Comparison of ZIC-HILIC Columns for the Simultaneous Analysis of Antiviral Drugs in Dosage Forms by Hydrophilic Interaction Liquid Chromatography

Page: [652 - 661] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Antiviral drugs are vital since many viruses can produce fatal infections, as we have recently seen with the COVID-19 pandemic. Antiviral drugs can battle viruses at multiple stages of their life cycles, including neuraminidase, nucleic acid synthesis, protease, and virion fusion or entry.

Objective: Antiviral drugs have poor retention in reversed-phase liquid chromatography, which makes it difficult to analyze a mixture of antiviral medications using high-performance liquid chromatography. Using zwitterionic hydrophilic interaction liquid chromatography (ZICHILIC), the paper highlights the simultaneous quantification of three antiviral drugs as active constituents in pharmaceutical formulations. Moreover, the influence of the length of the spacer between the two charges in two stationary phases on the retention behavior of antiviral drugs has been discussed.

Methods: Two homemade stationary phases (ZIC1-HILIC and ZIC5-HILIC) were utilized for the qualitative and quantitative analysis of three antiviral drugs, and UV was used as the detector. Several chromatographic conditions were examined, such as the organic modifier concentration, buffer concentration, and pH value.

Results: After optimizing the parameters, the devised method was applied to analyse three antiviral medications quantitatively. The initial results demonstrated the current procedure for separating and determining these three antiviral drugs to be sensitive, robust, and effective. Consequently, the present method has shown excellent repeatability, a broad linear range (0.1- 16.5 μgml-1), and excellent sensitivity (LOD 0.04-0.072 μgml-1). The RSD value of the method was less than 1.

Conclusion: A mixed mode of hydrophilic and ion exchange interactions was the predominant mode of antiviral medications with two ZIC-HILIC stationary phases. The ZIC5-HILIC stationary phase had a lower detection and limit of quantitation for three antiviral drugs and a prolonged retention time compared to the ZIC1-HILIC stationary phase with a shorter chain length.

Graphical Abstract

[1]
von Itzstein, M. The war against influenza: Discovery and development of sialidase inhibitors. Nat. Rev. Drug Discov., 2007, 6(12), 967-974.
[http://dx.doi.org/10.1038/nrd2400] [PMID: 18049471]
[2]
He, G.; Qiao, J.; Dong, C.; He, C.; Zhao, L.; Tian, Y. Amantadine-resistance among H5N1 avian influenza viruses isolated in Northern China. Antiviral Res., 2008, 77(1), 72-76.
[http://dx.doi.org/10.1016/j.antiviral.2007.08.007] [PMID: 17897729]
[3]
Souza, T.M.L.; Mesquita, M.; Resende, P.; Machado, V.; Gregianini, T.S.; Fernandes, S.B.; Oliveira, I.C.D.; Rosa, M.C.D.; Marinelli, R.; de Azeredo-Lima, C.H.; Motta, F.C.; Aguiar-Oliveira, M.L.; Siqueira, M.M. Antiviral resistance surveillance for influenza A virus in Brazil: investigation on 2009 pandemic influenza A (H1N1) resistance to oseltamivir. Diagn. Microbiol. Infect. Dis., 2011, 71(1), 98-99.
[http://dx.doi.org/10.1016/j.diagmicrobio.2011.05.006] [PMID: 21784597]
[4]
Zaraket, H.; Kondo, H.; Tabet, C.; Hanna-Wakim, R.; Suzuki, Y.; Dbaibo, G.S.; Saito, R.; Suzuki, H. Genetic diversity and antiviral drug resistance of pandemic H1N1 2009 in Lebanon. J. Clin. Virol., 2011, 51(3), 170-174.
[http://dx.doi.org/10.1016/j.jcv.2011.04.001] [PMID: 21565547]
[5]
Pawlotsky, J.M. Treatment failure and resistance with direct-acting antiviral drugs against hepatitis C virus. Hepatology, 2011, 53(5), 1742-1751.
[http://dx.doi.org/10.1002/hep.24262] [PMID: 21374691]
[6]
Ilyushina, N.A.; Govorkova, E.A.; Webster, R.G. Detection of amantadine-resistant variants among avian influenza viruses isolated in North America and Asia. Virology, 2005, 341(1), 102-106.
[http://dx.doi.org/10.1016/j.virol.2005.07.003] [PMID: 16081121]
[7]
Weinstock, D.M.; Zuccotti, G. Adamantane resistance in influenza A. JAMA, 2006, 295(8), 934-936.
[http://dx.doi.org/10.1001/jama.295.8.jed60009] [PMID: 16493107]
[8]
AL-Ayash A.S.; Khammas, Z.A.; Jasim, F. Determination of desferrioxamine in the drug desferal™ as DFOM-Au (III) complex by using indirect electrothermal atomic absorption spectrometry and other techniques. Baghdad Sci. J., 2008, 5(3), 409-415.
[9]
Ghosh, G.C.; Nakada, N.; Yamashita, N.; Tanaka, H. Oseltamivir carboxylate, the active metabolite of oseltamivir phosphate (Tamiflu), detected in sewage discharge and river water in Japan. Environ. Health Perspect., 2010, 118(1), 103-107.
[http://dx.doi.org/10.1289/ehp.0900930] [PMID: 20056566]
[10]
AL-Ayash A.S.; Jasim, F. Spectrophotometric micro determination of drug promethazine hydrochloride in some pharmaceutical by chelating with Rhodium. Baghdad Sci. J., 2008, 5(4), 639-645.
[11]
Al-Tawfiq, J.A.; Rabaan, A.A.; Hinedi, K. Influenza is more common than Middle East Respiratory Syndrome Coronavirus (MERS-CoV) among hospitalized adult Saudi patients. Travel Med. Infect. Dis., 2017, 20, 56-60.
[http://dx.doi.org/10.1016/j.tmaid.2017.10.004] [PMID: 29031867]
[12]
Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed asymptomatic carrier transmission of COVID-19. JAMA, 2020, 323(14), 1406-1407.
[http://dx.doi.org/10.1001/jama.2020.2565] [PMID: 32083643]
[13]
Chiba, S. Effect of early oseltamivir on outpatients without hypoxia with suspected COVID-19. Wien. Klin. Wochenschr., 2021, 133(7-8), 292-297.
[http://dx.doi.org/10.1007/s00508-020-01780-0] [PMID: 33296027]
[14]
Shakir, I.M.A.; Khudhair, B.A. A novel online coupling of ion selective electrode with the flow injection system for the determination of vitamin B1. Baghdad Sci. J., 2016, 13(2.2NCC), 0458.
[http://dx.doi.org/10.21123/bsj.2016.13.2.2NCC.0458]
[15]
Prud’homme, I.T.; Zoueva, O.; Weber, J.M. Amantadine susceptibility in influenza A virus isolates: Determination methods and lack of resistance in a Canadian sample, 1991–1994. Clin. Diagn. Virol., 1997, 8(1), 41-51.
[http://dx.doi.org/10.1016/S0928-0197(97)00011-1] [PMID: 9248657]
[16]
Xu, W.; Wei, N.; Xu, Y.; Hu, S. Does amantadine induce acute psychosis? A case report and literature review. Neuropsychiatr. Dis. Treat., 2016, 12, 781-783.
[http://dx.doi.org/10.2147/NDT.S101569] [PMID: 27103808]
[17]
Journal, B.S. Spectrophotometric determination of epinephrine in pharmaceutical preparations using praseodymium as mediating metals. Baghdad Sci. J., 2011, 8(1), 110-117.
[http://dx.doi.org/10.21123/bsj.8.1.110-117]
[18]
Romrell, J.; Fernandez, H.H.; Okun, M.S. Rationale for current therapies in Parkinson’s disease. Expert Opin. Pharmacother., 2003, 4(10), 1747-1761.
[http://dx.doi.org/10.1517/14656566.4.10.1747] [PMID: 14521485]
[19]
Krupp, L.B. Fatigue in multiple sclerosis: Definition, pathophysiology and treatment. CNS Drugs, 2003, 17(4), 225-234.
[http://dx.doi.org/10.2165/00023210-200317040-00002] [PMID: 12665396]
[20]
Cyranoski, D. China’s chicken farmers under fire for antiviral abuse. Nature, 2005, 435(7045), 1009-1010.
[http://dx.doi.org/10.1038/4351009a] [PMID: 15973368]
[21]
Giammona, G.; Puglisi, G.; Cavallaro, G.; Spadaro, A.; Pitarresi, G. Chemical stability and bioavailability of acyclovir coupled to αβ-poly(N-2-hydroxyethyl)-dl-aspartamide. J. Control. Release, 1995, 33(2), 261-271.
[http://dx.doi.org/10.1016/0168-3659(94)00091-8]
[22]
Dejalón, E.; Blancopríeto, M.; Ygartua, P.; Santoyo, S. Increased efficacy of acyclovir-loaded microparticles against herpes simplex virus type 1 in cell culture. Eur. J. Pharm. Biopharm., 2003, 56(2), 183-187.
[http://dx.doi.org/10.1016/S0939-6411(03)00068-7] [PMID: 12957631]
[23]
Alpert, A.J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J. Chromatogr. A, 1990, 499, 177-196.
[http://dx.doi.org/10.1016/S0021-9673(00)96972-3] [PMID: 2324207]
[24]
Guo, Y.; Gaiki, S. Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography. J. Chromatogr. A, 2005, 1074(1-2), 71-80.
[http://dx.doi.org/10.1016/j.chroma.2005.03.058] [PMID: 15941041]
[25]
McCalley, D.V. Understanding and manipulating the separation in hydrophilic interaction liquid chromatography. J. Chromatogr. A, 2017, 1523, 49-71.
[http://dx.doi.org/10.1016/j.chroma.2017.06.026] [PMID: 28668366]
[26]
Liu, Z.; Yang, F.; Yao, M.; Lin, Y.; Su, Z. Simultaneous determination of antiviral drugs in chicken tissues by ultra high performance liquid chromatography with tandem mass spectrometry. J. Sep. Sci., 2015, 38(10), 1784-1793.
[http://dx.doi.org/10.1002/jssc.201401461] [PMID: 25781863]
[27]
Mu, P.; Xu, N.; Chai, T.; Jia, Q.; Yin, Z.; Yang, S.; Qian, Y.; Qiu, J. Simultaneous determination of 14 antiviral drugs and relevant metabolites in chicken muscle by UPLC–MS/MS after QuEChERS preparation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1023-1024, 17-23.
[http://dx.doi.org/10.1016/j.jchromb.2016.04.036] [PMID: 27174693]
[28]
Zhang, Q.; Xiao, C.; Wang, W.; Qian, M.; Xu, J.; Yang, H. Chromatography column comparison and rapid pretreatment for the simultaneous analysis of amantadine, rimantadine, acyclovir, ribavirin, and moroxydine in chicken muscle by ultra high performance liquid chromatography and tandem mass spectrometry. J. Sep. Sci., 2016, 39(20), 3998-4010.
[http://dx.doi.org/10.1002/jssc.201600490] [PMID: 27568878]
[29]
Douillet, C.; Moloney, M.; Di Rocco, M.; Elliott, C.; Danaher, M. Development and validation of a quantitative method for 15 antiviral drugs in poultry muscle using liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A, 2022, 1665, 462793.
[http://dx.doi.org/10.1016/j.chroma.2021.462793] [PMID: 35030475]
[30]
Chan, D.; Tarbin, J.; Sharman, M.; Carson, M.; Smith, M.; Smith, S. Screening method for the analysis of antiviral drugs in poultry tissues using zwitterionic hydrophilic interaction liquid chromatography/tandem mass spectrometry. Anal. Chim. Acta, 2011, 700(1-2), 194-200.
[http://dx.doi.org/10.1016/j.aca.2010.11.015] [PMID: 21742133]
[31]
Rasheed, A.S.; Waheb, A.A.; Hassan, M.J.M. Strategies for the separation and quantification of non-steroidal anti- inflammatory drugs using ZIC-HILIC-HPLC with UV detection. Curr. Pharm. Anal., 2022, 18(10), 949-958.
[http://dx.doi.org/10.2174/1573412918666220915090831]
[32]
Fahad, A.M.M.; Rasheed, A.S.; Ali, H.H. Hydrophilic interaction chromatography with sulfobetaine zwitterionic polymer-bonded stationary phases for the simultaneous quantification of atorvastatin and rosuvastatin pharmaceuticals in bulk and dosage forms. J. Chem. Soc. Pak., 2022, 44(4)
[33]
Fahad, A.M.M.; Rasheed, A.S.; Ali, H.H. Separation and determination of simvastatin on ZIC-HILIC stationary phases by hydrophilic interaction chromatography in pharmaceutical material products. Mater. Today Proc., 2022, 49(7), 2817-2821.
[http://dx.doi.org/10.1016/j.matpr.2021.09.535]
[34]
Fadhil, A.K.; Rasheed, A.S.; Hassan, M. Evaluation and application of ZIC-HILIC columns selectivity for four angiotensin II receptor blockers in pharmaceutical formulations. Curr. Pharm. Anal., 2022, 18(9), 901-908.
[http://dx.doi.org/10.2174/1573412918666220822144157]
[35]
Abdulla, F.H.; Rasheed, A.S. Hydrophilic interaction chromatography analysis of esculin in ointments with UV detection. Curr. Pharm. Anal., 2020, 16(7), 935-941.
[http://dx.doi.org/10.2174/1573412916666200316124837]
[36]
Abbas, M.A.; Rasheed, A.S. Retention characteristic of ranitidine hydrochloride on new polymer-based in zwitter ion chromatography-hydrophilic interaction chromatography stationary phases. J. Chem. Soc. Pak., 2018, 40(01), 89-94.
[37]
Seubert, A.; Saad Rasheed, A. Separation of Metal–Trifluoperazine Hydrochloride Complexes Using Zwitterionic Ion Chromatography (ZIC) Coupled Online with ICP-AES. Curr. Pharm. Anal., 2017, 13(4), 328-333.
[http://dx.doi.org/10.2174/1573412912666160720114147]
[38]
Raad, R.K.R.R.K.; Ashraf, A.S.R.M.J.M.H. Zwitterion chromatography-hydrophilic interaction chromatography for separation and quantitative of rutin and quercetin from herbs and bee products. J. Chem. Soc. Pak., 2021, 43(4), 484-492.
[http://dx.doi.org/10.52568/000591]
[39]
Rasheed, A.S.; Al-phalahy, B.A.; Seubert, A. Studies on behaviors of interactions between new polymer-based ZIC-HILIC stationary phases and carboxylic acids. J. Chromatogr. Sci., 2017, 55(1), 52-59.
[http://dx.doi.org/10.1093/chromsci/bmw149] [PMID: 27993864]
[40]
Rasheed, A.; Seubert, A. Influence of capacity on the retention and selectivity of inorganic ions separation over a homologous series of sulfobetaine based stationary phases in zwitterionic ion chromatography. Curr. Chromatogr., 2016, 3(1), 4-11.
[http://dx.doi.org/10.2174/2213240603666160115213954]
[41]
Raskop, M.; Seubert, A.; Grimm, A. Ion exchange material, ion exchange column, and production method. Patent-EP1842592A1, 2007.
[42]
ICH, I. In Q2 (R1): Validation of analytical procedures: text and methodology International Conference on Harmonization, Geneva, 2005.
[43]
Buszewski, B.; Noga, S. Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal. Bioanal. Chem., 2012, 402(1), 231-247.
[http://dx.doi.org/10.1007/s00216-011-5308-5] [PMID: 21879300]
[45]
Haddad, P.R.; Jackson, P.E.; Greenway, G. Ion chromatography:principles and applications; Elsevier: Elsevier, Amsterdam, ; , 1990, 46, pp. 133-164.
[46]
Ruta, J.; Boccard, J.; Cabooter, D.; Rudaz, S.; Desmet, G.; Veuthey, J.L.; Guillarme, D. Method development for pharmaceutics: Some solutions for tuning selectivity in reversed phase and hydrophilic interaction liquid chromatography. J. Pharm. Biomed. Anal., 2012, 63, 95-105.
[http://dx.doi.org/10.1016/j.jpba.2012.01.019] [PMID: 22341480]
[47]
Dejaegher, B.; Vander Heyden, Y. HILIC methods in pharmaceutical analysis. J. Sep. Sci., 2010, 33(6-7), 698-715.
[http://dx.doi.org/10.1002/jssc.200900742] [PMID: 20183826]
[48]
The Standard. USA: US Pharmacopeia 27 2019, USP 42- NF 37; United States Pharmacopeia 2019.