Novel Approaches for the Management of Type 2 Diabetes Mellitus: An Update

Article ID: e051023221768 Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Diabetes mellitus is an irreversible, chronic metabolic disorder indicated by hyperglycemia. It is now considered a worldwide pandemic. T2DM, a spectrum of diseases initially caused by tissue insulin resistance and slowly developing to a state characterized by absolute loss of secretory action of the β cells of the pancreas, is thought to be caused by reduced insulin secretion, resistance to tissue activities of insulin, or a combination of both. Insulin secretagogues, biguanides, insulin sensitizers, alpha-glucosidase inhibitors, incretin mimetics, amylin antagonists, and sodium-glucose co-transporter-2 (SGLT2) inhibitors are the main medications used to treat T2DM. Several of these medication’s traditional dosage forms have some disadvantages, including frequent dosing, a brief half-life, and limited absorption. Hence, attempts have been made to develop new drug delivery systems for oral antidiabetics to ameliorate the difficulties associated with conventional dosage forms. In comparison to traditional treatments, this review examines the utilization of various innovative therapies (such as microparticles, nanoparticles, liposomes, niosomes, phytosomes, and transdermal drug delivery systems) to improve the distribution of various oral hypoglycemic medications. In this review, we have also discussed some new promising candidates that have been approved recently by the US Food and Drug Administration for the treatment of T2DM, like semaglutide, tirzepatide, and ertugliflozin. They are used as a single therapy and also as combination therapy with drugs like metformin and sitagliptin.

[1]
Demir S, Nawroth PP, Herzig S, Ekim Üstünel B. Emerging targets in type 2 diabetes and diabetic complications. Adv Sci 2021; 8(18): e2100275.
[2]
Usai R, Majoni S, Rwere F. Natural products for the treatment and management of diabetes mellitus in Zimbabwe-A review. Front Pharmacol 2022; 13: 980819.
[http://dx.doi.org/10.3389/fphar.2022.980819] [PMID: 36091798]
[3]
Ansari P, Hannan JMA, Choudhury ST, et al. Antidiabetic actions of ethanol extract of Camellia sinensis leaf ameliorates insulin secretion, inhibits the DPP-IV enzyme, improves glucose tolerance, and increases active GLP-1 (7–36) levels in high-fat-diet-fed rats. Medicines 2022; 9(11): 56.
[http://dx.doi.org/10.3390/medicines9110056] [PMID: 36422117]
[4]
Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006; 444: 840-6.
[5]
Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020; 21: 1-34.
[6]
Defronzo RA. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009; 773-95.
[7]
Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 diabetes mellitus: A review of multi-target drugs. Molecules 2020; 25(8): 1987.
[8]
Grover M, Utreja P. Recent advances in drug delivery systems for anti-diabetic drugs: A review. Curr Drug Deliv 2014; 11(4): 444-57.
[http://dx.doi.org/10.2174/1567201811666140118225021] [PMID: 24438443]
[9]
Chaudhury A, Duvoor C, Reddy Dendi VS, et al. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus manage-ment. Front Endocrinol 2017; 8: 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[10]
Onyango EM, Onyango BM. The rise of noncommunicable diseases in Kenya: An examination of the time trends and contribution of the changes in diet and physical inactivity. J Epidemiol Glob Health 2018; 8(1-2): 1-7.
[http://dx.doi.org/10.2991/j.jegh.2017.11.004] [PMID: 30859780]
[11]
Alotaibi A, Perry L, Gholizadeh L, Al-Ganmi A. Incidence and prevalence rates of diabetes mellitus in Saudi Arabia: An overview. J Epidemiol Glob Health 2017; 7: 211-8.
[12]
Ramtahal R, Khan C, Maharaj-Khan K, et al. Prevalence of self-reported sleep duration and sleep habits in type 2 diabetes patients in South Trinidad. J Epidemiol Glob Health 2015; 5(S1): S35-43.
[http://dx.doi.org/10.1016/j.jegh.2015.05.003] [PMID: 26073574]
[13]
Lone S, Lone K, Khan S, Pampori RA. Assessment of metabolic syndrome in Kashmiri population with type 2 diabetes employing the standard criteria’s given by WHO, NCEPATP III and IDF. J Epidemiol Glob Health 2017; 7(4): 235-9.
[http://dx.doi.org/10.1016/j.jegh.2017.07.004] [PMID: 29110863]
[14]
Oluyombo R, Olamoyegun MA, Olaifa O, Iwuala SO, Babatunde OA. Cardiovascular risk factors in semi-urban communities in southwest Nigeria: Patterns and prevalence. J Epidemiol Glob Health 2014; 5(2): 167-74.
[http://dx.doi.org/10.1016/j.jegh.2014.07.002] [PMID: 25922326]
[15]
Al-Maskari F, El-Sadig M, Nagelkerke N. Assessment of the direct medical costs of diabetes mellitus and its complications in the United Arab Emirates. BMC Public Health 2010; 10(1): 679.
[http://dx.doi.org/10.1186/1471-2458-10-679] [PMID: 21059202]
[16]
Forouzanfar MH, Afshin A, Alexander LT, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388(10053): 1659-724.
[http://dx.doi.org/10.1016/S0140-6736(16)31679-8] [PMID: 27733284]
[17]
Wu H, Norton V, Cui K, et al. Diabetes and its cardiovascular complications: Comprehensive network and systematic analyses. Front Cardiovasc Med 2022; 9: 841928.
[http://dx.doi.org/10.3389/fcvm.2022.841928] [PMID: 35252405]
[18]
Lin X, Xu Y, Pan X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. Sci Rep 2020; 10(1): 14790.
[http://dx.doi.org/10.1038/s41598-020-71908-9] [PMID: 32901098]
[19]
IDF Diabetes Atlas Available from: www.diabetesatlas.org
[20]
Sharma U, Verma P, Jain NK. A review on novel vesicular drug delivery system: Transfersomes. Int J Pharma Life Sci 2020; 11(7): 6812-24.
[21]
Ayub A, Wettig S. An overview of nanotechnologies for drug delivery to the brain. Pharmaceutics 2022; 14(2): 224.
[22]
Padhi S, Nayak AK, Behera A. Type II diabetes mellitus: A review on recent drug based therapeutics. Biomed Pharmacother 2020; 131: 110708.
[23]
Seino S, Sugawara K, Yokoi N, Takahashi H. β-Cell signalling and insulin secretagogues: A path for improved diabetes therapy. Diabetes Obes Metab 2017; 19(S1): 22-9.
[24]
Hemmingsen B, Sonne DP, Metzendorf MI, Richter B. Insulin secretagogues for prevention or delay of type 2 diabetes mellitus and its associated complications in persons at increased risk for the development of type 2 diabetes mellitus. Cochrane Database Syst Rev 2016; 10(10): CD012151.
[http://dx.doi.org/10.1002/14651858.CD012151]
[25]
Sola D, Rossi L, Schianca GPC, Maffioli P, Bigliocca M, Mella R, et al. Sulfonylureas and their use in clinical practice. Arch Med Sci 2015; 11: 840.
[26]
di Magno L, di Pastena F, Bordone R, Coni S, Canettieri G. The mechanism of action of biguanides: New answers to a complex question. Cancers 2022; 14(13): 3220.
[27]
He L, Wondisford FE. Metformin action: Concentrations matter. Cell Metab 2015; 21: 159-62.
[28]
Nasri H, Rafieian-Kopaei M. Metformin: Current knowledge. J Res Med Sci 2014; 19(7): 658-64.
[PMID: 25364368]
[29]
Wang GS, Hoyte C. Review of biguanide (Metformin) toxicity. J Intensive Care Med 2019; 34: 863-76.
[30]
Bailey CJ. Metformin: Historical overview. Diabetologia 2017; 60: 1566-76.
[31]
Blahova J, Martiniakova M, Babikova M, Kovacova V, Mondockova V, Omelka R. Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus. Pharmaceuticals 2021; 14(8): 806.
[32]
Alemán-González-Duhart D, Tamay-Cach F, Álvarez-Almazán S, Mendieta-Wejebe JE. Current advances in the biochemical and physio-logical aspects of the treatment of type 2 diabetes mellitus with thiazolidinediones. PPAR Research Hindawi Limited 2016; 2016: 7614270.
[33]
Lebovitz HE. Thiazolidinediones: The forgotten diabetes medications. Curr Diab Rep 2019; 19(21): 151.
[34]
Davidson MA, Mattison DR, Azoulay L, Krewski D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: Past, present and future. Crit Rev Toxicol 2018; 48: 52-108.
[35]
Kim JH, Kim HY, Jin CH. Mechanistic investigation of anthocyanidin derivatives as α-glucosidase inhibitors. Bioorg Chem 2019; 87: 803-9.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.033] [PMID: 30978605]
[36]
Kazmi M, Zaib S, Ibrar A, et al. A new entry into the portfolio of α-glucosidase inhibitors as potent therapeutics for type 2 diabetes: De-sign, bioevaluation and one-pot multi-component synthesis of diamine-bridged coumarinyl oxadiazole conjugates. Bioorg Chem 2018; 77: 190-202.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.022] [PMID: 29421697]
[37]
Liu SK, Hao H, Bian Y, et al. Discovery of new α-glucosidase inhibitors: Structure-based virtual screening and biological evaluation. Front Chem 2021; 9: 639279.
[http://dx.doi.org/10.3389/fchem.2021.639279] [PMID: 33763406]
[38]
Joshi SR, Standl E, Tong N, Shah P, Kalra S, Rathod R. Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: An evidence-based review. Expert Opin Pharmacother 2015; 16: 1959-81.
[39]
Hossain U, Das AK, Ghosh S, Sil PC. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food Chem Toxicol 2020; 145: 111738.
[http://dx.doi.org/10.1016/j.fct.2020.111738]
[40]
Liu Z, Ma S. Recent advances in synthetic α-glucosidase inhibitors. ChemMedChem 2017; 12: 819-29.
[http://dx.doi.org/10.1002/cmdc.201700216]
[41]
Abbas G, al Harrasi A, Hussain H, Hamaed A, Supuran CT. The management of diabetes mellitus-imperative role of natural products against dipeptidyl peptidase-4, α-glucosidase and sodium-dependent glucose co-transporter 2 (SGLT2). Bioorg Chem 2019; 86: 305-15.
[42]
Dhameja M, Gupta P. Synthetic heterocyclic candidates as promising α-glucosidase inhibitors: An overview. Eur J Med Chem 2019; 176: 343-77.
[43]
Sun EW, de Fontgalland D, Rabbitt P, Hollington P, Sposato L, Due SL, et al. Mechanisms controlling glucose-induced GLP-1 secretion in human small intestine. Diabetes 2017; 66(8): 2144-9.
[44]
Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 2013; 17(6): 819-37.
[http://dx.doi.org/10.1016/j.cmet.2013.04.008] [PMID: 23684623]
[45]
Drucker DJ, Sherman SI, Gorelick FS, Bergenstal RM, Sherwin RS, Buse JB. Incretin-based therapies for the treatment of type 2 diabetes: Evaluation of the risks and benefits. Diabetes Care 2010; 33(2): 428-33.
[http://dx.doi.org/10.2337/dc09-1499] [PMID: 20103558]
[46]
Robertson C. Incretin-related therapies in type 2 diabetes: A practical overview. Diabetes Spectr 2011; 24(1): 26-35.
[47]
Manandhar B, Ahn JM. Glucagon-like peptide-1 (GLP-1) analogs: Recent advances, new possibilities, and therapeutic implications. J Med Chem 2015; 58(3): 1020-37.
[http://dx.doi.org/10.1021/jm500810s] [PMID: 25349901]
[48]
Yu M, Benjamin MM, Srinivasan S, Morin EE, Shishatskaya EI, Schwendeman SP, et al. Battle of GLP-1 delivery technologies. Adv Drug Deliv Rev 2018; 130: 113-30.
[49]
Harris KB, McCarty DJ. Efficacy and tolerability of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes mellitus. Ther Adv Endocrinol Metab 2015; 6(1): 3-18.
[http://dx.doi.org/10.1177/2042018814558242] [PMID: 25678952]
[50]
Sesti G, Avogaro A, Belcastro S, Bonora BM, Croci M, Daniele G, et al. Ten years of experience with DPP-4 inhibitors for the treatment of type 2 diabetes mellitus. Acta Diabetol 2019; 56: 605-17.
[51]
Gallwitz B. Clinical use of DPP-4 inhibitors. Front Endocrinol 2019; 10: 389.
[52]
Deacon CF. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front Endocrinol 2019; 10: 80.
[53]
Holst JJ. From the incretin concept and the discovery of GLP-1 to today’s diabetes therapy. Front Endocrinol 2019; 10: 260.
[54]
Adeghate E, Kalász H. Amylin analogues in the treatment of diabetes mellitus: Medicinal chemistry and structural basis of its function. Open Med Chem J 2011; 5 (Suppl. 2): 78-81.
[http://dx.doi.org/10.2174/1874104501105010078]
[55]
Kruse T, Hansen JL, Dahl K, et al. Development of cagrilintide, a long-acting amylin analogue. J Med Chem 2021; 64(15): 11183-94.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00565] [PMID: 34288673]
[56]
Schmitz O, Brock B, Rungby J. Amylin agonists: A novel approach in the treatment of diabetes. Diabetes 2004; 53(S3): S233-8.
[57]
Shubrook JH, Bokaie BB, Adkins SE. Empagliflozin in the treatment of type 2 diabetes: Evidence to date. Drug Des Devel Ther 2015; 9: 5793-803.
[58]
Triplitt C, Cornell S. Canagliflozin treatment in patients with type 2 diabetes mellitus. Clin Med Insights Endocrinol Diabetes 2015; 8: 73-81.
[http://dx.doi.org/10.4137/CMED.S31526]
[59]
Fioretto P, Giaccari A, Sesti G. Efficacy and safety of dapagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in diabetes melli-tus. Cardiovasc Diabetol 2015; 14: 142.
[60]
Moses RG, Colagiuri S, Pollock C. SGLT2 inhibitors: New medicines for addressing unmet therapeutic needs in type 2 diabetes. Australa-sian Med J 2014; 7: 405-15.
[61]
Desouza CV, Gupta N, Patel A. Cardiometabolic effects of a new class of antidiabetic agents. Clin Ther 2015; 37: 1178-94.
[62]
Das SR, Everett BM, Birtcher KK, et al. 2020 Expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes. J Am Coll Cardiol 2020; 76(9): 1117-45.
[http://dx.doi.org/10.1016/j.jacc.2020.05.037] [PMID: 32771263]
[63]
Tentolouris A, Vlachakis P, Tzeravini E, Eleftheriadou I, Tentolouris N. SGLT2 inhibitors: A review of their antidiabetic and cardiopro-tective effects. Int J Environ Res Public Health 2019; 16(16): 2965.
[64]
Kalra S, Kesavadev J, Chadha M, Vijaya Kumar G. Sodium-glucose cotransporter-2 inhibitors in combination with other glucose-lowering agents for the treatment of type 2 diabetes mellitus. Indian J Endocrinol Metab 2018; 22: 827-36.
[http://dx.doi.org/10.4103/ijem.IJEM_162_17]
[65]
Riser Taylor S, Harris KB. The clinical efficacy and safety of sodium glucose cotransporter-2 inhibitors in adults with type 2 diabetes mellitus. Pharmacotherapy 2013; 33(9): 984-99.
[http://dx.doi.org/10.1002/phar.1303]
[66]
Ferro EG, Elshazly MB, Bhatt DL. New antidiabetes medications and their cardiovascular and renal benefits. Cardiol Clin 2021; 39: 335-51.
[http://dx.doi.org/10.1016/j.ccl.2021.04.007]
[67]
Ni X, Zhang L, Feng X, Tang L. New hypoglycemic drugs: Combination drugs and targets discovery. Front Pharmacol 2022; 13: 877797.
[68]
Smits MM, van Raalte DH. Safety of Semaglutide. Front Endocrinol 2021; 12: 645563.
[69]
Zargar AH, Kalra S, Das S. A review of oral semaglutide available evidence: A new era of management of diabetes with peptide in a pill form. Indian J Endocrinol Metab 2022; 26(2): 98-105.
[http://dx.doi.org/10.4103/ijem.ijem_522_21] [PMID: 35873937]
[70]
Hinnen D. Glucagon-like peptide 1 receptor agonists for type 2 diabetes. Diabetes Spectr 2017; 30(3): 202-10.
[http://dx.doi.org/10.2337/ds16-0026] [PMID: 28848315]
[71]
Holst JJ, Madsbad S. Semaglutide seems to be more effective the other GLP-1Ras. Ann Transl Med 2017; 5(24): 505.
[72]
Lau J, Bloch P, Schäffer L, et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J Med Chem 2015; 58(18): 7370-80.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00726] [PMID: 26308095]
[73]
Kalra Rakesh Sahay S. A review on semaglutide: An oral glucagon-like peptide 1 receptor agonist in management of type 2 diabetes melli-tus. Diabetes Ther 2020; 11(9): 1965-82.
[http://dx.doi.org/10.6084/m9.figshare.12661451]
[74]
Buckley ST, Baekdal TA, Vegge A, Maarbjerg SJ, Pyke C, Ahnfelt-Rønne J, et al. Transcellular stomach absorption of a derivatized gluca-gon-like peptide-1 receptor agonist. Sci Transl Med 2018; 10(467): eaar7047.
[75]
Wang L. Designing a dual GLP-1R/GIPR agonist from tirzepatide: Comparing residues between tirzepatide, GLP-1, and GIP. Drug Des Devel Ther 2022; 16: 1547-59.
[76]
Jastreboff AM, Aronne LJ, Ahmad NN, et al. Tirzepatide once weekly for the treatment of obesity. N Engl J Med 2022; 387(3): 205-16.
[http://dx.doi.org/10.1056/NEJMoa2206038] [PMID: 35658024]
[77]
Tang Y, Zhang L, Zeng Y, Wang X, Zhang M. Efficacy and safety of tirzepatide in patients with type 2 diabetes: A systematic review and meta-analysis. Front Pharmacol 2022; 13: 1016639.
[78]
Chavda VP, Ajabiya J, Teli D, Bojarska J, Apostolopoulos V. Tirzepatide, a new era of dual-targeted treatment for diabetes and obesity: A mini-review. Molecules 2022; 27(13): 4315.
[79]
Totade M, Gaidhane SA. Role of ertugliflozin in the management of diabetes mellitus. Cureus 2022; 14(11): e31404.
[http://dx.doi.org/10.7759/cureus.31404] [PMID: 36523727]
[80]
Markham A. Ertugliflozin: First global approval. Drugs 2018; 78(4): 513-9.
[http://dx.doi.org/10.1007/s40265-018-0878-6] [PMID: 29476348]
[81]
Liu L, Shi FH, Xu H, Wu Y, Gu ZC, Lin HW. Efficacy and safety of ertugliflozin in type 2 diabetes: A systematic review and meta-analysis. Front Pharmacol 2022; 12: 752440.
[82]
Nguyen VK, White JR. Overview of ertugliflozin. Clin Diabetes 2019; 37: 176-8.
[http://dx.doi.org/10.2337/cd18-0097]
[83]
Fediuk DJ, Nucci G, Dawra VK, Cutler DL, Amin NB, Terra SG, et al. Overview of the clinical pharmacology of ertugliflozin, a novel sodium-glucose cotransporter 2 (SGLT2) inhibitor. Clin Pharmacokinet 2020; 59: 949-65.
[84]
Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the european association for the study of diabetes (EASD). Diabetes Care 2018; 41: 2669-701.
[85]
Athyros VG, Boutari C, Karagiannis A. Ertugliflozin + metformin as a treatment option for type 2 diabetes. Expert Opin Pharmacother 2021; 22(16): 2105-11.
[http://dx.doi.org/10.1080/14656566.2021.1939676] [PMID: 34130582]
[86]
Frias JP. Fixed-dose combination of ertugliflozin and metformin hydrochloride for the treatment of type 2 diabetes. Expert Rev Endocrinol Metab 2019; 14(2): 75-83.
[http://dx.doi.org/10.1080/17446651.2019.1571908] [PMID: 30724637]
[87]
American Diabetes Association. Pharmacologic approaches to glycemic treatment. Diabetes Care 2017; 40(Suppl. 1): S64-74.
[http://dx.doi.org/10.2337/dc17-S011] [PMID: 27979895]
[88]
Pratley RE, Eldor R, Raji A, et al. Ertugliflozin plus sitagliptin versus either individual agent over 52 weeks in patients with type 2 diabetes mellitus inadequately controlled with metformin: The vertis factorial randomized trial. Diabetes Obes Metab 2018; 20(5): 1111-20.
[http://dx.doi.org/10.1111/dom.13194] [PMID: 29266675]
[89]
Zhao R, Lu Z, Yang J, Zhang L, Li Y, Zhang X. Drug delivery system in the treatment of diabetes mellitus. Front Bioeng Biotechnol 2020; 8: 880.
[90]
Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP. Novel drug delivery system: An immense hope for diabetics. Drug Deliv 2016; 23: 2371-90.
[91]
Bale S, Khurana A, Singh M. Overview on therapeutic applications of microparticulate drug delivery systems. Crit Rev Ther Drug Carrier Syst 2016; 33(4): 309-61.
[92]
Mahale MM, Saudagar RB. Microsphere: A review. J Drug Deliv Ther 2019; 9: 854-6.
[93]
Lengyel M, Kállai-Szabó N, Antal V, Laki AJ, Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci Pharm 2019; 87(3): 20.
[94]
Wong CY, Al-Salami H, Dass CR. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. Int J Pharm 2018; 537: 223-44.
[95]
Choudhury PK, Kar M. Controlled release metformin hydrochloride microspheres of ethyl cellulose prepared by different methods and study on the polymer affected parameters. J Microencapsul 2009; 26(1): 46-53.
[http://dx.doi.org/10.1080/02652040802130503] [PMID: 18608813]
[96]
Sharma VK, Mazumder B. Gastrointestinal transition and anti-diabetic effect of Isabgol husk microparticles containing gliclazide. Int J Biol Macromol 2014; 66: 15-25.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.02.014] [PMID: 24530641]
[97]
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16: 71.
[98]
Dening TJ, Rao S, Thomas N, Prestidge CA. Oral nanomedicine approaches for the treatment of psychiatric illnesses. J Control Release 2016; 223: 137-56.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.047]
[99]
Nie X, Chen Z, Pang L, Wang L, Jiang H, Chen Y, et al. Oral nano drug delivery systems for the treatment of type 2 diabetes mellitus: An available administration strategy for antidiabetic phytocompounds. Int J Nanomedicine 2020; 15: 10215-40.
[100]
Lin CH, Chen CH, Lin ZC, Fang JY. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 2017; 25: 219-34.
[101]
Uppal S, Italiya KS, Chitkara D, Mittal A. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: An emerg-ing paradigm for effective therapy. Acta Biomater 2018; 81: 20-42.
[102]
Bera K, Mazumder B, Khanam J. Study of the mucoadhesive potential of carbopol polymer in the preparation of microbeads containing the antidiabetic drug glipizide. AAPS PharmSciTech 2016; 17(3): 743-56.
[http://dx.doi.org/10.1208/s12249-015-0396-8] [PMID: 26335417]
[103]
Sharma M, Kohli S, Dinda A. In-vitro and in-vivo evaluation of repaglinide loaded floating microspheres prepared from different viscosity grades of HPMC polymer. Saudi Pharm J 2015; 23(6): 675-82.
[http://dx.doi.org/10.1016/j.jsps.2015.02.013] [PMID: 26702263]
[104]
Ghumman SA, Noreen S. tul Muntaha S. Linum usitatissimum seed mucilage-alginate mucoadhesive microspheres of metformin HCl: Fabrication, characterization and evaluation. Int J Biol Macromol 2020; 155: 358-68.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.181] [PMID: 32224187]
[105]
Millotti G, Vetter A, Leithner K, et al. Development of thiolated poly(acrylic acid) microparticles for the nasal administration of exenatide. Drug Dev Ind Pharm 2014; 40(12): 1677-82.
[http://dx.doi.org/10.3109/03639045.2013.842578] [PMID: 24131355]
[106]
Yanmanagandla D, Sripada RD. Formulation and evaluation of linagliptin mucoadhesive microspheres. Intl Res J Pharma 2018; 9(5): 11-7.
[http://dx.doi.org/10.7897/2230-8407.09567]
[107]
Yadav A, Jain D. Gastroretentive microballoons of metformin: Formulation development and characterization. J Adv Pharm Technol Res 2011; 2(1): 51-5.
[http://dx.doi.org/10.4103/2231-4040.79806] [PMID: 22171293]
[108]
Kumar Mankala S, Kumar NN, Raparla R, Kumar SM. Development and evaluation of mucoadhesive microspheres of an anti-diabetic drug with natural polymer. Int J Pharmaceut Res 2011; 3(4): 53-8.
[109]
Deshmukh R, Mishra S, Naik J. Preparation and characterization of glipizide loaded eudragit microparticles. Micro Nanosyst 2018; 10(2): 129-36.
[http://dx.doi.org/10.2174/1876402910666181116114358]
[110]
Baig MMFA, Khan S, Naeem MA, Khan GJ, Ansari MT. Vildagliptin loaded triangular DNA nanospheres coated with eudragit for oral delivery and better glycemic control in type 2 diabetes mellitus. Biomed Pharmacother 2018; 97: 1250-8.
[http://dx.doi.org/10.1016/j.biopha.2017.11.059] [PMID: 29145151]
[111]
Ebrahimi HA, Javadzadeh Y, Hamidi M, Jalali MB. Repaglinide loaded solid lipid nanoparticles: Effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. Daru 2015; 23(1): 46.
[http://dx.doi.org/10.1186/s40199-015-0128-3] [PMID: 26392174]
[112]
Razzaq FA, Asif M, Asghar S, et al. Glimepiride-loaded nanoemulgel; development, in vitro characterization, ex vivo permeation and in vivo antidiabetic evaluation. Cells 2021; 10(9): 2404.
[http://dx.doi.org/10.3390/cells10092404] [PMID: 34572054]
[113]
Akhtar J, Siddiqui HH, Fareed S. Badruddeen, Khalid M, Aqil M. Nanoemulsion: For improved oral delivery of repaglinide. Drug Deliv 2016; 23(6): 2026-34.
[http://dx.doi.org/10.3109/10717544.2015.1077290] [PMID: 27187792]
[114]
Chinnaiyan SK, Karthikeyan D, Gadela VR. Development and characterization of metformin loaded pectin nanoparticles for T2 diabetes mellitus. Pharm Nanotechnol 2019; 6(4): 253-63.
[http://dx.doi.org/10.2174/2211738507666181221142406] [PMID: 30574859]
[115]
Du B, Shen G, Wang D, Pang L, Chen Z, Liu Z. Development and characterization of glimepiride nanocrystal formulation and evaluation of its pharmacokinetic in rats. Drug Deliv 2013; 20(1): 25-33.
[http://dx.doi.org/10.3109/10717544.2012.742939] [PMID: 23311650]
[116]
Kim JY, Lee H, Oh KS, et al. Multilayer nanoparticles for sustained delivery of exenatide to treat type 2 diabetes mellitus. Biomaterials 2013; 34(33): 8444-9.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.040] [PMID: 23895999]
[117]
Chowdary A, Lakshmi N, Suravarapu R, Meddala S. Formulation and characterization of pioglitazone hydrochloride nanoparticles. Chem, Mater Sci 2015.
[118]
Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory land-scape. Drug Deliv 2016; 23: 3319-29.
[119]
Souto EB, Souto SB, Campos JR, Severino P, Pashirova TN, Zakharova LY, et al. Nanoparticle delivery systems in the treatment of diabe-tes complications. Molecules 2019; 24(23): 4209.
[120]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[121]
Mishra V, Nayak P, Sharma M, Albutti A, Alwashmi ASS, Aljasir MA, et al. Emerging treatment strategies for diabetes mellitus and associated complications: An update. Pharmaceutics 2021; 13.
[122]
Ag Seleci D, Seleci M, Walter JG, Stahl F, Scheper T. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications. J Nanomater 2016; 2016: 13.
[123]
Kesharwani P, Gorain B, Low SY, Tan SA, Ling ECS, Lim YK, et al. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res Clin Pract 2018; 136: 52-77.
[124]
Poudyal A, Subba B, Bhattarai A, et al. Comprehensive review on phytosomes: A novel drug delivery system of phytoconstituents. Int J Life Sci Pharma Res 2022; 143-61.
[http://dx.doi.org/10.22376/ijpbs/lpr.2022.12.5.p143-161]
[125]
Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, Mehrabani M, Piazza S, et al. Phytosomes as innovative delivery systems for phy-tochemicals: A comprehensive review of literature. J Nanomed 2021; 16: 6983-7022.
[http://dx.doi.org/10.2147/IJN.S318416]
[126]
Khan J, Md Ashif Ikbal A, Folorunsho Ajayi A. Management of diabetes mellitus by nano based drug delivery with special reference to phytosomes pharmaceutical and biosciences journal. A peer review journal. Pharmaceut Biosci J 2022; 9(6): 11-28.
[127]
Puranik N, Kammar KF, Devi S. Anti-diabetic activity of Tinospora cordifolia (Willd.) in streptozotocin diabetic rats; does it act like sul-fonylureas? Turk J Med Sci 2010; 40(2): 265-70.
[http://dx.doi.org/10.3906/sag-0802-40]
[128]
Jain DK. Phytosome: A novel drug delivery system for herbal medicine. Novel Drug Deliv Sys 2017; 2(4): 224-8.
[129]
Zhang L, Ding L, Tang C, Li Y, Yang L. Liraglutide-loaded multivesicular liposome as a sustained-delivery reduces blood glucose in SD rats with diabetes. Drug Deliv 2016; 23(9): 3358-63.
[http://dx.doi.org/10.1080/10717544.2016.1180723] [PMID: 27099000]
[130]
Parthiban S. Development and evaluation of mucoadhesive liposomes of repaglinide for oral controlled delivery system. World J Pharm Res 2017; 706-18.
[http://dx.doi.org/10.20959/wjpr20174-8252]
[131]
Chandran Mp S, Vp P. Formulation and evaluation of glimepiride-loaded liposomes by ethanol-injection method. Asian J Pharm Clin Res 2016; 9(4): 192-5.
[132]
Manconi M, Nácher A, Merino V, et al. Improving oral bioavailability and pharmacokinetics of liposomal metformin by glycerol-phosphate-chitosan microcomplexation. AAPS PharmSciTech 2013; 14(2): 485-96.
[http://dx.doi.org/10.1208/s12249-013-9926-4] [PMID: 23471836]
[133]
Badran MM, Alouny NN, Aldosari BN, Alhusaini AM, Abou El Ela AES. Transdermal glipizide delivery system based on chitosan-coated deformable liposomes: Development, ex vivo, and in vivo studies. Pharmaceutics 2022; 14(4): 826.
[http://dx.doi.org/10.3390/pharmaceutics14040826] [PMID: 35456660]
[134]
LakshmiK MR, Priya NL, Asuntha G. Formulation and evaluation of sitagliptin liposomes. World J Pharmaceut Sci 2022; 10(2): 191-207.
[http://dx.doi.org/10.54037/WJPS.2022.100205]
[135]
Hanato J, Kuriyama K, Mizumoto T, et al. Liposomal formulations of glucagon-like peptide-1: Improved bioavailability and anti-diabetic effect. Int J Pharm 2009; 382(1-2): 111-6.
[http://dx.doi.org/10.1016/j.ijpharm.2009.08.013] [PMID: 19698772]
[136]
Chandran MPS, Pandey VP. Formulation and evaluation of gliclazide loaded liposomes. Pharm Lett 2016; 8(11): 60-8.
[137]
Mohsen AM, AbouSamra MM, ElShebiney SA. Enhanced oral bioavailability and sustained delivery of glimepiride via niosomal encapsu-lation: In-vitro characterization and in-vivo evaluation. Drug Dev Ind Pharm 2017; 43(8): 1254-64.
[http://dx.doi.org/10.1080/03639045.2017.1310224] [PMID: 28330377]
[138]
Hasan AA, Madkor H, Wageh S. Formulation and evaluation of metformin hydrochloride-loaded niosomes as controlled release drug delivery system. Drug Deliv 2013; 20(3-4): 120-6.
[http://dx.doi.org/10.3109/10717544.2013.779332] [PMID: 23651102]
[139]
Haider MF, Kanoujia J, Tripathi CB, Arya M, Kaithwas G, Saraf SA. Pioglitazone loaded vesicular carriers for anti-diabetic activity: Devel-opment and optimization as per central composite design. J Pharm Sci Pharmacol 2015; 2(1): 11-20.
[http://dx.doi.org/10.1166/jpsp.2015.1042]
[140]
Rathi JC, Tamizharasi S, Dubey A, Rathi V. Development and characterization of niosomal drug delivery of gliclazide. J Young Pharm 2009; 1(3): 205.
[http://dx.doi.org/10.4103/0975-1483.57065]
[141]
Sankhyan A, Pawar PK. Metformin loaded non-ionic surfactant vesicles: Optimization of formulation, effect of process variables and characterization. Daru 2013; 21(1): 7.
[142]
Kim S, Imm JY. The effect of chrysin-loaded phytosomes on insulin resistance and blood sugar control in type 2 diabetic db/db mice. Molecules 2020; 25(23): 5503.
[http://dx.doi.org/10.3390/molecules25235503] [PMID: 33255372]
[143]
Laxman Thakur A, Patil KS. Formulation of alkaloid loaded phytosomes from tinospora cordifolia and ex-vivo intestinal permeability study. Indian J Pharmaceut Edu Res 2021; 55(2): 474-82.
[http://dx.doi.org/10.5530/ijper.55.2.85]
[144]
Amjadi S, Shahnaz F, Shokouhi B, et al. Nanophytosomes for enhancement of rutin efficacy in oral administration for diabetes treatment in streptozotocin-induced diabetic rats. Int J Pharm 2021; 610: 121208.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121208] [PMID: 34673162]
[145]
Habbu P, Madagundi S, Shastry R, Vanakudri R, Kulkarni V. Preparation and evaluation of antidiabetic activity of allium cepa-phospholipid complex (Phytosome) in streptozotocin induced diabetic rats. RGUHS J Pharm Sci 2016; 5(4): 132-41.
[http://dx.doi.org/10.5530/rjps.2015.4.3]
[146]
Rani A, Kumar S, Khar RK. Murraya koenigii extract loaded phytosomes prepared using antisolvent precipitation technique for improved antidiabetic and hypolidemic activity. Indian J Pharmaceut Edu Res 2022; 56(2s): s326-38.
[http://dx.doi.org/10.5530/ijper.56.2s.103]
[147]
Kumar Manna Professor P. Evaluation of anti-diabetic activity of Syzygium cumini extract and its phytosome formulation against strepto-zotocin-induced diabetic rats. Pharma Innov J 2018; 7(6): 603-8.
[148]
Altiti AJ, Khleifat KM, Alqaraleh M, Shraim AS, Qinna N, Al-Tawarah NM, et al. Protective role of combined crataegus aronia ethanol extract and phytosomes against hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rat. Biointerface Res Appl Chem 2023; 13(3)
[149]
Singh A, Mishra R, Ray A, Tripathy S, Prasad S, Yadav R. Development and evaluation of anti diabetic activity of phytosomes for better therapeutic effect of extract. J Pharm Negat Results 2023; 14(3): 1-14.
[150]
Yu F, Li Y, Chen Q, et al. Monodisperse microparticles loaded with the self-assembled berberine-phospholipid complex-based phyto-somes for improving oral bioavailability and enhancing hypoglycemic efficiency. Eur J Pharm Biopharm 2016; 103: 136-48.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.019] [PMID: 27020531]
[151]
Fathima SA, Begum S, Fatima SS. Transdermal drug delivery system. Int J Pharmaceut Clin Res 2017; 9(1)
[152]
Perumal O, Murthy SN, Kalia YN. Turning theory into practice: The development of modern transdermal drug delivery systems and future trends. Skin Pharmacol Physiol 2013; 26(4-6): 331-42.
[http://dx.doi.org/10.1159/000351815] [PMID: 23921120]
[153]
Ng LC, Gupta M. Transdermal drug delivery systems in diabetes management: A review. Asian J Pharmaceut Sci 2020; 15: 13-25.
[http://dx.doi.org/10.1016/j.ajps.2019.04.006]
[154]
Loona S, Gupta NB, Khan MU. Preparation and characterization of metformin proniosomal gel for treatment of diabetes mellitus. Int J Pharm Sci Rev Res 2012; 15(2): 108-14.
[155]
Somasundaram J. Formulation and evaluation of dual transdermal patch containing metformin hydrochloride-metoprolol tartarate. Int J Adv Pharmaceut 2014; 4(3): 160-4.
[156]
Ahmed OAA, Afouna MI, El-Say KM, Abdel-Naim AB, Khedr A, Banjar ZM. Optimization of self-nanoemulsifying systems for the en-hancement of in vivo hypoglycemic efficacy of glimepiride transdermal patches. Expert Opin Drug Deliv 2014; 11(7): 1005-13.
[http://dx.doi.org/10.1517/17425247.2014.906402] [PMID: 24702435]
[157]
Bhulli N, Sharma A. Preparation of novel vesicular carrier ethosomes with glimepiride and their investigation of permeability. Int J Thera-peut Appl 2012; 2: 1-10.
[158]
Vijayan V, Jayachandran E, Anburaj J, Rao DS, Jayaraj Kumar K, Reddy KC. Transdermal delivery of repaglinide from solid lipid nano-particles in diabetic rats: In vitro and in vivo studies. J Pharm Sci Res 2011; 3(3): 1077-81.
[159]
Vijayan V, Reddy KR, Sakthivel S, Swetha C. Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2013; 111: 150-5.
[http://dx.doi.org/10.1016/j.colsurfb.2013.05.020] [PMID: 23792547]
[160]
Prasad PS, Imam SS, Aqil M, Sultana Y, Ali A. QbD-based carbopol transgel formulation: Characterization, pharmacokinetic assessment and therapeutic efficacy in diabetes. Drug Deliv 2016; 23(3): 1047-56.
[http://dx.doi.org/10.3109/10717544.2014.936536] [PMID: 25033041]
[161]
Solanke PN, Ambekar AW, Chemate S. Formulation, development and characterization of transdermal drug delivery system for antidiabetic drug. Asian J Pharm Pharmacol 2018; 4(5): 668-72.
[http://dx.doi.org/10.31024/ajpp.2018.4.5.18]