Therapeutic Potential of Piperine: A Comprehensive Review

Article ID: e041023221707 Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Piperine, an alkaloid from black pepper, has demonstrated diverse pharmacological properties and potential therapeutic applications. Piperine content varies with the pepper plant and ranges from 2 to 7.4% in black pepper. Piperine possesses remarkable biological properties, including antioxidant, anti-inflammatory, antibacterial, anticancer, neuroprotective, and hepatoprotective qualities. Its ability to affect numerous signaling pathways and biological targets implicated in disease development is responsible for these functions. Studies have shown piperine to have high antioxidant activity, which aids in reducing oxidative stress and preventing cellular damage. It has been established that its anti-inflammatory effects suppress the generation of pro-inflammatory mediators, thereby relieving inflammation-related diseases. This review emphasizes and examines piperine's medical and health-promoting benefits and proposed mechanisms of action in health promotion and illness prevention.

Graphical Abstract

[1]
Chopra, B.; Dhingra, A.K.; Kapoor, R.P.; Prasad, D.N. Piperine and its various physicochemical and biological aspects: A review. Open Chem. J., 2016, 3(1), 75-96.
[http://dx.doi.org/10.2174/1874842201603010075]
[2]
Gorgani, L.; Mohammadi, M.; Najafpour, G.D.; Nikzad, M. Piperine—the bioactive compound of black pepper: from isolation to medicinal formulations. Compr. Rev. Food Sci. Food Saf., 2017, 16(1), 124-140.
[http://dx.doi.org/10.1111/1541-4337.12246]
[3]
Majeed, M.; Prakash, L. The medicinal uses of pepper. International Pepper News., 2000, 25(1), 23-31.
[4]
Meghwal, M.; Goswami, T.K. Chemical composition, nutritional, medicinal and functional properties of black pepper: A review. Open Access Sci Rep., 2012, 1(2), 1-5.
[5]
Rezaee, M.M.; Kazemi, S.; Kazemi, M.T.; Gharooee, S.; Yazdani, E.; Gharooee, H.; Shiran, M.R.; Moghadamnia, A.A. The effect of piperine on midazolam plasma concentration in healthy volunteers, a research on the CYP3A-involving metabolism. Daru, 2014, 22, 1-7.
[6]
Acharya, S.G.; Momin, A.H.; Gajjar, A.V. Review of piperine as a bio-enhancer. Am J Pharm Tech Res., 2012, 2, 32-44.
[7]
Lu, JJ; Bao, JL; Chen, XP; Huang, M; Wang, YT Alkaloids isolated from natural herbs as the anticancer agents., Evid Based Complement Alternat Med., 2012, 2012, 485042.
[http://dx.doi.org/10.1155/2012/485042]
[8]
Borrelli, F.; Capasso, R.; Pinto, A.; Izzo, A.A. Inhibitory effect of ginger (Zingiber officinale) on rat ileal motility in vitro. Life Sci., 2004, 74(23), 2889-2896.
[http://dx.doi.org/10.1016/j.lfs.2003.10.023]
[9]
Sano, T.; Toda, J.; Tsuda, Y. Factors controlling C=C vs. C=O attack in cycloaddition of a 1,3-diene to an ambident dienophile. Diels-Alder reaction of 2-phenyl-.DELTA.2-pyrroline-4,5-diones. Chem. Pharm. Bull. (Tokyo), 1983, 31(1), 356-359.
[http://dx.doi.org/10.1248/cpb.31.356]
[10]
Ahmed, M.; Rahman, M.W.; Rahman, M.T.; Hossain, C.F. Analgesic principle from the bark of Careya arborea. Pharmazie, 2002, 57(10), 698-701.
[11]
Quijia, C.R.; Araujo, V.H.; Chorilli, M. Piperine: Chemical, biological and nanotechnological applications. Acta Pharm., 2021, 71(2), 185-213.
[http://dx.doi.org/10.2478/acph-2021-0015]
[12]
Paula, V.F.; Barbosa, L.C.A.; Demuner, A.J.; Piló-Veloso, D.; Picanço, M.C. Synthesis and insecticidal activity of new amide derivatives of piperine. Pest Manag. Sci., 2000, 56(2), 168-174.
[http://dx.doi.org/10.1002/(SICI)1526-4998(200002)56:2<168:AID-PS110>3.0.CO;2-H]
[13]
Li, X.Y.; Yuan, H.L.; Gou, K.B. Study of piperine in Fructus piperis Longi by supercritical fluid extraction. Zhongguo Yiyuan Yaoxue Zazhi, 2000, 20(10), 597-598.
[14]
Raman, G.; Gaikar, V.G. Extraction of piperine from Piper nigrum (black pepper) by hydrotropic solubilization. Ind. Eng. Chem. Res., 2002, 41(12), 2966-2976.
[http://dx.doi.org/10.1021/ie0107845]
[15]
Raman, G.; Gaikar, V.G. Microwave-assisted extraction of piperine from Piper nigrum. Ind. Eng. Chem. Res., 2002, 41(10), 2521-2528.
[http://dx.doi.org/10.1021/ie010359b]
[16]
Santosh, M.K.; Shaila, D.; Rajyalakshmi, I.; Rao, I.S. RP-HPLC method for determination of piperine from Piper longum Linn. and Piper nigrum Linn. J. Chem., 2005, 2, 131-135.
[17]
Ternes, W.; Krause, E. Characterization and determination of piperine and piperine isomers in eggs. Anal. Bioanal. Chem., 2002, 374(1), 155-160.
[http://dx.doi.org/10.1007/s00216-002-1416-6]
[18]
Shanmugasundaram, P.; Maheswari, R.; Vijayaanandhi, M. Quantitative estimation of piperine in herbal cough syrup by HPTLC method. Rasayan J. Chem., 2008, 1(2), 212-217.
[19]
Tiwari, A.; Mahadik, K.R.; Gabhe, S.Y. Piperine: A comprehensive review of methods of isolation, purification, and biological properties. Medicine in Drug Discovery, 2020, 7, 100027.
[http://dx.doi.org/10.1016/j.medidd.2020.100027]
[20]
Geissman, T.A.; Crout, D.H. Organic Chemistry of Secondary Plant Metabolism Freeman. Cooper and Co; San Fracisco, 1969.
[21]
Schobert, R.; Siegfried, S.; Gordon, G.J. Three-component synthesis of (E)-α,β-unsaturated amides of the piperine family. J. Chem. Soc., Perkin Trans. 1, 2001, (19), 2393-2397.
[http://dx.doi.org/10.1039/b105745f]
[22]
Koul, S.; Koul, J.L.; Taneja, S.C.; Dhar, K.L.; Jamwal, D.S.; Singh, K.; Reen, R.K.; Singh, J. Structure–activity relationship of piperine and its synthetic analogues for their inhibitory potentials of rat hepatic microsomal constitutive and inducible cytochrome P450 activities. Bioorg. Med. Chem., 2000, 8(1), 251-268.
[http://dx.doi.org/10.1016/S0968-0896(99)00273-4]
[23]
Chatterjee, A.; Dutta, C.P. Alkaloids of Piper longum Linn—I: Structure and synthesis of piperlongumine and piperlonguminine. Tetrahedron, 1967, 23(4), 1769-1781.
[http://dx.doi.org/10.1016/S0040-4020(01)82575-8]
[24]
Singh, J.; Dhar, K.L.; Atal, C.K. Studies on the genus piper - IX. Structure of trichostachine, an alkaloid from piper trichostachyon. Tetrahedron Lett., 1969, 10(56), 4975-4978.
[http://dx.doi.org/10.1016/S0040-4039(01)88862-6]
[25]
Suresh, D.; Srinivasan, K. Studies on the in vitro absorption of spice principles – Curcumin, capsaicin and piperine in rat intestines. Food Chem. Toxicol., 2007, 45(8), 1437-1442.
[http://dx.doi.org/10.1016/j.fct.2007.02.002]
[26]
Ren, T.; Hu, M.; Cheng, Y.; Shek, T.L.; Xiao, M.; Ho, N.J.; Zhang, C.; Leung, S.S.Y.; Zuo, Z. Piperine-loaded nanoparticles with enhanced dissolution and oral bioavailability for epilepsy control. Eur. J. Pharm. Sci., 2019, 137, 104988.
[http://dx.doi.org/10.1016/j.ejps.2019.104988]
[27]
Zafar, F.; Jahan, N.; Bhatti, H. Increased oral bioavailability of piperine from an optimized piper nigrum nanosuspension. Planta Med., 2019, 85(3), 249-257.
[http://dx.doi.org/10.1055/a-0759-2208]
[28]
Bajad, S.; Coumar, M.; Khajuria, R.; Suri, O.P.; Bedi, K.L. Characterization of a new rat urinary metabolite of piperine by LC/NMR/MS studies. Eur. J. Pharm. Sci., 2003, 19(5), 413-421.
[http://dx.doi.org/10.1016/S0928-0987(03)00143-X]
[29]
Cui, T.; Wang, Q.; Tian, X.; Zhang, K.; Peng, Y.; Zheng, J. Piperine is a Mechanism-based inactivator of CYP3A. Drug Metab. Dispos., 2020, 48(2), 123-134.
[http://dx.doi.org/10.1124/dmd.119.088955]
[30]
Pannu, N.; Bhatnagar, A. Combinatorial therapeutic effect of resveratrol and piperine on murine model of systemic lupus erythematosus. Inflammopharmacology, 2020, 28(2), 401-424.
[http://dx.doi.org/10.1007/s10787-019-00662-w]
[31]
Pannu, N.; Bhatnagar, A. Effect of piperine on liver function of CF-1 albino mice. Infect Disord Drug Targets., 2015, 12(2), 131-134.
[32]
Sethiya, N.K.; Shah, P.; Rajpara, A.; Nagar, P.A.; Mishra, S.H. Antioxidant and hepatoprotective effects of mixed micellar lipid formulation of phyllanthin and piperine in carbon tetrachloride-induced liver injury in rodents. Food Funct., 2015, 6(11), 3593-3603.
[http://dx.doi.org/10.1039/C5FO00947B]
[33]
Sehgal, A.; Kumar, M.; Jain, M.; Dhawan, D.K. Modulatory effects of curcumin in conjunction with piperine on benzo (a) pyrene-mediated DNA adducts and biotransformation enzymes. Nutr. Cancer, 2013, 65(6), 885-890.
[http://dx.doi.org/10.1080/01635581.2013.805421]
[34]
Choi, S.; Choi, Y.; Choi, Y.; Kim, S.; Jang, J.; Park, T. Piperine reverses high fat diet-induced hepatic steatosis and insulin resistance in mice. Food Chem., 2013, 141(4), 3627-3635.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.028]
[35]
Makhov, P.; Golovine, K.; Canter, D.; Kutikov, A.; Simhan, J.; Corlew, M.M.; Uzzo, R.G.; Kolenko, V.M. Co-administration of piperine and docetaxel results in improved anti-tumor efficacy Via inhibition of CYP3A4 activity. Prostate, 2012, 72(6), 661-667.
[http://dx.doi.org/10.1002/pros.21469]
[36]
Sehgal, A.; Kumar, M.; Jain, M.; Dhawan, D.K. Piperine as an adjuvant increases the efficacy of curcumin in mitigating benzo(a)pyrene toxicity. Hum. Exp. Toxicol., 2012, 31(5), 473-482.
[http://dx.doi.org/10.1177/0960327111421943]
[37]
Song, X.Y.; Xu, S.; Hu, J.F.; Tang, J.; Chu, S.F.; Liu, H.; Han, N.; Li, J.W.; Zhang, D.M.; Li, Y.T.; Chen, N.H. Piperine prevents cholesterol gallstones formation in mice. Eur. J. Pharmacol., 2015, 751, 112-117.
[http://dx.doi.org/10.1016/j.ejphar.2015.01.038]
[38]
Sunila, E.S.; Kuttan, G. Immunomodulatory and antitumor activity of Piper longum Linn. and piperine. J. Ethnopharmacol., 2004, 90(2-3), 339-346.
[http://dx.doi.org/10.1016/j.jep.2003.10.016]
[39]
Pathak, N.; Khandelwal, S. Immunomodulatory role of piperine in cadmium induced thymic atrophy and splenomegaly in mice. Environ. Toxicol. Pharmacol., 2009, 28(1), 52-60.
[http://dx.doi.org/10.1016/j.etap.2009.02.003]
[40]
Verma, N.; Bal, S.; Gupta, R.; Aggarwal, N.; Yadav, A. Antioxidative effects of piperine against cadmium-induced oxidative stress in cultured human peripheral blood lymphocytes. J. Diet. Suppl., 2020, 17(1), 41-52.
[http://dx.doi.org/10.1080/19390211.2018.1481485]
[41]
Santos, J.; Brito, M.; Ferreira, R.; Moura, A.; Sousa, T.; Batista, T.; Mangueira, V.; Leite, F.; Cruz, R.; Vieira, G.; Lira, B.; Athayde-Filho, P.; Souza, H.; Costa, N.; Veras, R.; Barbosa-Filho, J.; Magalhães, H.; Sobral, M. Th1-biased immunomodulation and in vivo antitumor effect of a novel piperine analogue. Int. J. Mol. Sci., 2018, 19(9), 2594.
[http://dx.doi.org/10.3390/ijms19092594]
[42]
Kumar, A.; Sasmal, D.; Sharma, N. Immunomodulatory role of piperine in deltamethrin induced thymic apoptosis and altered immune functions. Environ. Toxicol. Pharmacol., 2015, 39(2), 504-514.
[http://dx.doi.org/10.1016/j.etap.2014.12.021]
[43]
Aswar, U.; Shintre, S.; Chepurwar, S.; Aswar, M. Antiallergic effect of piperine on ovalbumin-induced allergic rhinitis in mice. Pharm. Biol., 2015, 53(9), 1358-1366.
[http://dx.doi.org/10.3109/13880209.2014.982299]
[44]
Huang, J.; Zhang, T.; Han, S.; Cao, J.; Chen, Q.; Wang, S. The inhibitory effect of piperine from Fructus piperis extract on the degranulation of RBL-2H3 cells. Fitoterapia, 2014, 99, 218-226.
[http://dx.doi.org/10.1016/j.fitote.2014.10.001]
[45]
Chauhan, P.S.; Jaiswal, A.; Subhashini, ; Singh, R. Subhashini, Singh R. Combination therapy with curcumin alone plus piperine ameliorates ovalbumin-induced chronic asthma in mice. Inflammation, 2018, 41(5), 1922-1933.
[http://dx.doi.org/10.1007/s10753-018-0836-1]
[46]
Hirata, N.; Naruto, S.; Inaba, K.; Itoh, K.; Tokunaga, M.; Iinuma, M.; Matsuda, H. Histamine release inhibitory activity of Piper nigrum leaf. Biol. Pharm. Bull., 2008, 31(10), 1973-1976.
[http://dx.doi.org/10.1248/bpb.31.1973]
[47]
Kim, S.H.; Lee, Y.C. Piperine inhibits eosinophil infiltration and airway hyperresponsiveness by suppressing T cell activity and Th2 cytokine production in the ovalbumin-induced asthma model. J. Pharm. Pharmacol., 2009, 61(3), 353-359.
[http://dx.doi.org/10.1211/jpp.61.03.0010]
[48]
Al-Baghdadi, O.B.; Prater, N.I.; Van der Schyf, C.J.; Geldenhuys, W.J. Inhibition of monoamine oxidase by derivatives of piperine, an alkaloid from the pepper plant Piper nigrum, for possible use in Parkinson’s disease. Bioorg. Med. Chem. Lett., 2012, 22(23), 7183-7188.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.056]
[49]
Wang, C.; Cai, Z.; Wang, W.; Wei, M.; Si, X.; Shang, Y.; Yang, Z.; Li, T.; Guo, H.; Li, S. Piperine regulates glycogen synthase kinase-3β-related signaling and attenuates cognitive decline in D-galactose-induced aging mouse model. J. Nutr. Biochem., 2020, 75, 108261.
[http://dx.doi.org/10.1016/j.jnutbio.2019.108261]
[50]
Elnaggar, Y.S.R.; Etman, S.M.; Abdelmonsif, D.A.; Abdallah, O.Y. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J. Pharm. Sci., 2015, 104(10), 3544-3556.
[http://dx.doi.org/10.1002/jps.24557]
[51]
Shrivastava, P.; Vaibhav, K.; Tabassum, R.; Khan, A.; Ishrat, T.; Khan, M.M.; Ahmad, A.; Islam, F.; Safhi, M.M.; Islam, F. Anti-apoptotic and Anti-inflammatory effect of Piperine on 6-OHDA induced Parkinson’s Rat model. J. Nutr. Biochem., 2013, 24(4), 680-687.
[http://dx.doi.org/10.1016/j.jnutbio.2012.03.018]
[52]
Yusuf, M.; Khan, M.; Khan, R.A.; Ahmed, B. Preparation, characterization, in vivo and biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. J. Drug Target., 2013, 21(3), 300-311.
[http://dx.doi.org/10.3109/1061186X.2012.747529]
[53]
Chonpathompikunlert, P.; Wattanathorn, J.; Muchimapura, S. Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem. Toxicol., 2010, 48(3), 798-802.
[http://dx.doi.org/10.1016/j.fct.2009.12.009]
[54]
Lakes, J.E.; Richards, C.I.; Flythe, M.D. Inhibition of Bacteroidetes and Firmicutes by select phytochemicals. Anaerobe, 2020, 61, 102145.
[http://dx.doi.org/10.1016/j.anaerobe.2019.102145]
[55]
Pan, H.; Xu, L.H.; Huang, M.Y.; Zha, Q.B.; Zhao, G.X.; Hou, X.F.; Shi, Z.J.; Lin, Q.R.; Ouyang, D.Y.; He, X.H. Piperine metabolically regulates peritoneal resident macrophages to potentiate their functions against bacterial infection. Oncotarget, 2015, 6(32), 32468-32483.
[http://dx.doi.org/10.18632/oncotarget.5957]
[56]
Kharbanda, C.; Alam, M.S.; Hamid, H.; Javed, K.; Bano, S.; Ali, Y.; Dhulap, A.; Alam, P.; Pasha, M.A.Q. Novel Piperine derivatives with Anti-diabetic effect as PPAR‐γ agonists. Chem. Biol. Drug Des., 2016, 88(3), 354-362.
[http://dx.doi.org/10.1111/cbdd.12760]
[57]
Sharma, S.; Kalia, N.P.; Suden, P.; Chauhan, P.S.; Kumar, M.; Ram, A.B.; Khajuria, A.; Bani, S.; Khan, I.A. Protective efficacy of piperine against Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2014, 94(4), 389-396.
[http://dx.doi.org/10.1016/j.tube.2014.04.007]
[58]
Kumar, A.; Raman, R.P.; Kumar, K.; Pandey, P.K.; Kumar, V.; Mohanty, S.; Kumar, S. Antiparasitic efficacy of piperine against Argulus spp. on Carassius auratus (Linn. 1758): In vitro and in vivo study. Parasitol. Res., 2012, 111(5), 2071-2076.
[http://dx.doi.org/10.1007/s00436-012-3054-z]
[59]
Mirza, Z.M.; Kumar, A.; Kalia, N.P.; Zargar, A.; Khan, I.A. Piperine as an inhibitor of the MdeA efflux pump of Staphylococcus aureus. J. Med. Microbiol., 2011, 60(10), 1472-1478.
[http://dx.doi.org/10.1099/jmm.0.033167-0]
[60]
Verma, V.C.; Lobkovsky, E.; Gange, A.C.; Singh, S.K.; Prakash, S. Piperine production by endophytic fungus Periconia sp. Isolated from Piper longum L. J. Antibiot. (Tokyo), 2011, 64(6), 427-431.
[http://dx.doi.org/10.1038/ja.2011.27]
[61]
Jin, J.; Zhang, J.; Guo, N.; Feng, H.; Li, L.; Liang, J.; Sun, K.; Wu, X.; Wang, X.; Liu, M.; Deng, X.; Yu, L. The plant alkaloid piperine as a potential inhibitor of ethidium bromide efflux in Mycobacterium smegmatis. J. Med. Microbiol., 2011, 60(2), 223-229.
[http://dx.doi.org/10.1099/jmm.0.025734-0]
[62]
Sharma, S.; Kumar, M.; Sharma, S.; Nargotra, A.; Koul, S.; Khan, I.A. Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2010, 65(8), 1694-1701.
[http://dx.doi.org/10.1093/jac/dkq186]
[63]
Maeda, A.; Shirao, T.; Shirasaya, D.; Yoshioka, Y.; Yamashita, Y.; Akagawa, M.; Ashida, H. Piperine Promotes Glucose Uptake through ROS-Dependent Activation of the CAMKK/AMPK Signaling Pathway in Skeletal Muscle. Mol. Nutr. Food Res., 2018, 62(11), 1800086.
[http://dx.doi.org/10.1002/mnfr.201800086]
[64]
Kaur, G.; Invally, M.; Chintamaneni, M. Influence of piperine and quercetin on antidiabetic potential of curcumin. J. Complement. Integr. Med., 2016, 13(3), 247-255.
[http://dx.doi.org/10.1515/jcim-2016-0016]
[65]
Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Atkin, S.L.; Majeed, M.; Sahebkar, A. Curcuminoids plus piperine modulate adipokines in type 2 diabetes mellitus. Curr. Clin. Pharmacol., 2018, 12(4), 253-258.
[http://dx.doi.org/10.2174/1574884713666180104095641]
[66]
Atal, S.; Atal, S.; Vyas, S.; Phadnis, P. Bio-enhancing effect of Piperine with Metformin on lowering blood glucose level in Alloxan induced diabetic mice. Pharmacognosy Res., 2016, 8(1), 56.
[http://dx.doi.org/10.4103/0974-8490.171096]
[67]
Samra, Y.A.; Said, H.S.; Elsherbiny, N.M.; Liou, G.I.; El-Shishtawy, M.M.; Eissa, L.A. Cepharanthine and Piperine ameliorate diabetic nephropathy in rats: role of NF-κB and NLRP3 inflammasome. Life Sci., 2016, 157, 187-199.
[http://dx.doi.org/10.1016/j.lfs.2016.06.002]
[68]
Arcaro, C.A.; Gutierres, V.O.; Assis, R.P.; Moreira, T.F.; Costa, P.I.; Baviera, A.M.; Brunetti, I.L. Piperine, a natural bioenhancer, nullifies the anti-diabetic and antioxidant activities of curcumin in streptozotocin-diabetic rats. PLoS One, 2014, 9(12), e113993.
[http://dx.doi.org/10.1371/journal.pone.0113993]
[69]
Veeresham, C; Sujatha, S; Rani, TS Effect of piperine on the pharmacokinetics and pharmacodynamics of glimepiride in normal and streptozotocin-induced diabetic rats. Sage J., 2012, 7(10), 1283-1286.
[http://dx.doi.org/10.1177/1934578X1200701009]
[70]
Kumar, S.; Sharma, S.; Vasudeva, N. Screening of antidiabetic and antihyperlipidemic potential of oil from Piper longum and piperine with their possible mechanism. Expert Opin. Pharmacother., 2013, 14(13), 1723-1736.
[http://dx.doi.org/10.1517/14656566.2013.815725]
[71]
Atal, S.; Agrawal, R.P.; Vyas, S.; Phadnis, P.; Rai, N. Evaluation of the effect of piperine per se on blood glucose level in alloxan-induced diabetic mice. Acta Pol. Pharm., 2012, 69(5), 965-969.
[72]
Sama, V.; Nadipelli, M.; Yenumula, P.; Bommineni, M.; Mullangi, R. Effect of piperine on anti-hyperglycemic activity and pharmacokinetic profile of nateglinide. Arzneimittelforschung, 2012, 62(8), 384-388.
[http://dx.doi.org/10.1055/s-0032-1314849]
[73]
Nogara, L.; Naber, N.; Pate, E.; Canton, M.; Reggiani, C.; Cooke, R. Piperine’s mitigation of obesity and diabetes can be explained by its up-regulation of the metabolic rate of resting muscle. Proc. Natl. Acad. Sci. USA, 2016, 113(46), 13009-13014.
[http://dx.doi.org/10.1073/pnas.1607536113]
[74]
BrahmaNaidu, P.; Nemani, H.; Meriga, B.; Mehar, S.K.; Potana, S.; Ramgopalrao, S. Mitigating efficacy of piperine in the physiological derangements of high fat diet induced obesity in Sprague Dawley rats. Chem. Biol. Interact., 2014, 221, 42-51.
[http://dx.doi.org/10.1016/j.cbi.2014.07.008]
[75]
Park, U.H.; Jeong, H.S.; Jo, E.Y.; Park, T.; Yoon, S.K.; Kim, E.J.; Jeong, J.C.; Um, S.J. Piperine, a component of black pepper, inhibits adipogenesis by antagonizing PPARγ activity in 3T3-L1 cells. J. Agric. Food Chem., 2012, 60(15), 3853-3860.
[http://dx.doi.org/10.1021/jf204514a]
[76]
Diwan, V.; Poudyal, H.; Brown, L. Piperine attenuates cardiovascular, liver and metabolic changes in high carbohydrate, high fat-fed rats. Cell Biochem. Biophys., 2013, 67(2), 297-304.
[http://dx.doi.org/10.1007/s12013-011-9306-1]
[77]
Miyazawa, T.; Nakagawa, K.; Kim, S.H.; Thomas, M.J.; Paul, L.; Zingg, J.M.; Dolnikowski, G.G.; Roberts, S.B.; Kimura, F.; Miyazawa, T.; Azzi, A.; Meydani, M. Curcumin and piperine supplementation of obese mice under caloric restriction modulates body fat and interleukin-1β. Nutr. Metab. (Lond.), 2018, 15(1), 12.
[http://dx.doi.org/10.1186/s12986-018-0250-6]
[78]
Kim, K.J.; Lee, M.S.; Jo, K.; Hwang, J.K. Piperidine alkaloids from Piper retrofractum Vahl. protect against high-fat diet-induced obesity by regulating lipid metabolism and activating AMP-activated protein kinase. Biochem. Biophys. Res. Commun., 2011, 411(1), 219-225.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.153]
[79]
Shah, S.; Shah, G.; Singh, S.; Gohil, P.; Chauhan, K.; Shah, K.; Chorawala, M. Effect of piperine in the regulation of obesity-induced dyslipidemia in high-fat diet rats. Indian J. Pharmacol., 2011, 43(3), 296.
[http://dx.doi.org/10.4103/0253-7613.81516]
[80]
Yan, J.; Xu, S.C.; Kong, C.Y.; Zhou, X.Y.; Bian, Z.Y.; Yan, L.; Tang, Q.Z. Piperine alleviates doxorubicin-induced cardiotoxicity Via activating PPAR-γ in mice. PPAR Res., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/2601408]
[81]
Ma, Z.G.; Yuan, Y.P.; Zhang, X.; Xu, S.C.; Wang, S.S.; Tang, Q.Z. Piperine attenuates pathological cardiac fibrosis Via PPAR-γ/AKT pathways. EBioMedicine, 2017, 18, 179-187.
[http://dx.doi.org/10.1016/j.ebiom.2017.03.021]
[82]
Chakraborty, M.; Bhattacharjee, A.; Kamath, J.V. Cardioprotective effect of curcumin and piperine combination against cyclophosphamide-induced cardiotoxicity. Indian J. Pharmacol., 2017, 49(1), 65.
[83]
Dhivya, V.; Priya, L.B.; Chirayil, H.T.; Sathiskumar, S.; Huang, C.Y.; Padma, V.V. Piperine modulates isoproterenol induced myocardial ischemia through antioxidant and anti-dyslipidemic effect in male Wistar rats. Biomed. Pharmacother., 2017, 87, 705-713.
[http://dx.doi.org/10.1016/j.biopha.2017.01.002]
[84]
Li, Y.P.; Gao, L.; Shi, H.T.; Feng, S.D.; Tian, X.Y.; Kong, L.Y.; Zhang, Y.Z. Piperine inhibits the transformation of endothelial cells into fibroblasts. Zhonghua Xin Xue Guan Bing Za Zhi, 2019, 47(7), 554-560.
[85]
Dutta, M.; Ghosh, A.K.; Mishra, P.; Jain, G.; Rangari, V.; Chattopadhyay, A.; Das, T.; Bhowmick, D.; Bandyopadhyay, D. Protective effects of piperine against copper-ascorbate induced toxic injury to goat cardiac mitochondria in vitro. Food Funct., 2014, 5(9), 2252-2267.
[http://dx.doi.org/10.1039/C4FO00355A]
[86]
Liu, Y.; Zhang, Y.; Lin, K.; Zhang, D.; Tian, M.; Guo, H.; Wang, Y.; Li, Y.; Shan, Z. Protective effect of piperine on electrophysiology abnormalities of left atrial myocytes induced by hydrogen peroxide in rabbits. Life Sci., 2014, 94(2), 99-105.
[http://dx.doi.org/10.1016/j.lfs.2013.10.024]
[87]
Bao, L.; Bai, S.; Borijihan, G. Hypolipidemic effects of a new piperine derivative GB-N from Piper longum in high-fat diet-fed rats. Pharm. Biol., 2012, 50(8), 962-967.
[http://dx.doi.org/10.3109/13880209.2012.654395]
[88]
Mair, C.; Liu, R.; Atanasov, A.; Wimmer, L.; Nemetz-Fiedler, D.; Sider, N.; Heiss, E.; Mihovilovic, M.; Dirsch, V.; Rollinger, J. Piperine congeners as inhibitors of vascular smooth muscle cell proliferation. Planta Med., 2015, 81(12/13), 1065-1074.
[http://dx.doi.org/10.1055/s-0035-1546165]
[89]
Hlavackova, L.; Urbanova, A.; Ulicna, O.; Janega, P.; Cerna, A.; Babal, P. Piperine, active substance of black pepper, alleviates hypertension induced by NO synthase inhibition. Bratisl. Lek Listy, 2010, 111(8), 426-431.
[90]
Lee, K.P.; Lee, K.; Park, W.H.; Kim, H.; Hong, H. Piperine inhibits platelet-derived growth factor-BB-induced proliferation and migration in vascular smooth muscle cells. J. Med. Food, 2015, 18(2), 208-215.
[http://dx.doi.org/10.1089/jmf.2014.3229]
[91]
Taqvi, S.I.H.; Shah, A.J.; Gilani, A.H. Blood pressure lowering and vasomodulator effects of piperine. J. Cardiovasc. Pharmacol., 2008, 52(5), 452-458.
[http://dx.doi.org/10.1097/FJC.0b013e31818d07c0]
[92]
Zhai, W.J.; Zhang, Z.B.; Xu, N.N.; Guo, Y.F.; Qiu, C.; Li, C.Y.; Deng, G.Z.; Guo, M.Y. Piperine plays an anti-inflammatory role in Staphylococcus aureus endometritis by inhibiting activation of NF-κB and MAPK pathways in mice. Evid. Based Complement. Alternat. Med., 2016, 2016.
[93]
Jangra, A.; Kwatra, M.; Singh, T.; Pant, R.; Kushwah, P.; Sharma, Y.; Saroha, B.; Datusalia, A.K.; Bezbaruah, B.K. Piperine augments the protective effect of curcumin against lipopolysaccharide-induced neurobehavioral and neurochemical deficits in mice. Inflammation, 2016, 39, 1025-1038.
[http://dx.doi.org/10.1007/s10753-016-0332-4]
[94]
Lu, Y.; Liu, J.; Li, H.; Gu, L. Piperine ameliorates lipopolysaccharide-induced acute lung injury Via modulating NF-κB signaling pathways. Inflammation, 2016, 39(1), 303-308.
[http://dx.doi.org/10.1007/s10753-015-0250-x]
[95]
Hu, D.; Wang, Y.; Chen, Z.; Ma, Z.; You, Q.; Zhang, X.; Liang, Q.; Tan, H.; Xiao, C.; Tang, X.; Gao, Y. The protective effect of piperine on dextran sulfate sodium induced inflammatory bowel disease and its relation with pregnane X receptor activation. J. Ethnopharmacol., 2015, 169, 109-123.
[http://dx.doi.org/10.1016/j.jep.2015.04.006]
[96]
Dong, Y.; Huihui, Z.; Li, C. Piperine inhibit inflammation, alveolar bone loss and collagen fibers breakdown in a rat periodontitis model. J. Periodontal Res., 2015, 50(6), 758-765.
[http://dx.doi.org/10.1111/jre.12262]
[97]
Gupta, R.A.; Motiwala, M.N.; Dumore, N.G.; Danao, K.R.; Ganjare, A.B. Effect of piperine on inhibition of FFA induced TLR4 mediated inflammation and amelioration of acetic acid induced ulcerative colitis in mice. J. Ethnopharmacol., 2015, 164, 239-246.
[http://dx.doi.org/10.1016/j.jep.2015.01.039]
[98]
Doucette, C.D.; Greenshields, A.L.; Liwski, R.S.; Hoskin, D.W. Piperine blocks interleukin-2-driven cell cycle progression in CTLL-2 T lymphocytes by inhibiting multiple signal transduction pathways. Toxicol. Lett., 2015, 234(1), 1-12.
[http://dx.doi.org/10.1016/j.toxlet.2015.01.020]
[99]
Panahi, Y.; Hosseini, M.S.; Khalili, N.; Naimi, E.; Majeed, M.; Sahebkar, A. Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated meta-analysis. Clin. Nutr., 2015, 34(6), 1101-1108.
[http://dx.doi.org/10.1016/j.clnu.2014.12.019]
[100]
Hou, X.F.; Pan, H.; Xu, L.H.; Zha, Q.B.; He, X.H.; Ouyang, D.Y. Piperine suppresses the expression of CXCL8 in lipopolysaccharide-activated SW480 and HT-29 cells Via downregulating the mitogen-activated protein kinase pathways. Inflammation, 2015, 38(3), 1093-1102.
[http://dx.doi.org/10.1007/s10753-014-0075-z]
[101]
Bojjireddy, N.; Sinha, R.K.; Subrahmanyam, G. Piperine inhibits type II phosphatidylinositol 4-kinases: a key component in phosphoinositides turnover. Mol. Cell. Biochem., 2014, 393(1-2), 9-15.
[http://dx.doi.org/10.1007/s11010-014-2041-3]
[102]
Ying, X.; Chen, X.; Cheng, S.; Shen, Y.; Peng, L.; Xu, H. Piperine inhibits IL-β induced expression of inflammatory mediators in human osteoarthritis chondrocyte. Int. Immunopharmacol., 2013, 17(2), 293-299.
[http://dx.doi.org/10.1016/j.intimp.2013.06.025]
[103]
Umar, S.; Golam Sarwar, A.H.M.; Umar, K.; Ahmad, N.; Sajad, M.; Ahmad, S.; Katiyar, C.K.; Khan, H.A. Piperine ameliorates oxidative stress, inflammation and histological outcome in collagen induced arthritis. Cell. Immunol., 2013, 284(1-2), 51-59.
[http://dx.doi.org/10.1016/j.cellimm.2013.07.004]
[104]
Ying, X.; Yu, K.; Chen, X.; Chen, H.; Hong, J.; Cheng, S.; Peng, L. Piperine inhibits LPS induced expression of inflammatory mediators in RAW 264.7 cells. Cell. Immunol., 2013, 285(1-2), 49-54.
[http://dx.doi.org/10.1016/j.cellimm.2013.09.001]
[105]
Huang, W.; Chen, Z.; Wang, Q.; Lin, M.; Wu, S.; Yan, Q.; Wu, F.; Yu, X.; Xie, X.; Li, G.; Xu, Y.; Pan, J. Piperine potentiates the antidepressant-like effect of trans-resveratrol: involvement of monoaminergic system. Metab. Brain Dis., 2013, 28(4), 585-595.
[http://dx.doi.org/10.1007/s11011-013-9426-y]
[106]
Lee, S.A.; Hong, S.S.; Han, X.H.; Hwang, J.S.; Oh, G.J.; Lee, K.S.; Lee, M.K.; Hwang, B.Y.; Ro, J.S. Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity. Chem. Pharm. Bull. (Tokyo), 2005, 53(7), 832-835.
[http://dx.doi.org/10.1248/cpb.53.832]
[107]
Lee, S.A.; Hwang, J.S.; Han, X.H.; Lee, C.; Lee, M.H.; Choe, S.G.; Hong, S.S.; Lee, D.; Lee, M.K.; Hwang, B.Y. Methylpiperate derivatives from Piper longum and their inhibition of monoamine oxidase. Arch. Pharm. Res., 2008, 31(6), 679-683.
[http://dx.doi.org/10.1007/s12272-001-1212-7]
[108]
Li, S.; Wang, C.; Li, W.; Koike, K.; Nikaido, T.; Wang, M.W. Antidepressant-like effects of piperine and its derivative, antiepilepsirine. J. Asian Nat. Prod. Res., 2007, 9(5), 421-430.
[http://dx.doi.org/10.1080/10286020500384302]
[109]
Mu, L.H.; Wang, B.; Ren, H.Y.; Liu, P.; Guo, D.H.; Wang, F.M.; Bai, L.; Guo, Y.S. Synthesis and inhibitory effect of piperine derivates on monoamine oxidase. Bioorg. Med. Chem. Lett., 2012, 22(9), 3343-3348.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.090]
[110]
Li, G.; Ruan, L.; Chen, R.; Wang, R.; Xie, X.; Zhang, M.; Chen, L.; Yan, Q.; Reed, M.; Chen, J.; Xu, Y.; Pan, J.; Huang, W. Synergistic antidepressant-like effect of ferulic acid in combination with piperine: involvement of monoaminergic system. Metab. Brain Dis., 2015, 30(6), 1505-1514.
[http://dx.doi.org/10.1007/s11011-015-9704-y]
[111]
Dalvi, R.R.; Dalvi, P.S. Comparison of the effects of piperine administered intragastrically and intraperitoneally on the liver and liver mixed-function oxidases in rats. Drug Metabol. Drug Interact., 1991, 9(1), 23-30.
[http://dx.doi.org/10.1515/DMDI.1991.9.1.23]
[112]
Beltrán, L.R.; Dawid, C.; Beltrán, M.; Gisselmann, G.; Degenhardt, K.; Mathie, K.; Hofmann, T.; Hatt, H. The pungent substances piperine, capsaicin, 6-gingerol and polygodial inhibit the human two-pore domain potassium channels TASK-1, TASK-3 and TRESK. Front. Pharmacol., 2013, 4, 141.
[http://dx.doi.org/10.3389/fphar.2013.00141]
[113]
Chen, C.Y.; Li, W.; Qu, K.P.; Chen, C.R. Piperine exerts anti-seizure effects Via the TRPV1 receptor in mice. Eur. J. Pharmacol., 2013, 714(1-3), 288-294.
[http://dx.doi.org/10.1016/j.ejphar.2013.07.041]
[114]
Chen, X.; Ge, F.; Liu, J.; Bao, S.; Chen, Y.; Li, D.; Li, Y.; Huang, T.; Chen, X.; Zhu, Q.; Lian, Q.; Ge, R-S. Diverged effects of piperine on testicular development: Stimulating leydig cell development but inhibiting spermatogenesis in rats. Front. Pharmacol., 2018, 9, 244.
[http://dx.doi.org/10.3389/fphar.2018.00244]
[115]
Gilhotra, N.; Dhingra, D. Possible involvement of GABAergic and nitriergic systems for antianxiety-like activity of piperine in unstressed and stressed mice. Pharmacol. Rep., 2014, 66(5), 885-891.
[http://dx.doi.org/10.1016/j.pharep.2014.05.008]
[116]
Kang, A.H.; Won, S.M.; Park, S.S.; Kim, S.G.; Novak, R.F.; Kim, N.D. Piperine effects on the expression of P4502E1, P4502B and P4501A in rat. Xenobiotica, 1994, 24(12), 1195-1204.
[http://dx.doi.org/10.3109/00498259409038675]
[117]
Kazemi, M.T.; Pour Nasrollah, M.; Rezaei, M.; Jorsaraei, G.H.; Maliji, G.H.; Kazemi, S.; Zabihi, E.; Pouramir, M.; Moghadamnia, A.A. Effect of piperine pretreatment on biochemical profiles of acetaminophen-induced hepatotoxicity in rats. Majallah-i Danishgah-i Ulum-i Pizishki-i Babul, 2012, 14(4), 7-14.
[118]
Khajuria, A. Antioxidant potential of piperine on oxidant induced alterations in rat intestinal lumen. Indian drugs., 1997, 34(4), 557-63.
[119]
Kim, D.Y.; Kim, E.J.; Jang, W.G. Piperine induces osteoblast differentiation through AMPK-dependent Runx2 expression. Biochem. Biophys. Res. Commun., 2018, 495(1), 1497-1502.
[http://dx.doi.org/10.1016/j.bbrc.2017.11.200]
[120]
Kim, H.G.; Han, E.H.; Jang, W.S.; Choi, J.H.; Khanal, T.; Park, B.H.; Tran, T.P.; Chung, Y.C.; Jeong, H.G. Piperine inhibits PMA-induced cyclooxygenase-2 expression through downregulating NF-κB, C/EBP and AP-1 signaling pathways in murine macrophages. Food Chem. Toxicol., 2012, 50(7), 2342-2348.
[http://dx.doi.org/10.1016/j.fct.2012.04.024]
[121]
Mao, K.; Lei, D.; Zhang, H.; You, C. Anticonvulsant effect of piperine ameliorates memory impairment, inflammation and oxidative stress in a rat model of pilocarpine-induced epilepsy. Exp. Ther. Med., 2017, 13(2), 695-700.
[http://dx.doi.org/10.3892/etm.2016.4001]
[122]
Malini, T.; Manimaran, R.R.; Arunakaran, J.; Aruldhas, M.M.; Govindarajulu, P. Effects of piperine on testis of albino rats. J. Ethnopharmacol., 1999, 64(3), 219-225.
[http://dx.doi.org/10.1016/S0378-8741(98)00128-7]
[123]
D’Cruz, S.C.; Vaithinathan, S.; Saradha, B.; Mathur, P.P. Piperine activates testicular apoptosis in adult rats. J. Biochem. Mol. Toxicol., 2008, 22(6), 382-388.
[http://dx.doi.org/10.1002/jbt.20251]
[124]
D’cruz, S.C.; Mathur, P.P. Effect of piperine on the epididymis of adult male rats. Asian J. Androl., 2005, 7(4), 363-368.
[http://dx.doi.org/10.1111/j.1745-7262.2005.00059.x]
[125]
Wang, C.; Cai, Z.; Wang, W.; Wei, M.; Kou, D.; Li, T.; Yang, Z.; Guo, H.; Le, W.; Li, S. Piperine attenuates cognitive impairment in an experimental mouse model of sporadic Alzheimer’s disease. J. Nutr. Biochem., 2019, 70, 147-155.
[http://dx.doi.org/10.1016/j.jnutbio.2019.05.009]
[126]
Yang, W.; Chen, Y.H.; Liu, H.; Qu, H.D. Neuroprotective effects of piperine on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease mouse model. Int. J. Mol. Med., 2015, 36(5), 1369-1376.
[http://dx.doi.org/10.3892/ijmm.2015.2356]
[127]
Guo, J.; Cui, Y.; Liu, Q.; Yang, Y.; Li, Y.; Weng, L.; Tang, B.; Jin, P.; Li, X.J.; Yang, S.; Li, S. Piperine ameliorates SCA17 neuropathology by reducing ER stress. Mol. Neurodegener., 2018, 13(1), 4.
[http://dx.doi.org/10.1186/s13024-018-0236-x]
[128]
Singh, S.; Kumar, P. Piperine in combination with quercetin halt 6-OHDA induced neurodegeneration in experimental rats: Biochemical and neurochemical evidences. Neurosci. Res., 2018, 133, 38-47.
[http://dx.doi.org/10.1016/j.neures.2017.10.006]
[129]
Singh, S.; Kumar, P. Neuroprotective activity of curcumin in combination with piperine against quinolinic acid induced neurodegeneration in rats. Pharmacology, 2016, 97(3-4), 151-160.
[http://dx.doi.org/10.1159/000443896]
[130]
Yaribeygi, H; Panahi, Y; Javadi, B; Sahebkar, A The underlying role of oxidative stress in neurodegeneration: a mechanistic review. CNS Neurol Disord Drug Targets., 2018, 17(3), 207-215.
[http://dx.doi.org/10.2174/1871527317666180425122557]
[131]
Kakarala, M.; Dubey, S.K.; Tarnowski, M.; Cheng, C.; Liyanage, S.; Strawder, T.; Tazi, K.; Sen, A.; Djuric, Z.; Brenner, D.E. Ultra-low flow liquid chromatography assay with ultraviolet (UV) detection for piperine quantitation in human plasma. J. Agric. Food Chem., 2010, 58(11), 6594-6599.
[http://dx.doi.org/10.1021/jf100657r]
[132]
Sacks, D.; Baxter, B.; Campbell, B.C.; Carpenter, J.S.; Cognard, C.; Dippel, D.; Eesa, M.; Fischer, U.; Hausegger, K.; Hirsch, J.A. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int. J. Stroke, 2018, 13(6), 612-632.
[133]
Lu, H.; Gong, H.; Du, J.; Gao, W.; Xu, J.; Cai, X.; Yang, Y.; Xiao, H. Piperine ameliorates psoriatic skin inflammation by inhibiting the phosphorylation of STAT3. Int. Immunopharmacol., 2023, 119, 110221.
[http://dx.doi.org/10.1016/j.intimp.2023.110221]
[134]
Baito, Q.N.; Jaafar, H.M.; Mohammad, T.A.M. Piperine suppresses inflammatory fibroblast-like synoviocytes derived from rheumatoid arthritis patients Via NF-κB inhibition. Cell. Immunol., 2023, 391-392, 104752.
[http://dx.doi.org/10.1016/j.cellimm.2023.104752]
[135]
Cardoso, L.P.; de Sousa, S.O.; Gusson-Zanetoni, J.P.; de Melo Moreira Silva, L.L.; Frigieri, B.M.; Henrique, T.; Tajara, E.H.; Oliani, S.M.; Rodrigues-Lisoni, F.C. Piperine Reduces Neoplastic Progression in Cervical Cancer Cells by Downregulating the Cyclooxygenase 2 Pathway. Pharmaceuticals (Basel), 2023, 16(1), 103.
[http://dx.doi.org/10.3390/ph16010103]
[136]
Qi, Y.; Yao, L.; Liu, J.; Wang, W. Piperine improves the sensitivity of osteosarcoma cells to doxorubicin by inducing apoptosis and inhibiting the PI3K/AKT/GSK-3β pathway. J. Orthop. Surg. Res., 2023, 18(1), 180.
[http://dx.doi.org/10.1186/s13018-023-03642-7]