[1]
Demir S, Nawroth PP, Herzig S, Ekim Üstünel B. Emerging targets in type 2 diabetes and diabetic complications. Adv Sci 2021; 8(18): e2100275.
[4]
Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006; 444: 840-6.
[5]
Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020; 21: 1-34.
[6]
Defronzo RA. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009; 773-95.
[7]
Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 diabetes mellitus: A review of multi-target drugs. Molecules 2020; 25(8): 1987.
[11]
Alotaibi A, Perry L, Gholizadeh L, Al-Ganmi A. Incidence and prevalence rates of diabetes mellitus in Saudi Arabia: An overview. J Epidemiol Glob Health 2017; 7: 211-8.
[20]
Sharma U, Verma P, Jain NK. A review on novel vesicular drug delivery system: Transfersomes. Int J Pharma Life Sci 2020; 11(7): 6812-24.
[21]
Ayub A, Wettig S. An overview of nanotechnologies for drug delivery to the brain. Pharmaceutics 2022; 14(2): 224.
[22]
Padhi S, Nayak AK, Behera A. Type II diabetes mellitus: A review on recent drug based therapeutics. Biomed Pharmacother 2020; 131: 110708.
[23]
Seino S, Sugawara K, Yokoi N, Takahashi H. β-Cell signalling and insulin secretagogues: A path for improved diabetes therapy. Diabetes Obes Metab 2017; 19(S1): 22-9.
[25]
Sola D, Rossi L, Schianca GPC, Maffioli P, Bigliocca M, Mella R, et al. Sulfonylureas and their use in clinical practice. Arch Med Sci 2015; 11: 840.
[26]
di Magno L, di Pastena F, Bordone R, Coni S, Canettieri G. The mechanism of action of biguanides: New answers to a complex question. Cancers 2022; 14(13): 3220.
[27]
He L, Wondisford FE. Metformin action: Concentrations matter. Cell Metab 2015; 21: 159-62.
[29]
Wang GS, Hoyte C. Review of biguanide (Metformin) toxicity. J Intensive Care Med 2019; 34: 863-76.
[30]
Bailey CJ. Metformin: Historical overview. Diabetologia 2017; 60: 1566-76.
[31]
Blahova J, Martiniakova M, Babikova M, Kovacova V, Mondockova V, Omelka R. Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus. Pharmaceuticals 2021; 14(8): 806.
[32]
Alemán-González-Duhart D, Tamay-Cach F, Álvarez-Almazán S, Mendieta-Wejebe JE. Current advances in the biochemical and physio-logical aspects of the treatment of type 2 diabetes mellitus with thiazolidinediones. PPAR Research Hindawi Limited 2016; 2016: 7614270.
[33]
Lebovitz HE. Thiazolidinediones: The forgotten diabetes medications. Curr Diab Rep 2019; 19(21): 151.
[34]
Davidson MA, Mattison DR, Azoulay L, Krewski D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: Past, present and future. Crit Rev Toxicol 2018; 48: 52-108.
[38]
Joshi SR, Standl E, Tong N, Shah P, Kalra S, Rathod R. Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: An evidence-based review. Expert Opin Pharmacother 2015; 16: 1959-81.
[41]
Abbas G, al Harrasi A, Hussain H, Hamaed A, Supuran CT. The management of diabetes mellitus-imperative role of natural products against dipeptidyl peptidase-4, α-glucosidase and sodium-dependent glucose co-transporter 2 (SGLT2). Bioorg Chem 2019; 86: 305-15.
[42]
Dhameja M, Gupta P. Synthetic heterocyclic candidates as promising α-glucosidase inhibitors: An overview. Eur J Med Chem 2019; 176: 343-77.
[43]
Sun EW, de Fontgalland D, Rabbitt P, Hollington P, Sposato L, Due SL, et al. Mechanisms controlling glucose-induced GLP-1 secretion in human small intestine. Diabetes 2017; 66(8): 2144-9.
[46]
Robertson C. Incretin-related therapies in type 2 diabetes: A practical overview. Diabetes Spectr 2011; 24(1): 26-35.
[48]
Yu M, Benjamin MM, Srinivasan S, Morin EE, Shishatskaya EI, Schwendeman SP, et al. Battle of GLP-1 delivery technologies. Adv Drug Deliv Rev 2018; 130: 113-30.
[50]
Sesti G, Avogaro A, Belcastro S, Bonora BM, Croci M, Daniele G, et al. Ten years of experience with DPP-4 inhibitors for the treatment of type 2 diabetes mellitus. Acta Diabetol 2019; 56: 605-17.
[51]
Gallwitz B. Clinical use of DPP-4 inhibitors. Front Endocrinol 2019; 10: 389.
[52]
Deacon CF. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front Endocrinol 2019; 10: 80.
[53]
Holst JJ. From the incretin concept and the discovery of GLP-1 to today’s diabetes therapy. Front Endocrinol 2019; 10: 260.
[56]
Schmitz O, Brock B, Rungby J. Amylin agonists: A novel approach in the treatment of diabetes. Diabetes 2004; 53(S3): S233-8.
[57]
Shubrook JH, Bokaie BB, Adkins SE. Empagliflozin in the treatment of type 2 diabetes: Evidence to date. Drug Des Devel Ther 2015; 9: 5793-803.
[59]
Fioretto P, Giaccari A, Sesti G. Efficacy and safety of dapagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in diabetes melli-tus. Cardiovasc Diabetol 2015; 14: 142.
[60]
Moses RG, Colagiuri S, Pollock C. SGLT2 inhibitors: New medicines for addressing unmet therapeutic needs in type 2 diabetes. Australa-sian Med J 2014; 7: 405-15.
[61]
Desouza CV, Gupta N, Patel A. Cardiometabolic effects of a new class of antidiabetic agents. Clin Ther 2015; 37: 1178-94.
[63]
Tentolouris A, Vlachakis P, Tzeravini E, Eleftheriadou I, Tentolouris N. SGLT2 inhibitors: A review of their antidiabetic and cardiopro-tective effects. Int J Environ Res Public Health 2019; 16(16): 2965.
[67]
Ni X, Zhang L, Feng X, Tang L. New hypoglycemic drugs: Combination drugs and targets discovery. Front Pharmacol 2022; 13: 877797.
[68]
Smits MM, van Raalte DH. Safety of Semaglutide. Front Endocrinol 2021; 12: 645563.
[71]
Holst JJ, Madsbad S. Semaglutide seems to be more effective the other GLP-1Ras. Ann Transl Med 2017; 5(24): 505.
[74]
Buckley ST, Baekdal TA, Vegge A, Maarbjerg SJ, Pyke C, Ahnfelt-Rønne J, et al. Transcellular stomach absorption of a derivatized gluca-gon-like peptide-1 receptor agonist. Sci Transl Med 2018; 10(467): eaar7047.
[75]
Wang L. Designing a dual GLP-1R/GIPR agonist from tirzepatide: Comparing residues between tirzepatide, GLP-1, and GIP. Drug Des Devel Ther 2022; 16: 1547-59.
[77]
Tang Y, Zhang L, Zeng Y, Wang X, Zhang M. Efficacy and safety of tirzepatide in patients with type 2 diabetes: A systematic review and meta-analysis. Front Pharmacol 2022; 13: 1016639.
[78]
Chavda VP, Ajabiya J, Teli D, Bojarska J, Apostolopoulos V. Tirzepatide, a new era of dual-targeted treatment for diabetes and obesity: A mini-review. Molecules 2022; 27(13): 4315.
[81]
Liu L, Shi FH, Xu H, Wu Y, Gu ZC, Lin HW. Efficacy and safety of ertugliflozin in type 2 diabetes: A systematic review and meta-analysis. Front Pharmacol 2022; 12: 752440.
[83]
Fediuk DJ, Nucci G, Dawra VK, Cutler DL, Amin NB, Terra SG, et al. Overview of the clinical pharmacology of ertugliflozin, a novel sodium-glucose cotransporter 2 (SGLT2) inhibitor. Clin Pharmacokinet 2020; 59: 949-65.
[84]
Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the european association for the study of diabetes (EASD). Diabetes Care 2018; 41: 2669-701.
[89]
Zhao R, Lu Z, Yang J, Zhang L, Li Y, Zhang X. Drug delivery system in the treatment of diabetes mellitus. Front Bioeng Biotechnol 2020; 8: 880.
[90]
Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP. Novel drug delivery system: An immense hope for diabetics. Drug Deliv 2016; 23: 2371-90.
[91]
Bale S, Khurana A, Singh M. Overview on therapeutic applications of microparticulate drug delivery systems. Crit Rev Ther Drug Carrier Syst 2016; 33(4): 309-61.
[92]
Mahale MM, Saudagar RB. Microsphere: A review. J Drug Deliv Ther 2019; 9: 854-6.
[93]
Lengyel M, Kállai-Szabó N, Antal V, Laki AJ, Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci Pharm 2019; 87(3): 20.
[94]
Wong CY, Al-Salami H, Dass CR. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. Int J Pharm 2018; 537: 223-44.
[97]
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16: 71.
[99]
Nie X, Chen Z, Pang L, Wang L, Jiang H, Chen Y, et al. Oral nano drug delivery systems for the treatment of type 2 diabetes mellitus: An available administration strategy for antidiabetic phytocompounds. Int J Nanomedicine 2020; 15: 10215-40.
[100]
Lin CH, Chen CH, Lin ZC, Fang JY. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 2017; 25: 219-34.
[101]
Uppal S, Italiya KS, Chitkara D, Mittal A. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: An emerg-ing paradigm for effective therapy. Acta Biomater 2018; 81: 20-42.
[108]
Kumar Mankala S, Kumar NN, Raparla R, Kumar SM. Development and evaluation of mucoadhesive microspheres of an anti-diabetic drug with natural polymer. Int J Pharmaceut Res 2011; 3(4): 53-8.
[117]
Chowdary A, Lakshmi N, Suravarapu R, Meddala S. Formulation and characterization of pioglitazone hydrochloride nanoparticles. Chem, Mater Sci 2015.
[118]
Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory land-scape. Drug Deliv 2016; 23: 3319-29.
[119]
Souto EB, Souto SB, Campos JR, Severino P, Pashirova TN, Zakharova LY, et al. Nanoparticle delivery systems in the treatment of diabe-tes complications. Molecules 2019; 24(23): 4209.
[121]
Mishra V, Nayak P, Sharma M, Albutti A, Alwashmi ASS, Aljasir MA, et al. Emerging treatment strategies for diabetes mellitus and associated complications: An update. Pharmaceutics 2021; 13.
[122]
Ag Seleci D, Seleci M, Walter JG, Stahl F, Scheper T. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications. J Nanomater 2016; 2016: 13.
[123]
Kesharwani P, Gorain B, Low SY, Tan SA, Ling ECS, Lim YK, et al. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res Clin Pract 2018; 136: 52-77.
[126]
Khan J, Md Ashif Ikbal A, Folorunsho Ajayi A. Management of diabetes mellitus by nano based drug delivery with special reference to phytosomes pharmaceutical and biosciences journal. A peer review journal. Pharmaceut Biosci J 2022; 9(6): 11-28.
[128]
Jain DK. Phytosome: A novel drug delivery system for herbal medicine. Novel Drug Deliv Sys 2017; 2(4): 224-8.
[131]
Chandran Mp S, Vp P. Formulation and evaluation of glimepiride-loaded liposomes by ethanol-injection method. Asian J Pharm Clin Res 2016; 9(4): 192-5.
[136]
Chandran MPS, Pandey VP. Formulation and evaluation of gliclazide loaded liposomes. Pharm Lett 2016; 8(11): 60-8.
[141]
Sankhyan A, Pawar PK. Metformin loaded non-ionic surfactant vesicles: Optimization of formulation, effect of process variables and characterization. Daru 2013; 21(1): 7.
[147]
Kumar Manna Professor P. Evaluation of anti-diabetic activity of Syzygium cumini extract and its phytosome formulation against strepto-zotocin-induced diabetic rats. Pharma Innov J 2018; 7(6): 603-8.
[148]
Altiti AJ, Khleifat KM, Alqaraleh M, Shraim AS, Qinna N, Al-Tawarah NM, et al. Protective role of combined crataegus aronia ethanol extract and phytosomes against hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rat. Biointerface Res Appl Chem 2023; 13(3)
[149]
Singh A, Mishra R, Ray A, Tripathy S, Prasad S, Yadav R. Development and evaluation of anti diabetic activity of phytosomes for better therapeutic effect of extract. J Pharm Negat Results 2023; 14(3): 1-14.
[151]
Fathima SA, Begum S, Fatima SS. Transdermal drug delivery system. Int J Pharmaceut Clin Res 2017; 9(1)
[154]
Loona S, Gupta NB, Khan MU. Preparation and characterization of metformin proniosomal gel for treatment of diabetes mellitus. Int J Pharm Sci Rev Res 2012; 15(2): 108-14.
[155]
Somasundaram J. Formulation and evaluation of dual transdermal patch containing metformin hydrochloride-metoprolol tartarate. Int J Adv Pharmaceut 2014; 4(3): 160-4.
[157]
Bhulli N, Sharma A. Preparation of novel vesicular carrier ethosomes with glimepiride and their investigation of permeability. Int J Thera-peut Appl 2012; 2: 1-10.
[158]
Vijayan V, Jayachandran E, Anburaj J, Rao DS, Jayaraj Kumar K, Reddy KC. Transdermal delivery of repaglinide from solid lipid nano-particles in diabetic rats: In vitro and in vivo studies. J Pharm Sci Res 2011; 3(3): 1077-81.