4): 665-78.
[http://dx.doi.org/10.1016/j.immuni.2015.03.011] [PMID: 25902481]
[109]
Naito M, Hasegawa G, Takahashi K. Development, differentiation, and maturation of Kupffer cells. Microsc Res Tech 1997; 39(4): 350-64.
[http://dx.doi.org/10.1002/(SICI)1097-0029(19971115)39:4<350::AID-JEMT5>3.0.CO;2-L] [PMID: 9407545]
[110]
Schulz C, Perdiguero EG, Chorro L, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012; 336(6077): 86-90.
[http://dx.doi.org/10.1126/science.1219179] [PMID: 22442384]
[111]
Tan SY, Krasnow MA. Developmental origin of lung macrophage diversity. Development 2016; 143(8): 1318-27.
[PMID: 26952982]
[112]
Kurotaki D, Uede T, Tamura T. Functions and development of red pulp macrophages. Microbiol Immunol 2015; 59(2): 55-62.
[http://dx.doi.org/10.1111/1348-0421.12228] [PMID: 25611090]
[113]
Rooijen NV, Sanders A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 1994; 174(1-2): 83-93.
[http://dx.doi.org/10.1016/0022-1759(94)90012-4] [PMID: 8083541]
[114]
Weisser SB, van Rooijen N, Sly LM. Depletion and reconstitution of macrophages in mice. J Vis Exp 2012; (66): 4105.
[PMID: 22871793]
[115]
Burnett SH, Kershen EJ, Zhang J, et al. Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene. J Leukoc Biol 2004; 75(4): 612-23.
[http://dx.doi.org/10.1189/jlb.0903442] [PMID: 14726498]
[116]
Lai SM, Sheng J, Gupta P, et al. Organ-specific fate, recruitment, and refilling dynamics of tissue-resident macrophages during blood-stage malaria. Cell Rep 2018; 25(11): 3099-3109.e3.
[http://dx.doi.org/10.1016/j.celrep.2018.11.059] [PMID: 30540942]
[117]
Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000; 164(12): 6166-73.
[http://dx.doi.org/10.4049/jimmunol.164.12.6166] [PMID: 10843666]
[118]
Van Ginderachter JA, Movahedi K, Hassanzadeh Ghassabeh G, et al. Classical and alternative activation of mononuclear phagocytes: Picking the best of both worlds for tumor promotion. Immunobiology 2006; 211(6-8): 487-501.
[http://dx.doi.org/10.1016/j.imbio.2006.06.002] [PMID: 16920488]
[119]
Ferrante CJ, Pinhal-Enfield G, Elson G, et al. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Rα) signaling. Inflammation 2013; 36(4): 921-31.
[http://dx.doi.org/10.1007/s10753-013-9621-3] [PMID: 23504259]
[120]
Li P, Ma C, Li J, et al. Proteomic characterization of four subtypes of M2 macrophages derived from human THP-1 cells. J Zhejiang Univ Sci B 2022; 23(5): 407-22.
[http://dx.doi.org/10.1631/jzus.B2100930] [PMID: 35557041]
[121]
Pettersen JS, Fuentes-Duculan J, Suárez-Fariñas M, et al. Tumor-associated macrophages in the cutaneous SCC microenvironment are heterogeneously activated. J Invest Dermatol 2011; 131(6): 1322-30.
[http://dx.doi.org/10.1038/jid.2011.9] [PMID: 21307877]
[122]
Vogel DYS, Vereyken EJF, Glim JE, et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation 2013; 10(1): 809.
[http://dx.doi.org/10.1186/1742-2094-10-35] [PMID: 23452918]
[123]
Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep 2014; 6: 13.
[http://dx.doi.org/10.12703/P6-13] [PMID: 24669294]
[124]
Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature 2013; 496(7446): 445-55.
[http://dx.doi.org/10.1038/nature12034] [PMID: 23619691]
[125]
Mosser DM, Hamidzadeh K, Goncalves R. Macrophages and the maintenance of homeostasis. Cell Mol Immunol 2021; 18(3): 579-87.
[http://dx.doi.org/10.1038/s41423-020-00541-3] [PMID: 32934339]
[126]
Seyfried AN, Maloney JM, MacNamara KC. Macrophages orchestrate hematopoietic programs and regulate HSC function during inflammatory stress. Front Immunol 2020; 11: 1499.
[http://dx.doi.org/10.3389/fimmu.2020.01499] [PMID: 32849512]
[127]
Lee SH, Crocker PR, Westaby S, et al. Isolation and immunocytochemical characterization of human bone marrow stromal macrophages in hemopoietic clusters. J Exp Med 1988; 168(3): 1193-8.
[http://dx.doi.org/10.1084/jem.168.3.1193] [PMID: 3049905]
[128]
Chasis JA, Mohandas N. Erythroblastic islands: Niches for erythropoiesis. Blood 2008; 112(3): 470-8.
[http://dx.doi.org/10.1182/blood-2008-03-077883] [PMID: 18650462]
[129]
Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. Role of CD47 as a marker of self on red blood cells. Science 2000; 288(5473): 2051-4.
[http://dx.doi.org/10.1126/science.288.5473.2051] [PMID: 10856220]
[130]
Oldenborg PA, Gresham HD, Lindberg FP. CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis. J Exp Med 2001; 193(7): 855-62.
[http://dx.doi.org/10.1084/jem.193.7.855] [PMID: 11283158]
[131]
Takenaka K, Prasolava TK, Wang JCY, et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol 2007; 8(12): 1313-23.
[http://dx.doi.org/10.1038/ni1527] [PMID: 17982459]
[132]
Saginario C, Sterling H, Beckers C, et al. MFR, a putative receptor mediating the fusion of macrophages. Mol Cell Biol 1998; 18(11): 6213-23.
[http://dx.doi.org/10.1128/MCB.18.11.6213] [PMID: 9774638]
[133]
Seiffert M, Brossart P, Cant C, et al. Signal-regulatory protein α (SIRPα) but not SIRPβ is involved in T-cell activation, binds to CD47 with high affinity, and is expressed on immature CD34+CD38−hematopoietic cells. Blood 2001; 97(9): 2741-9.
[http://dx.doi.org/10.1182/blood.V97.9.2741] [PMID: 11313266]
[134]
Florian S, Ghannadan M, Mayerhofer M, et al. Evaluation of normal and neoplastic human mast cells for expression of CD172a (SIRPα), CD47, and SHP-1. J Leukoc Biol 2005; 77(6): 984-92.
[http://dx.doi.org/10.1189/jlb.0604349] [PMID: 15784688]
[135]
Ide K, Wang H, Tahara H, et al. Role for CD47-SIRPα signaling in xenograft rejection by macrophages. Proc Natl Acad Sci 2007; 104(12): 5062-6.
[http://dx.doi.org/10.1073/pnas.0609661104] [PMID: 17360380]
[136]
Yamauchi T, Takenaka K, Urata S, et al. Polymorphic Sirpa is the genetic determinant for NOD-based mouse lines to achieve efficient human cell engraftment. Blood 2013; 121(8): 1316-25.
[http://dx.doi.org/10.1182/blood-2012-06-440354] [PMID: 23293079]
[137]
Bohlson SS, Garred P, Kemper C, Tenner AJ. Complement nomenclature-deconvoluted. Front Immunol 2019; 10: 1308.
[http://dx.doi.org/10.3389/fimmu.2019.01308] [PMID: 31231398]
[138]
Masayoshi T, Katsuro H, Kyoji H, Jiro A. Transfusion with xenogeneic erythrocytes into SCID mice and their clearance from the circulation. Jpn J Vet 1994; 56(6): 1149-54.
[139]
Gowda DC, Petrella EC, Raj TT, Bredehorst R, Vogel CW. Immunoreactivity and function of oligosaccharides in cobra venom factor. J Immunol 1994; 152(6): 2977-86.
[140]
Yamaguchi T, Katano I, Otsuka I, et al. Generation of novel human red blood cell-bearing humanized mouse models based on C3-deficient NOG mice. Front Immunol 2021; 12: 671648.
[http://dx.doi.org/10.3389/fimmu.2021.671648] [PMID: 34386001]
[141]
Spiller OB, Criado-García O, Rodríguez De Córdoba S, Morgan BP. Cytokine-mediated up-regulation of CD55 and CD59 protects human hepatoma cells from complement attack. Clin Exp Immunol 2008; 121(2): 234-41.
[http://dx.doi.org/10.1046/j.1365-2249.2000.01305.x] [PMID: 10931136]
[142]
Harris CL, Spiller OB, Morgan BP. Human and rodent decay-accelerating factors (CD55) are not species restricted in their complement-inhibiting activities. Immunology 2000; 100(4): 462-70.
[http://dx.doi.org/10.1046/j.1365-2567.2000.00066.x] [PMID: 10929073]
[143]
Bongoni AK, Lu B, Salvaris EJ, et al. Overexpression of human CD55 and CD59 or treatment with human CD55 protects against renal ischemia-reperfusion injury in mice. J Immunol 2017; 198(12): 4837-45.
[http://dx.doi.org/10.4049/jimmunol.1601943] [PMID: 28500075]
[144]
Seya T, Turner JR, Atkinson JP. Purification and characterization of a membrane protein (gp45-70) that is a cofactor for cleavage of C3b and C4b. J Exp Med 1986; 163(4): 837-55.
[http://dx.doi.org/10.1084/jem.163.4.837] [PMID: 3950547]
[145]
Masaki T, Matsumoto M, Nakanishi I, Yasuda R, Seya T. Factor I-dependent inactivation of human complement C4b of the classical pathway by C3b/C4b receptor (CR1, CD35) and membrane cofactor protein (MCP, CD46). J Biochem 1992; 111(5): 573-8.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a123799] [PMID: 1386357]
[146]
Shida K, Nomura M, Matsumoto M, Suzuki Y, Toyoshima K, Seya T. The 3′-UT of the ubiquitous mRNA of human CD46 confers selective suppression of protein production in murine cells. Eur J Immunol 1999; 29(11): 3603-8.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199911)29:11<3603::AID-IMMU3603>3.0.CO;2-R] [PMID: 10556815]
[147]
Foley S, Li B, Dehoff M, Molina H, Holers VM. Mouse Crry/p65 is a regulator of the alternative pathway of complement activation. Eur J Immunol 1993; 23(6): 1381-4.
[http://dx.doi.org/10.1002/eji.1830230630] [PMID: 8500531]
[148]
Miwa T, Zhou L, Hilliard B, Molina H, Song WC. Crry, but not CD59 and DAF, is indispensable for murine erythrocyte protection in vivo from spontaneous complement attack. Blood 2002; 99(10): 3707-16.
[http://dx.doi.org/10.1182/blood.V99.10.3707] [PMID: 11986227]
[149]
Michael Holers V, Kinoshita T, Molina H. The evolution of mouse and human complement C3-binding proteins: Divergence of form but conservation of function. Immunol Today 1992; 13(6): 231-6.
[http://dx.doi.org/10.1016/0167-5699(92)90160-9] [PMID: 1378280]
[150]
Kim YU, Kinoshita T, Molina H, et al. Mouse complement regulatory protein Crry/p65 uses the specific mechanisms of both human decay-accelerating factor and membrane cofactor protein. J Exp Med 1995; 181(1): 151-9.
[http://dx.doi.org/10.1084/jem.181.1.151] [PMID: 7528766]
[151]
Marchesi VT, Furthmayr H, Tomita M. The red cell membrane. Annu Rev Biochem 1976; 45(1): 667-98.
[http://dx.doi.org/10.1146/annurev.bi.45.070176.003315] [PMID: 786159]
[152]
Burlak C, Twining LM, Rees MA. Terminal sialic acid residues on human glycophorin A are recognized by porcine kupffer cells. Transplantation 2005; 80(3): 344-52.
[http://dx.doi.org/10.1097/01.TP.0000162974.94890.9F] [PMID: 16082330]
[153]
Crocker PR, Mucklow S, Bouckson V, et al. Sialoadhesin, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin-like domains. EMBO J 1994; 13(19): 4490-503.
[http://dx.doi.org/10.1002/j.1460-2075.1994.tb06771.x] [PMID: 7925291]
[154]
Brock LG, Delputte PL, Waldman JP, Nauwynck HJ, Rees MA. Porcine sialoadhesin: A newly identified xenogeneic innate immune receptor. Am J Transplant 2012; 12(12): 3272-82.
[http://dx.doi.org/10.1111/j.1600-6143.2012.04247.x] [PMID: 22958948]
[155]
Petitpas K, Habibabady Z, Ritchie V, et al. Genetic modifications designed for xenotransplantation attenuate sialoadhesin‐dependent binding of human erythrocytes to porcine macrophages. Xenotransplantation 2022; 29(6): e12780.
[http://dx.doi.org/10.1111/xen.12780] [PMID: 36125388]
[156]
Crocker PR, Kelm S, Dubois C, et al. Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages. EMBO J 1991; 10(7): 1661-9.
[http://dx.doi.org/10.1002/j.1460-2075.1991.tb07689.x] [PMID: 2050106]
[157]
Taylor CE, Cobb BA, Rittenhouse-Olson K, Paulson JC, Schreiber JR. Carbohydrate moieties as vaccine candidates: Targeting the sweet spot in the immune response. Vaccine 2012; 30(30): 4409-13.
[http://dx.doi.org/10.1016/j.vaccine.2012.04.090] [PMID: 22575168]
[158]
Brinkman-Van der Linden ECM, Sjoberg ER, Juneja LR, Crocker PR, Varki N, Varki A. Loss of N-glycolylneuraminic acid in human evolution. Implications for sialic acid recognition by siglecs. J Biol Chem 2000; 275(12): 8633-40.
[http://dx.doi.org/10.1074/jbc.275.12.8633] [PMID: 10722703]
[159]
Nemanichvili N, Spruit CM, Berends AJ, et al. Wild and domestic animals variably display Neu5Ac and Neu5Gc sialic acids. Glycobiology 2022; 32(9): cwac033.
[http://dx.doi.org/10.1093/glycob/cwac033] [PMID: 35648131]
[160]
Waldman JP, Brock LG, Rees MA. A human-specific mutation limits nonhuman primate efficacy in preclinical xenotransplantation studies. Transplantation 2014; 97(4): 385-90.
[http://dx.doi.org/10.1097/01.TP.0000441321.87915.82] [PMID: 24445925]
[161]
Ducreux J, Crocker PR, Vanbever R. Analysis of sialoadhesin expression on mouse alveolar macrophages. Immunol Lett 2009; 124(2): 77-80.
[http://dx.doi.org/10.1016/j.imlet.2009.04.006] [PMID: 19406152]
[162]
Crome P, Mollison PL. Splenic destruction of Rh-sensitized, and of heated red cells. Br J Haematol 1964; 10(2): 137-54.
[http://dx.doi.org/10.1111/j.1365-2141.1964.tb00689.x] [PMID: 14141613]
[163]
Marsh GW, Lewis SM, Szur L. The use of 51Cr-labelled heat-damaged red cells to study splenic function. I. Evaluation of method. Br J Haematol 1966; 12(2): 161-6.
[http://dx.doi.org/10.1111/j.1365-2141.1966.tb05620.x] [PMID: 5932543]
[164]
Ultmann J, Gordon CS. The removal of in vitro damaged erythrocytes from the circulation of normal and splenectomized rats. Blood 1965; 26(1): 49-62.
[http://dx.doi.org/10.1182/blood.V26.1.49.49] [PMID: 14314400]
[165]
Moore JM, Kumar N, Shultz LD, Rajan TV. Maintenance of the human malarial parasite, Plasmodium falciparum, in scid mice and transmission of gametocytes to mosquitoes. J Exp Med 1995; 181(6): 2265-70.
[http://dx.doi.org/10.1084/jem.181.6.2265] [PMID: 7760012]
[166]
Azuma H, Paulk N, Ranade A, et al. Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice. Nat Biotechnol 2007; 25(8): 903-10.
[http://dx.doi.org/10.1038/nbt1326] [PMID: 17664939]
[167]
Khuu DN, Najimi M, Sokal EM. Epithelial cells with hepatobiliary phenotype: Is it another stem cell candidate for healthy adult human liver? World J Gastroenterol 2007; 13(10): 1554-60.
[http://dx.doi.org/10.3748/wjg.v13.i10.1154] [PMID: 17461448]
[168]
Schmelzer E, Zhang L, Bruce A, et al. Human hepatic stem cells from fetal and postnatal donors. J Exp Med 2007; 204(8): 1973-87.
[http://dx.doi.org/10.1084/jem.20061603] [PMID: 17664288]
[169]
Suemizu H, Hasegawa M, Kawai K, et al. Establishment of a humanized model of liver using NOD/Shi-scid IL2Rgnull mice. Biochem Biophys Res Commun 2008; 377(1): 248-52.
[http://dx.doi.org/10.1016/j.bbrc.2008.09.124] [PMID: 18840406]
[170]
Hasegawa M, Kawai K, Mitsui T, et al. The reconstituted ‘humanized liver’ in TK-NOG mice is mature and functional. Biochem Biophys Res Commun 2011; 405(3): 405-10.
[http://dx.doi.org/10.1016/j.bbrc.2011.01.042] [PMID: 21238430]
[171]
Fomin ME, Zhou Y, Beyer AI, Publicover J, Baron JL, Muench MO. Production of factor VIII by human liver sinusoidal endothelial cells transplanted in immunodeficient uPA mice. PLoS One 2013; 8(10): e77255.
[http://dx.doi.org/10.1371/journal.pone.0077255] [PMID: 24167566]
[172]
Gutti TL, Knibbe JS, Makarov E, et al. Human hepatocytes and hematolymphoid dual reconstitution in treosulfan-conditioned uPA-NOG mice. Am J Pathol 2014; 184(1): 101-9.
[http://dx.doi.org/10.1016/j.ajpath.2013.09.008] [PMID: 24200850]
[173]
Zhang RR, Zheng YW, Li B, et al. Human hepatic stem cells transplanted into a fulminant hepatic failure Alb-TRECK/SCID mouse model exhibit liver reconstitution and drug metabolism capabilities. Stem Cell Res Ther 2015; 6(1): 49.
[http://dx.doi.org/10.1186/s13287-015-0038-9] [PMID: 25889844]
[174]
Fomin ME, Beyer AI, Muench MO. Human fetal liver cultures support multiple cell lineages that can engraft immunodeficient mice. Open Biol 2017; 7(12): 170108.
[http://dx.doi.org/10.1098/rsob.170108] [PMID: 29237808]
[175]
Nagamoto Y, Takayama K, Tashiro K, et al. Efficient engraftment of human induced pluripotent stem cell-derived hepatocyte-like cells in uPA/SCID mice by overexpression of FNK, a Bcl-xLMutant gene. Cell Transplant 2015; 24(6): 1127-38.
[http://dx.doi.org/10.3727/096368914X681702] [PMID: 24806294]
[176]
Martino G, Anastasi J, Feng J, et al. The fate of human peripheral blood lymphocytes after transplantation into SCID mice. Eur J Immunol 1993; 23(5): 1023-8.
[http://dx.doi.org/10.1002/eji.1830230506] [PMID: 8477797]
[177]
Conneally E, Cashman J, Petzer A, Eaves C. Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic– scid/scid mice. Proc Natl Acad Sci 1997; 94(18): 9836-41.
[http://dx.doi.org/10.1073/pnas.94.18.9836] [PMID: 9275212]
[178]
Piacibello W, Sanavio F, Severino A, et al. Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34(+) cord blood cells after ex vivo expansion: Evidence for the amplification and self-renewal of repopulating stem cells. Blood 1999; 93(11): 3736-49.
[http://dx.doi.org/10.1182/blood.V93.11.3736] [PMID: 10339480]
[179]
Tatekawa T, Ogawa H, Kawakami M, et al. A novel direct competitive repopulation assay for human hematopoietic stem cells using NOD/SCID mice. Cytotherapy 2006; 8(4): 390-8.
[http://dx.doi.org/10.1080/14653240600847191] [PMID: 16923615]
[180]
Bárcena A, Muench MO, Kapidzic M, Gormley M, Goldfien GA, Fisher SJ. Human placenta and chorion: Potential additional sources of hematopoietic stem cells for transplantation. Transfusion 2011; 51(S4): 94S-105S.
[http://dx.doi.org/10.1111/j.1537-2995.2011.03372.x] [PMID: 22074633]
[181]
Gurung S, Deane JA, Darzi S, Werkmeister JA, Gargett CE. In vivo survival of human endometrial mesenchymal stem cells transplanted under the kidney capsule of immunocompromised mice. Stem Cells Dev 2018; 27(1): 35-43.
[http://dx.doi.org/10.1089/scd.2017.0177] [PMID: 29105567]
[182]
Duan Y, Catana A, Meng Y, et al. Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells 2007; 25(12): 3058-68.
[http://dx.doi.org/10.1634/stemcells.2007-0291] [PMID: 17885076]
[183]
Choi B, Chun E, Kim M, et al. Human T cell development in the liver of humanized NOD/SCID/IL-2Rγnull(NSG) mice generated by intrahepatic injection of CD34+ human (h) cord blood (CB) cells. Clin Immunol 2011; 139(3): 321-35.
[http://dx.doi.org/10.1016/j.clim.2011.02.019] [PMID: 21429805]
[184]
Brown CE, Aguilar B, Starr R, et al. Optimization of IL13Rα2-targeted chimeric antigen receptor T cells for improved anti-tumor efficacy against glioblastoma. Mol Ther 2018; 26(1): 31-44.
[http://dx.doi.org/10.1016/j.ymthe.2017.10.002] [PMID: 29103912]
[185]
Li O, Tormin A, Sundberg B, Hyllner J, Le Blanc K, Scheding S. Human embryonic stem cell-derived mesenchymal stroma cells (hES-MSCs) engraft in vivo and support hematopoiesis without suppressing immune function: Implications for off-the shelf ES-MSC therapies. PLoS One 2013; 8(1): e55319.
[http://dx.doi.org/10.1371/journal.pone.0055319] [PMID: 23383153]
[186]
Togarrati PP, Sasaki RT, Abdel-Mohsen M, et al. Identification and characterization of a rich population of CD34+ mesenchymal stem/stromal cells in human parotid, sublingual and submandibular glands. Sci Rep 2017; 7(1): 3484.
[http://dx.doi.org/10.1038/s41598-017-03681-1] [PMID: 28615711]
[187]
Wolf-van Buerck L, Schuster M, Baehr A, et al. Engraftment and reversal of diabetes after intramuscular transplantation of neonatal porcine islet-like clusters. Xenotransplantation 2015; 22(6): 443-50.
[http://dx.doi.org/10.1111/xen.12201] [PMID: 26490671]
[188]
Kamili A, Gifford AJ, Li N, et al. Accelerating development of high-risk neuroblastoma patient-derived xenograft models for preclinical testing and personalised therapy. Br J Cancer 2020; 122(5): 680-91.
[http://dx.doi.org/10.1038/s41416-019-0682-4] [PMID: 31919402]
[189]
Muench MO, Chen JC, Beyer AI, Fomin ME. Cellular therapies supplement: the peritoneum as an ectopic site of hematopoiesis following in utero transplantation. Transfusion 2011; 51(S4): 106S-17S.
[http://dx.doi.org/10.1111/j.1537-2995.2011.03373.x] [PMID: 22074621]
[190]
Mazurier F, Doedens M, Gan OI, Dick JE. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med 2003; 9(7): 959-63.
[http://dx.doi.org/10.1038/nm886] [PMID: 12796774]
[191]
McKenzie JL, Gan OI, Doedens M, Dick JE. Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood 2005; 106(4): 1259-61.
[http://dx.doi.org/10.1182/blood-2005-03-1081] [PMID: 15878972]
[192]
Metheny L III, Eid S, Lingas K, et al. Intra-osseous Co-transplantation of CD34-selected Umbilical Cord Blood and Mesenchymal Stromal Cells. Hematol Med Oncol 2016; 1(1): 25-9.
[http://dx.doi.org/10.15761/HMO.1000105] [PMID: 27882356]
[193]
Futrega K, Lott WB, Doran MR. Direct bone marrow HSC transplantation enhances local engraftment at the expense of systemic engraftment in NSG mice. Sci Rep 2016; 6(1): 23886.
[http://dx.doi.org/10.1038/srep23886] [PMID: 27065210]
[194]
Ji J, Vijayaragavan K, Bosse M, Weisel K, Bhatia M, Bhatia M. OP9 stroma augments survival of hematopoietic precursors and progenitors during hematopoietic differentiation from human embryonic stem cells. Stem Cells 2008; 26(10): 2485-95.
[http://dx.doi.org/10.1634/stemcells.2008-0642] [PMID: 18669904]
[195]
Namdee K, Carrasco-Teja M, Fish MB, Charoenphol P, Eniola-Adefeso O. Effect of Variation in hemorheology between human and animal blood on the binding efficacy of vascular-targeted carriers. Sci Rep 2015; 5(1): 11631.
[http://dx.doi.org/10.1038/srep11631] [PMID: 26113000]
[196]
Stock SR, Ed. High-resolution tomographic imaging of microvessels 2008. SPIE 2008.
[197]
Smith JE, Mohandas N, Shohet SB. Variability in erythrocyte deformability among various mammals. Am J Physiol 1979; 236(5): H725-30.
[PMID: 443394]
[198]
Windberger U, Bartholovitsch A, Plasenzotti R, Korak KJ, Heinze G. Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: reference values and comparison of data. Exp Physiol 2003; 88(3): 431-40.
[http://dx.doi.org/10.1113/eph8802496] [PMID: 12719768]
[199]
Goldsmith HL, Spain S. Margination of leukocytes in blood flow through small tubes. Microvasc Res 1984; 27(2): 204-22.
[http://dx.doi.org/10.1016/0026-2862(84)90054-2] [PMID: 6708830]
[200]
Takeishi N, Imai Y, Nakaaki K, Yamaguchi T, Ishikawa T. Leukocyte margination at arteriole shear rate. Physiol Rep 2014; 2(6): e12037.
[http://dx.doi.org/10.14814/phy2.12037] [PMID: 24907300]
[201]
Nicolini FE, Cashman JD, Hogge DE, Humphries RK, Eaves CJ. NOD/SCID mice engineered to express human IL-3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia 2004; 18(2): 341-7.
[http://dx.doi.org/10.1038/sj.leu.2403222] [PMID: 14628073]
[202]
Song Y, Shan L, Gbyli R, et al. Combined liver–cytokine humanization comes to the rescue of circulating human red blood cells. Science 2021; 371(6533): 1019-25.
[http://dx.doi.org/10.1126/science.abe2485] [PMID: 33674488]
[203]
Grompe M. Fah knockout animals as models for therapeutic liver repopulation. Adv Exp Med Biol 2017; 959: 215-30.
[http://dx.doi.org/10.1007/978-3-319-55780-9_20] [PMID: 28755199]
[204]
Lang J, Zhang B, Kelly M, et al. Replacing mouse BAFF with human BAFF does not improve B-cell maturation in hematopoietic humanized mice. Blood Adv 2017; 1(27): 2729-41.
[http://dx.doi.org/10.1182/bloodadvances.2017010090] [PMID: 29296925]
[205]
Li Z, Xu X, Feng X, Murphy PM. The macrophage-depleting agent clodronate promotes durable hematopoietic chimerism and donor-specific skin allograft tolerance in mice. Sci Rep 2016; 6(1): 22143.
[http://dx.doi.org/10.1038/srep22143] [PMID: 26917238]
[206]
Bradley TR, Hodgson GS. Detection of primitive macrophage progenitor cells in mouse bone marrow. Blood 1979; 54(6): 1446-50.
[http://dx.doi.org/10.1182/blood.V54.6.1446.1446] [PMID: 315805]
[207]
McNiece IK, Stewart FM, Deacon DM, et al. Detection of a human CFC with a high proliferative potential. Blood 1989; 74(2): 609-12.
[http://dx.doi.org/10.1182/blood.V74.2.609.609] [PMID: 2665850]
[208]
Muench MO, Cupp J, Polakoff J, Roncarolo MG. Expression of CD33, CD38, and HLA-DR on CD34+ human fetal liver progenitors with a high proliferative potential. Blood 1994; 83(11): 3170-81.
[http://dx.doi.org/10.1182/blood.V83.11.3170.3170] [PMID: 7514903]
[209]
Billerbeck E, Barry WT, Mu K, Dorner M, Rice CM, Ploss A. Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor–, granulocyte-macrophage colony-stimulating factor–, and interleukin-3–expressing NOD-SCID IL2Rγnull humanized mice. Blood 2011; 117(11): 3076-86.
[http://dx.doi.org/10.1182/blood-2010-08-301507] [PMID: 21252091]
[210]
Winkler IG, Sims NA, Pettit AR, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 2010; 116(23): 4815-28.
[http://dx.doi.org/10.1182/blood-2009-11-253534] [PMID: 20713966]
[211]
Li, Y.; Chen, Q.; Zheng, D.; Yin, L.; Chionh, Y.H.; Wong, L.H.; Tan, S.Q.; Tan, T.C.; Chan, J.K.; Alonso, S.; Dedon, P.C.; Lim, B.; Chen, J. Induction of functional human macrophages from bone marrow promonocytes by M-CSF in humanized mice. J Immunol 2013; 191(6): 3192-99.
[http://dx.doi.org/10.4049/jimmunol.1300742] [PMID: 23935193]
[212]
Varga NL, Bárcena A, Fomin ME, Muench MO. Detection of human hematopoietic stem cell engraftment in the livers of adult immunodeficient mice by an optimized flow cytometric method. Stem Cell Stud 2010; 1(1): 1.
[http://dx.doi.org/10.4081/scs.2011.e1] [PMID: 21603093]
[213]
Coughlan AM, Harmon C, Whelan S, et al. Myeloid engraftment in humanized mice: Impact of granulocyte-colony stimulating factor treatment and transgenic mouse strain. Stem Cells Dev 2016; 25(7): 530-41.
[http://dx.doi.org/10.1089/scd.2015.0289] [PMID: 26879149]
[214]
Muench MO, Beyer AI, Fomin ME, et al. The adult livers of immunodeficient mice support human hematopoiesis: evidence for a hepatic mast cell population that develops early in human ontogeny. PLoS One 2014; 9(5): e97312.
[http://dx.doi.org/10.1371/journal.pone.0097312] [PMID: 24819392]
[215]
Gille C, Orlikowsky TW, Spring B, et al. Monocytes derived from humanized neonatal NOD/SCID/IL2Rγnull mice are phenotypically immature and exhibit functional impairments. Hum Immunol 2012; 73(4): 346-54.
[http://dx.doi.org/10.1016/j.humimm.2012.01.006] [PMID: 22330087]
[216]
Chen Q, Khoury M, Chen J. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci 2009; 106(51): 21783-8.
[http://dx.doi.org/10.1073/pnas.0912274106] [PMID: 19966223]
[217]
Evren E, Ringqvist E, Tripathi KP, et al. Distinct developmental pathways from blood monocytes generate human lung macrophage diversity. Immunity 2021; 54(2): 259-275.e7.
[http://dx.doi.org/10.1016/j.immuni.2020.12.003] [PMID: 33382972]
[218]
Wunderlich M, Chou F-S, Link KA, et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 2010; 24(10): 1785-8.
[http://dx.doi.org/10.1038/leu.2010.158] [PMID: 20686503]
[219]
Bryce PJ, Falahati R, Kenney LL, et al. Humanized mouse model of mast cell–mediated passive cutaneous anaphylaxis and passive systemic anaphylaxis. J Allergy Clin Immunol 2016; 138(3): 769-79.
[http://dx.doi.org/10.1016/j.jaci.2016.01.049] [PMID: 27139822]
[220]
Takagi S, Saito Y, Hijikata A, et al. Membrane-bound human SCF/KL promotes in vivo human hematopoietic engraftment and myeloid differentiation. Blood 2012; 119(12): 2768-77.
[http://dx.doi.org/10.1182/blood-2011-05-353201] [PMID: 22279057]
[221]
Geissler EN, McFarland EC, Russell ES. Analysis of pleiotropism at the dominant white-spotting (W) locus of the house mouse: a description of ten new W alleles. Genetics 1981; 97(2): 337-61.
[http://dx.doi.org/10.1093/genetics/97.2.337] [PMID: 7274658]
[222]
Ju C, Liang J, Zhang M, et al. The mouse resource at National Resource Center for Mutant Mice. Mamm Genome 2022; 33(1): 143-56.
[http://dx.doi.org/10.1007/s00335-021-09940-x] [PMID: 35138443]
[223]
Ito M, Hiramatsu H, Kobayashi K, et al. NOD/SCID/γcnull mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002; 100(9): 3175-82.
[http://dx.doi.org/10.1182/blood-2001-12-0207] [PMID: 12384415]
[224]
Pearson T, Shultz LD, Miller D, et al. Non-obese diabetic–recombination activating gene-1 (NOD– Rag 1 null ) interleukin (IL)-2 receptor common gamma chain ( IL 2 rγ null ) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol 2008; 154(2): 270-84.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03753.x] [PMID: 18785974]
[225]
Brehm MA, Cuthbert A, Yang C, et al. Parameters for establishing humanized mouse models to study human immunity: Analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rγnull mutation. Clin Immunol 2010; 135(1): 84-98.
[http://dx.doi.org/10.1016/j.clim.2009.12.008] [PMID: 20096637]
[226]
Maykel J, Liu JH, Li H, Shultz LD, Greiner DL, Houghton J. NOD-scidIl2rg (tm1Wjl) and NOD-Rag1 (null) Il2rg (tm1Wjl) : A model for stromal cell-tumor cell interaction for human colon cancer. Dig Dis Sci 2014; 59(6): 1169-79.
[http://dx.doi.org/10.1007/s10620-014-3168-5] [PMID: 24798995]
[227]
Legrand N, Huntington ND, Nagasawa M, et al. Functional CD47/signal regulatory protein alpha (SIRPα) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc Natl Acad Sci 2011; 108(32): 13224-9.
[http://dx.doi.org/10.1073/pnas.1101398108] [PMID: 21788504]
[228]
Li Y, Mention JJ, Court N, et al. A novel Flt3-deficient HIS mouse model with selective enhancement of human DC development. Eur J Immunol 2016; 46(5): 1291-9.
[http://dx.doi.org/10.1002/eji.201546132] [PMID: 26865269]
[229]
Lopez-Lastra S, Masse-Ranson G, Fiquet O, et al. A functional DC cross talk promotes human ILC homeostasis in humanized mice. Blood Adv 2017; 1(10): 601-14.
[http://dx.doi.org/10.1182/bloodadvances.2017004358] [PMID: 29296702]