Novel Aptamers for the Reactivation of Latent HIV

Page: [279 - 289] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Introduction: A “Shock and Kill” strategy has been proposed to eradicate the HIV latent viral reservoir. Effective Latency Reversal Agents (LRA) are a key requirement for this strategy. The search for LRAs with a novel mechanism of action is ongoing. This is the first study to propose aptamers for the reactivation of HIV.

Objective: The purpose of this study was to identify an aptamer that potentially reactivates HIV via the NF-κβ pathway, specifically by binding to IkB and releasing NF-κβ.

Methods: Aptamer selection was performed at Aptus Biotech (www.aptusbiotech.es), using ikB human recombinant protein with His tag bound to Ni-NTA agarose resin using the SELEX procedure. Activation of NF-κβ was measured by SEAP Assay. HIV reactivation was measured in JLat cells using a BD FACS-Canto™ II flow cytometer. All flow cytometry data were analyzed using Kaluza analyzing software.

Results: Clones that had equivalent or greater activation than the positive control in the SEAP assay were regarded as potential reactivators of the NF-κβ pathway and were sequenced. The three ikb clones namely R6-1F, R6-2F, and R6-3F were found to potentially activate the NF-κβ pathway. Toxicity was determined by exposing lymphocytes to serial dilutions of the aptamers; the highest concentration of the aptamers that did not decrease viability by > 20% was used for the reactivation experiments. The three novel aptamers R6-1F, R6-2F, and R6-3F resulted in 4,07%, 6,72% and 3,42% HIV reactivation, respectively, while the untreated control showed minimal (<0.18%) fluorescence detection.

Conclusion: This study demonstrated the reactivation of latent HIV by aptamers that act via the NF-κβ pathway. Although the effect was modest and unlikely to be of clinical benefit, future studies are warranted to explore ways of enhancing reactivation.

Graphical Abstract

[1]
Unaids J. latest global and regional statistics on the status of the AIDS epidemic.
[2]
Finzi D, Hermankova M, Pierson T, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Sci 278(5341): 1295-300.1997;
[http://dx.doi.org/10.1126/science.278.5341.1295] [PMID: 9360927]
[3]
Archin NM, Liberty AL, Kashuba AD, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 2012; 487(7408): 482-5.
[http://dx.doi.org/10.1038/nature11286] [PMID: 22837004]
[4]
Hamlyn E, Ewings FM, Porter K, et al. Plasma HIV viral rebound following protocol-indicated cessation of ART commenced in primary and chronic HIV infection. PLoS One 2012; 7(8): e43754.
[http://dx.doi.org/10.1371/journal.pone.0043754] [PMID: 22952756]
[5]
Cihlar T, Fordyce M. Current status and prospects of HIV treatment. Curr Opin Virol 2016; 18: 50-6.
[http://dx.doi.org/10.1016/j.coviro.2016.03.004] [PMID: 27023283]
[6]
Sengupta S, Siliciano RF. Targeting the Latent Reservoir for HIV-1. Immunity 2018; 48(5): 872-95.
[http://dx.doi.org/10.1016/j.immuni.2018.04.030] [PMID: 29768175]
[7]
Lai S, Bartlett J, Lai H, et al. Long-term combination antiretroviral therapy is associated with the risk of coronary plaques in African Americans with HIV infection. AIDS Patient Care STDS 2009; 23(10): 815-24.
[http://dx.doi.org/10.1089/apc.2009.0048] [PMID: 19803679]
[8]
Eisele E, Siliciano RF. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 2012; 37(3): 377-88.
[http://dx.doi.org/10.1016/j.immuni.2012.08.010] [PMID: 22999944]
[9]
Divsalar DN, Simoben CV, Schonhofer C, et al. Novel Histone Deacetylase Inhibitors and HIV-1 Latency-Reversing Agents Identified by Large-Scale Virtual Screening. Front Pharmacol 2020; 11: 905.
[http://dx.doi.org/10.3389/fphar.2020.00905] [PMID: 32625097]
[10]
Jiang G, Dandekar S. Targeting NF-κB signaling with protein kinase C agonists as an emerging strategy for combating HIV latency. AIDS Res Hum Retroviruses 2015; 31(1): 4-12.
[http://dx.doi.org/10.1089/aid.2014.0199] [PMID: 25287643]
[11]
Banerjee C, Archin N, Michaels D, et al. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J Leukoc Biol 2012; 92(6): 1147-54.
[http://dx.doi.org/10.1189/jlb.0312165] [PMID: 22802445]
[12]
Jiang G, Mendes EA, Kaiser P, et al. Synergistic reactivation of latent hiv expression by ingenol-3-angelate, PEP005, targeted NF-kB signaling in combination with JQ1 induced p-TEFb activation. PLoS Pathog 2015; 11(7): e1005066.
[http://dx.doi.org/10.1371/journal.ppat.1005066] [PMID: 26225771]
[13]
Laird GM, Bullen CK, Rosenbloom DIS, et al. Ex vivo analysis identifies effective HIV-1 latency–reversing drug combinations. J Clin Invest 2015; 125(5): 1901-12.
[http://dx.doi.org/10.1172/JCI80142] [PMID: 25822022]
[14]
Rasmussen TA, Tolstrup M, Brinkmann CR, et al. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: A phase 1/2, single group, clinical trial. Lancet HIV 2014; 1(1): e13-21.
[http://dx.doi.org/10.1016/S2352-3018(14)70014-1] [PMID: 26423811]
[15]
Elliott JH, Wightman F, Solomon A, et al. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLoS Pathog 2014; 10(11): e1004473-.
[http://dx.doi.org/10.1371/journal.ppat.1004473] [PMID: 25393648]
[16]
Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med 2014; 20(4): 425-9.
[http://dx.doi.org/10.1038/nm.3489] [PMID: 24658076]
[17]
Spina CA, Anderson J, Archin NM, et al. An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLoS Pathog 2013; 9(12): e1003834.
[http://dx.doi.org/10.1371/journal.ppat.1003834] [PMID: 24385908]
[18]
Nabel G, Baltimore D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 1987; 326(6114): 711-3.
[http://dx.doi.org/10.1038/326711a0] [PMID: 3031512]
[19]
Perkins ND, Edwards NL, Duckett CS, Agranoff AB, Schmid RM, Nabel GJ. A cooperative interaction between NF-kappa B and Sp1 is required for HIV-1 enhancer activation. EMBO J 1993; 12(9): 3551-8.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb06029.x] [PMID: 8253080]
[20]
Berkhout B, Jeang KT. Functional roles for the TATA promoter and enhancers in basal and Tat-induced expression of the human immunodeficiency virus type 1 long terminal repeat. J Virol 1992; 66(1): 139-49.
[http://dx.doi.org/10.1128/jvi.66.1.139-149.1992] [PMID: 1727476]
[21]
Kinoshita S, Su L, Amano M, Timmerman LA, Kaneshima H, Nolan GP. The T cell activation factor NF-ATc positively regulates HIV-1 replication and gene expression in T cells. Immunity 1997; 6(3): 235-44.
[http://dx.doi.org/10.1016/S1074-7613(00)80326-X] [PMID: 9075924]
[22]
Zeichner SL, Hirka G, Andrews PW, Alwine JC. Differentiation-dependent human immunodeficiency virus long terminal repeat regulatory elements active in human teratocarcinoma cells. J Virol 1992; 66(4): 2268-73.
[http://dx.doi.org/10.1128/jvi.66.4.2268-2273.1992] [PMID: 1548760]
[23]
Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 2009; 1(4): a000034.
[http://dx.doi.org/10.1101/cshperspect.a000034] [PMID: 20066092]
[24]
Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 2009; 27(1): 693-733.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132641] [PMID: 19302050]
[25]
Wong LM, Jiang G. NF-κB sub-pathways and HIV cure: A revisit. EBioMedicine 2021; 63: 103159.
[http://dx.doi.org/10.1016/j.ebiom.2020.103159] [PMID: 33340992]
[26]
Gilmore TD. Introduction to NF-κB: Players, pathways, perspectives. Oncogene 2006; 25(51): 6680-4.
[http://dx.doi.org/10.1038/sj.onc.1209954] [PMID: 17072321]
[27]
Serumula W, Fernandez G, Gonzalez VM, Parboosing R. Anti-HIV Aptamers: Challenges and Prospects. Curr HIV Res 2022; 20(1): 7-19.
[http://dx.doi.org/10.2174/1570162X19666210908114825] [PMID: 34503417]
[28]
Jordan A, Bisgrove D, Verdin E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J 2003; 22(8): 1868-77.
[http://dx.doi.org/10.1093/emboj/cdg188] [PMID: 12682019]
[29]
Ramos E, Piñeiro D, Soto M, et al. A DNA aptamer population specifically detects Leishmania infantum H2A antigen. Lab Invest 2007; 87(5): 409-16.
[http://dx.doi.org/10.1038/labinvest.3700535] [PMID: 17334412]
[30]
Pannecouque C, Daelemans D, De Clercq E. Tetrazolium-based colorimetric assay for the detection of HIV replication inhibitors: Revisited 20 years later. Nat Protoc 2008; 3(3): 427-34.
[http://dx.doi.org/10.1038/nprot.2007.517] [PMID: 18323814]
[31]
Chonco L, Fernández G, Kalhapure R, et al. Novel DNA aptamers against CCL21 protein: Characterization and biomedical applications for targeted drug delivery to t cell-rich zones. Nucleic Acid Ther 2018; 28(4): 242-51.
[http://dx.doi.org/10.1089/nat.2017.0689] [PMID: 29733244]
[32]
Parboosing R, Chonco L, de la Mata J, Govender T, Maguire G, Kruger G. Potential inhibition of HIV-1 encapsidation by oligoribonucleotide–dendrimer nanoparticle complexes. Int J Nanomedicine 2017; 12: 317-25.
[http://dx.doi.org/10.2147/IJN.S114446] [PMID: 28115849]
[33]
Perrone R, Butovskaya E, Lago S, et al. The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell. Int J Antimicrob Agents 2016; 47(4): 311-6.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.01.016] [PMID: 27032748]
[34]
Wyatt JR, Vickers TA, Roberson JL, et al. Combinatorially selected guanosine-quartet structureis a potent inhibitor of human immunodeficiency virus envelope-mediated cellfusion. Proc Natl Acad Sci USA 1994; 91(4): 1356-60.
[http://dx.doi.org/10.1073/pnas.91.4.1356] [PMID: 7906414]
[35]
Zhang P, Zhao N, Zeng Z, Chang CC, Zu Y. Combination of an aptamer probe to CD4 and antibodies for multicolored cell phenotyping. Am J Clin Pathol 2010; 134(4): 586-93.
[http://dx.doi.org/10.1309/AJCP55KQYWSGZRKC] [PMID: 20855639]
[36]
Andreola ML, Pileur F, Calmels C, et al. DNA aptamers selected against the HIV-1 RNase H display in vitro antiviral activity. Biochemistry 2001; 40(34): 10087-94.
[http://dx.doi.org/10.1021/bi0108599] [PMID: 11513587]
[37]
Ramalingam D, Duclair S, Datta SAK, Ellington A, Rein A, Prasad VR. RNA aptamers directed to human immunodeficiency virus type 1 Gag polyprotein bind to the matrix and nucleocapsid domains and inhibit virus production. J Virol 2011; 85(1): 305-14.
[http://dx.doi.org/10.1128/JVI.02626-09] [PMID: 20980522]
[38]
Ojwang JO, Buckheit RW, Pommier Y, et al. T30177, an oligonucleotide stabilized by an intramolecular guanosine octet, is a potent inhibitor of laboratory strains and clinical isolates of human immunodeficiency virus type 1. Antimicrob Agents Chemother 1995; 39(11): 2426-35.
[http://dx.doi.org/10.1128/AAC.39.11.2426] [PMID: 8585721]
[39]
Kim SJ, Kim MY, Lee JH, You JC, Jeong S. Selection and stabilization of the RNA aptamers against the human immunodeficiency virus type-1 nucleocapsid protein. Biochem Biophys Res Commun 2002; 291(4): 925-31.
[http://dx.doi.org/10.1006/bbrc.2002.6521] [PMID: 11866454]
[40]
Duclair S, Gautam A, Ellington A, Prasad VR. High-affinity RNA aptamers against the HIV-1 protease inhibit both in vitro protease activity and late events of viral replication. Mol Ther Nucleic Acids 2015; 4(2): e228-8.
[http://dx.doi.org/10.1038/mtna.2015.1] [PMID: 25689224]
[41]
Bala J, Chinnapaiyan S, Dutta RK, Unwalla H. Aptamers in HIV research diagnosis and therapy. RNA Biol 2018; 15(3): 327-37.
[http://dx.doi.org/10.1080/15476286.2017.1414131] [PMID: 29431588]
[42]
González V, Martín M, Fernández G, García-Sacristán A. Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses. Pharmaceuticals 2016; 9(4): 78. Epub ahead of print
[http://dx.doi.org/10.3390/ph9040078] [PMID: 27999271]
[43]
Acchioni C, Remoli AL, Marsili G, et al. Alternate NF-κB-Independent Signaling Reactivation of Latent HIV-1 Provirus. J Virol 2019; 93(18): e00495-19. Epub ahead of print
[http://dx.doi.org/10.1128/JVI.00495-19] [PMID: 31243131]
[44]
Desimio MG, Giuliani E, Doria M. The histone deacetylase inhibitor SAHA simultaneously reactivates HIV-1 from latency and up-regulates NKG2D ligands sensitizing for natural killer cell cytotoxicity. Virology 2017; 510: 9-21.
[http://dx.doi.org/10.1016/j.virol.2017.06.033] [PMID: 28689087]
[45]
Wang P, Lu P, Qu X, et al. Reactivation of HIV-1 from Latency by an Ingenol Derivative from Euphorbia Kansui. Sci Rep 2017; 7(1): 9451.
[http://dx.doi.org/10.1038/s41598-017-07157-0] [PMID: 28842560]
[46]
Mann JFS, Pankrac J, Klein K, et al. A targeted reactivation of latent HIV-1 using an activator vector in patient samples from acute infection. EBioMedicine 2020; 59: 102853. Epub ahead of print
[http://dx.doi.org/10.1016/j.ebiom.2020.102853] [PMID: 32654992]
[47]
Wei DG, Chiang V, Fyne E, et al. Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing. PLoS Pathog 2014; 10(4): e1004071.
[http://dx.doi.org/10.1371/journal.ppat.1004071] [PMID: 24722454]
[48]
Grau-Expósito J, Luque-Ballesteros L, Navarro J, et al. Latency reversal agents affect differently the latent reservoir present in distinct CD4+ T subpopulations. PLoS Pathog 2019; 15(8): e1007991-.
[http://dx.doi.org/10.1371/journal.ppat.1007991] [PMID: 31425551]
[49]
Jiang G, Mendes EA, Kaiser P, et al. Reactivation of HIV latency by a newly modified Ingenol derivative via protein kinase Cδ–NF-κB signaling. AIDS 2014; 28(11): 1555-66.
[http://dx.doi.org/10.1097/QAD.0000000000000289] [PMID: 24804860]
[50]
Cillo AR, Sobolewski MD, Bosch RJ, et al. Quantification of HIV-1 latency reversal in resting CD4 + T cells from patients on suppressive antiretroviral therapy. Proc Natl Acad Sci USA 2014; 111(19): 7078-83.
[http://dx.doi.org/10.1073/pnas.1402873111] [PMID: 24706775]
[51]
Spivak AM, Planelles V. Novel Latency Reversal Agents for HIV-1 Cure. Annu Rev Med 2018; 69(1): 421-36.
[http://dx.doi.org/10.1146/annurev-med-052716-031710] [PMID: 29099677]
[52]
Chun TW, Stuyver L, Mizell SB, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci USA 1997; 94(24): 13193-7.
[http://dx.doi.org/10.1073/pnas.94.24.13193] [PMID: 9371822]
[53]
Chun TW, Fauci AS. HIV reservoirs. AIDS 2012; 26(10): 1261-8.
[http://dx.doi.org/10.1097/QAD.0b013e328353f3f1] [PMID: 22472858]
[54]
Chun TW, Finzi D, Margolick J, Chadwick K, Schwartz D, Siliciano RF. In vivo fate of HIV-1-infected T cells: Quantitative analysis of the transition to stable latency. Nat Med 1995; 1(12): 1284-90.
[http://dx.doi.org/10.1038/nm1295-1284] [PMID: 7489410]
[55]
Chun TW, Davey RT Jr, Ostrowski M, et al. Relationship between pre-existing viral reservoirs and the re-emergence of plasma viremia after discontinuation of highly active anti-retroviral therapy. Nat Med 2000; 6(7): 757-61.
[http://dx.doi.org/10.1038/77481] [PMID: 10888923]
[56]
Zhang L, Chung C, Hu BS, et al. Genetic characterization of rebounding HIV-1 after cessation of highly active antiretroviral therapy. J Clin Invest 2000; 106(7): 839-45.
[http://dx.doi.org/10.1172/JCI10565] [PMID: 11018071]
[57]
Kaur H, Li JJ, Bay BH, Yung LYL. Investigating the antiproliferative activity of high affinity DNA aptamer on cancer cells. PLoS One 2013; 8(1): e50964.
[http://dx.doi.org/10.1371/journal.pone.0050964] [PMID: 23341879]
[58]
Dunn MR, McCloskey CM, Buckley P, Rhea K, Chaput JC. Generating biologically stable tna aptamers that function with high affinity and thermal stability. J Am Chem Soc 2020; 142(17): 7721-4.
[http://dx.doi.org/10.1021/jacs.0c00641] [PMID: 32298104]
[59]
Morita Y, Leslie M, Kameyama H, Volk D, Tanaka T. Aptamer therapeutics in cancer: Current and future. Cancers 2018; 10(3): 80.
[http://dx.doi.org/10.3390/cancers10030080] [PMID: 29562664]
[60]
Kim DH, Seo JM, Shin KJ, Yang SG. Design and clinical developments of aptamer-drug conjugates for targeted cancer therapy. Biomater Res 2021; 25(1): 42.
[http://dx.doi.org/10.1186/s40824-021-00244-4] [PMID: 34823601]
[61]
Matsunaga K, Kimoto M, Hanson C, Sanford M, Young HA, Hirao I. Architecture of high-affinity unnatural-base DNA aptamers toward pharmaceutical applications. Sci Rep 2015; 5(1): 18478.
[http://dx.doi.org/10.1038/srep18478] [PMID: 26690672]
[62]
Javaherian S, Musheev MU, Kanoatov M, Berezovski MV, Krylov SN. Selection of aptamers for a protein target in cell lysate and their application to protein purification. Nucleic Acids Res 2009; 37(8): e62.
[http://dx.doi.org/10.1093/nar/gkp176] [PMID: 19304751]
[63]
Khedri M, Abnous K, Rafatpanah H, Nabavinia MS, Taghdisi SM, Ramezani M. Development and Evaluation of Novel Aptamers Specific for Human PD1 Using Hybrid Systematic Evolution of Ligands by Exponential Enrichment Approach. Immunol Invest 2020; 49(5): 535-54.
[http://dx.doi.org/10.1080/08820139.2020.1744639] [PMID: 32429721]
[64]
Walter JG, Kökpinar Ö, Friehs K, Stahl F, Scheper T. Systematic investigation of optimal aptamer immobilization for protein-microarray applications. Anal Chem 2008; 80(19): 7372-8.
[http://dx.doi.org/10.1021/ac801081v] [PMID: 18729475]
[65]
Chandola C. Aptamers for targeted delivery: Current challenges and future opportunities.Role of Novel Drug Delivery Vehicles in Nanobiomedicine. Intech Open. 2019.
[66]
Elsheikh MM, Tang Y, Li D, Jiang G. Deep latency: A new insight into a functional HIV cure. EBioMedicine 2019; 45: 624-9.
[http://dx.doi.org/10.1016/j.ebiom.2019.06.020] [PMID: 31227439]