Review on PCSK9: A Pertinent Therapeutic Target in Cardiovascular Disease

Article ID: e290923221551 Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

A Proprotein convertase subtilisin/kexin type-9 is considered a zymogen, extensively found in the liver. PCSK9 is found in circulation in the plasma, where it attaches to low-density lipoprotein (LDL) receptors on the cell surface, is internalized, and subsequently directs the receptors to be degraded by lysosomes. Investigations of naturally or organically found PCSK9 gene variations, which generated high levels of plasma LDL cholesterol deviations and varied atherosclerosis proportion factors, released floods of pharmaceutical along with biological and live sciences research into the world. Significant advances in our understanding of the physiological control of PCSK9 led quickly to the development of biological inhibitors of PCSK9 that are now available for purchase. These inhibitors decreased LDL cholesterol levels with other improved cardiovascular outcomes. The current manuscript will show the rapid development of PCSK9, beginning with its discovery as a novel gene and progressing through its use as a therapeutic target, followed by its testing on animals and humans and, eventually, its use in outcome trials and clinical applications.

Graphical Abstract

[1]
Farnier, M. PCSK9: From discovery to therapeutic applications. Arch. Cardiovasc. Dis., 2014, 107(1), 58-66.
[http://dx.doi.org/10.1016/j.acvd.2013.10.007] [PMID: 24373748]
[2]
Marduel, M.; Carrié, A.; Sassolas, A.; Devillers, M.; Carreau, V.; Di Filippo, M.; Erlich, D.; Abifadel, M.; Marques-Pinheiro, A.; Munnich, A.; Junien, C.; Boileau, C.; Varret, M.; Rabès, J.P. Molecular spectrum of autosomal dominant hypercholesterolemia in France. Hum. Mutat., 2010, 31(11), E1811-E1824.
[http://dx.doi.org/10.1002/humu.21348] [PMID: 20809525]
[3]
Mehta, A.; Mahtta, D.; Gulati, M.; Sperling, L.S.; Blumenthal, R.S.; Virani, S.S. Cardiovascular disease prevention in focus: Highlights from the 2019 american heart association scientific sessions. Curr. Atheroscler. Rep., 2020, 22(1), 3.
[http://dx.doi.org/10.1007/s11883-020-0822-6] [PMID: 31927694]
[4]
World Health Organization. Top 10 causes of death. Available from: http://www.who.int/mediacentre/factsheets/fs310/en/index2.html (Accessed on: 18 August 2015).
[5]
The Global Economic Burden of Non-communicable Diseases. Available from: https://www.weforum.org/reports/global-economic-burden-non-communicable-diseases (Accessed on: 18 September, 2011).
[6]
Béliard, S.; Carreau, V.; Carrié, A.; Giral, P.; Duchêne, E.; Farnier, M.; Ferrières, J.; Fredenrich, A.; Krempf, M.; Luc, G.; Moulin, P.; Bruckert, E. Improvement in LDL-cholesterol levels of patients with familial hypercholesterolemia: Can we do better? Analysis of results obtained during the past two decades in 1669 French subjects. Atherosclerosis, 2014, 234(1), 136-141.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.02.021] [PMID: 24637413]
[7]
Mundal, L.; Sarancic, M.; Ose, L.; Iversen, P.O.; Borgan, J.K.; Veierød, M.B.; Leren, T.P.; Retterstøl, K. Mortality among patients with familial hypercholesterolemia: A registry-based study in Norway, 1992-2010. J. Am. Heart Assoc., 2014, 3(6), e001236.
[http://dx.doi.org/10.1161/JAHA.114.001236] [PMID: 25468658]
[8]
Hess, C.N.; Low Wang, C.C.; Hiatt, W.R. PCSK9 inhibitors: Mechanisms of action, metabolic effects, and clinical outcomes. Annu. Rev. Med., 2018, 69(1), 133-145.
[http://dx.doi.org/10.1146/annurev-med-042716-091351] [PMID: 29095667]
[9]
Chaudhary, R.; Garg, J.; Shah, N.; Sumner, A. PCSK9 inhibitors: A new era of lipid lowering therapy. World J. Cardiol., 2017, 9(2), 76-91.
[http://dx.doi.org/10.4330/wjc.v9.i2.76] [PMID: 28289523]
[10]
Seidah, N.G.; Prat, A. The biology and therapeutic targeting of the proprotein convertases. Nat. Rev. Drug Discov., 2012, 11(5), 367-383.
[http://dx.doi.org/10.1038/nrd3699] [PMID: 22679642]
[11]
Abifadel, M.; Varret, M.; Rabès, J.P.; Allard, D.; Ouguerram, K.; Devillers, M.; Cruaud, C.; Benjannet, S.; Wickham, L.; Erlich, D.; Derré, A.; Villéger, L.; Farnier, M.; Beucler, I.; Bruckert, E.; Chambaz, J.; Chanu, B.; Lecerf, J.M.; Luc, G.; Moulin, P.; Weissenbach, J.; Prat, A.; Krempf, M.; Junien, C.; Seidah, N.G.; Boileau, C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet., 2003, 34(2), 154-156.
[http://dx.doi.org/10.1038/ng1161] [PMID: 12730697]
[12]
Cohen, J.; Pertsemlidis, A.; Kotowski, I.K.; Graham, R.; Garcia, C.K.; Hobbs, H.H. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet., 2005, 37(2), 161-165.
[http://dx.doi.org/10.1038/ng1509] [PMID: 15654334]
[13]
Cohen, J.C.; Boerwinkle, E.; Mosley, T.H., Jr; Hobbs, H.H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med., 2006, 354(12), 1264-1272.
[http://dx.doi.org/10.1056/NEJMoa054013] [PMID: 16554528]
[14]
Hooper, A.J.; Marais, A.D.; Tanyanyiwa, D.M.; Burnett, J.R. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population. Atherosclerosis, 2007, 193(2), 445-448.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.08.039] [PMID: 16989838]
[15]
Fasano, T.; Cefalù, A.B.; Di Leo, E.; Noto, D.; Pollaccia, D.; Bocchi, L.; Valenti, V.; Bonardi, R.; Guardamagna, O.; Averna, M.; Tarugi, P. A novel loss of function mutation of PCSK9 gene in white subjects with low-plasma low-density lipoprotein cholesterol. Arterioscler. Thromb. Vasc. Biol., 2007, 27(3), 677-681.
[http://dx.doi.org/10.1161/01.ATV.0000255311.26383.2f] [PMID: 17170371]
[16]
Zhao, Z.; Tuakli-Wosornu, Y.; Lagace, T.A.; Kinch, L.; Grishin, N.V.; Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am. J. Hum. Genet., 2006, 79(3), 514-523.
[http://dx.doi.org/10.1086/507488] [PMID: 16909389]
[17]
Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; Sever, P.S.; Pedersen, T.R. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med., 2017, 376(18), 1713-1722.
[http://dx.doi.org/10.1056/NEJMoa1615664] [PMID: 28304224]
[18]
Cunningham, D.; Danley, D.E.; Geoghegan, K.F.; Griffor, M.C.; Hawkins, J.L.; Subashi, T.A.; Varghese, A.H.; Ammirati, M.J.; Culp, J.S.; Hoth, L.R.; Mansour, M.N.; McGrath, K.M.; Seddon, A.P.; Shenolikar, S.; Stutzman-Engwall, K.J.; Warren, L.C.; Xia, D.; Qiu, X. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat. Struct. Mol. Biol., 2007, 14(5), 413-419.
[http://dx.doi.org/10.1038/nsmb1235] [PMID: 17435765]
[19]
Hampton, E.N.; Knuth, M.W.; Li, J.; Harris, J.L.; Lesley, S.A.; Spraggon, G. The self-inhibited structure of full-length PCSK9 at 1.9 Å reveals structural homology with resistin within the Cterminal domain. Proc. Natl. Acad. Sci., 2007, 104(37), 14604-14609.
[http://dx.doi.org/10.1073/pnas.0703402104] [PMID: 17804797]
[20]
Piper, D.E.; Jackson, S.; Liu, Q.; Romanow, W.G.; Shetterly, S.; Thibault, S.T.; Shan, B.; Walker, N.P.C. The crystal structure of PCSK9: A regulator of plasma LDL-cholesterol. Structure, 2007, 15(5), 545-552.
[http://dx.doi.org/10.1016/j.str.2007.04.004] [PMID: 17502100]
[21]
Kwon, H.J.; Lagace, T.A.; McNutt, M.C.; Horton, J.D.; Deisenhofer, J. Molecular basis for LDL receptor recognition by PCSK9. Proc. Natl. Acad. Sci., 2008, 105(6), 1820-1825.
[http://dx.doi.org/10.1073/pnas.0712064105] [PMID: 18250299]
[22]
Fisher, T.S.; Surdo, P.L.; Pandit, S.; Mattu, M.; Santoro, J.C.; Wisniewski, D.; Cummings, R.T.; Calzetta, A.; Cubbon, R.M.; Fischer, P.A.; Tarachandani, A.; De Francesco, R.; Wright, S.D.; Sparrow, C.P.; Carfi, A.; Sitlani, A. Effects of pH and low density lipoprotein (LDL) on PCSK9-dependent LDL receptor regulation. J. Biol. Chem., 2007, 282(28), 20502-20512.
[http://dx.doi.org/10.1074/jbc.M701634200] [PMID: 17493938]
[23]
Pearlstein, R.A.; Hu, Q.Y.; Zhou, J.; Yowe, D.; Levell, J.; Dale, B.; Kaushik, V.K.; Daniels, D.; Hanrahan, S.; Sherman, W.; Abel, R. New hypotheses about the structure-function of proprotein convertase subtilisin/kexin type 9: Analysis of the epidermal growth factor- like repeat A docking site using WaterMap. Proteins, 2010, 78(12), n/a.
[http://dx.doi.org/10.1002/prot.22767] [PMID: 20589640]
[24]
Zhang, D.W.; Garuti, R.; Tang, W.J.; Cohen, J.C.; Hobbs, H.H. Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor. Proc. Natl. Acad. Sci., 2008, 105(35), 13045-13050.
[http://dx.doi.org/10.1073/pnas.0806312105] [PMID: 18753623]
[25]
Mousavi, S.A.; Berge, K.E.; Berg, T.; Leren, T.P. Affinity and kinetics of proprotein convertase subtilisin/kexin type 9 binding to low-density lipoprotein receptors on HepG2 cells. FEBS J., 2011, 278(16), 2938-2950.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08219.x] [PMID: 21692990]
[26]
Ai, X.; Fischer, P.; Palyha, O.C.; Wisniewski, D.; Hubbard, B.; Akinsanya, K.; Strack, A.M.; Ehrhardt, A.G. Utilizing HaloTag technology to track the fate of PCSK9 from intracellular vs. extracellular sources. Curr. Chem. Genomics, 2012, 6, 38-47.
[PMID: 23115612]
[27]
Qian, Y.W.; Schmidt, R.J.; Zhang, Y.; Chu, S.; Lin, A.; Wang, H.; Wang, X.; Beyer, T.P.; Bensch, W.R.; Li, W.; Ehsani, M.E.; Lu, D.; Konrad, R.J.; Eacho, P.I.; Moller, D.E.; Karathanasis, S.K.; Cao, G. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J. Lipid Res., 2007, 48(7), 1488-1498.
[http://dx.doi.org/10.1194/jlr.M700071-JLR200] [PMID: 17449864]
[28]
Maxwell, K.N.; Breslow, J.L. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc. Natl. Acad. Sci. USA, 2004, 101(18), 7100-7105.
[http://dx.doi.org/10.1073/pnas.0402133101] [PMID: 15118091]
[29]
Seidah, N.G.; Benjannet, S.; Wickham, L.; Marcinkiewicz, J.; Jasmin, S.B.; Stifani, S.; Basak, A.; Prat, A.; Chrétien, M. The secretory pro-protein convertase neural apoptosis-regulated convertase 1 (NARC-1): Liver regeneration and neuronal differentiation. Proc. Natl. Acad. Sci., 2003, 100(3), 928-933.
[http://dx.doi.org/10.1073/pnas.0335507100] [PMID: 12552133]
[30]
Cameron, J.; Holla, Ø.L.; Ranheim, T.; Kulseth, M.A.; Berge, K.E.; Leren, T.P. Effect of mutations in the PCSK9 gene on the cell surface LDL receptors. Hum. Mol. Genet., 2006, 15(9), 1551-1558.
[http://dx.doi.org/10.1093/hmg/ddl077] [PMID: 16571601]
[31]
Dubuc, G.; Chamberland, A.; Wassef, H.; Davignon, J.; Seidah, N.G.; Bernier, L.; Prat, A. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol., 2004, 24(8), 1454-1459.
[http://dx.doi.org/10.1161/01.ATV.0000134621.14315.43] [PMID: 15178557]
[32]
Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M.R.; Tokgozoglu, L.; Wiklund, O.; Mueller, C.; Drexel, H.; Aboyans, V.; Corsini, A.; Doehner, W.; Farnier, M.; Gigante, B.; Kayikcioglu, M.; Krstacic, G.; Lambrinou, E.; Lewis, B.S.; Masip, J.; Moulin, P.; Petersen, S.; Petronio, A.S.; Piepoli, M.F.; Pintó, X.; Räber, L.; Ray, K.K.; Reiner, Ž.; Riesen, W.F.; Roffi, M.; Schmid, J-P.; Shlyakhto, E.; Simpson, I.A.; Stroes, E.; Sudano, I.; Tselepis, A.D.; Viigimaa, M.; Vindis, C.; Vonbank, A.; Vrablik, M.; Vrsalovic, M.; Zamorano, J.L.; Collet, J-P.; Koskinas, K.C.; Casula, M.; Badimon, L.; John Chapman, M.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M-R.; Tokgozoglu, L.; Wiklund, O.; Windecker, S.; Aboyans, V.; Baigent, C.; Collet, J-P.; Dean, V.; Delgado, V.; Fitzsimons, D.; Gale, C.P.; Grobbee, D.; Halvorsen, S.; Hindricks, G.; Iung, B.; Jüni, P.; Katus, H.A.; Landmesser, U.; Leclercq, C.; Lettino, M.; Lewis, B.S.; Merkely, B.; Mueller, C.; Petersen, S.; Petronio, A.S.; Richter, D.J.; Roffi, M.; Shlyakhto, E.; Simpson, I.A.; Sousa-Uva, M.; Touyz, R.M.; Nibouche, D.; Zelveian, P.H.; Siostrzonek, P.; Najafov, R.; van de Borne, P.; Pojskic, B.; Postadzhiyan, A.; Kypris, L.; Špinar, J.; Larsen, M.L.; Eldin, H.S.; Viigimaa, M.; Strandberg, T.E.; Ferrières, J.; Agladze, R.; Laufs, U.; Rallidis, L.; Bajnok, L.; Gudjónsson, T.; Maher, V.; Henkin, Y.; Gulizia, M.M.; Mussagaliyeva, A.; Bajraktari, G.; Kerimkulova, A.; Latkovskis, G.; Hamoui, O.; Slapikas, R.; Visser, L.; Dingli, P.; Ivanov, V.; Boskovic, A.; Nazzi, M.; Visseren, F.; Mitevska, I.; Retterstøl, K.; Jankowski, P.; Fontes-Carvalho, R.; Gaita, D.; Ezhov, M.; Foscoli, M.; Giga, V.; Pella, D.; Fras, Z.; de Isla, L.P.; Hagström, E.; Lehmann, R.; Abid, L.; Ozdogan, O.; Mitchenko, O.; Patel, R.S. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J., 2020, 41(1), 111-188.
[http://dx.doi.org/10.1093/eurheartj/ehz455] [PMID: 31504418]
[33]
Lagace, T.A.; Curtis, D.E.; Garuti, R.; McNutt, M.C.; Park, S.W.; Prather, H.B.; Anderson, N.N.; Ho, Y.K.; Hammer, R.E.; Horton, J.D. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and inlivers of parabiotic mice. J. Clin. Invest., 2006, 116(11), 2995-3005.
[http://dx.doi.org/10.1172/JCI29383] [PMID: 17080197]
[34]
Glerup, S.; Schulz, R.; Laufs, U.; Schlüter, K.D. Physiological and therapeutic regulation of PCSK9 activity in cardiovascular disease. Basic Res. Cardiol., 2017, 112(3), 32.
[http://dx.doi.org/10.1007/s00395-017-0619-0] [PMID: 28439730]
[35]
Monami, M.; Sesti, G.; Mannucci, E. PCSK9 inhibitor therapy: A systematic review and meta‐analysis of metabolic and cardiovascular outcomes in patients with diabetes. Diabetes Obes. Metab., 2019, 21(4), 903-908.
[http://dx.doi.org/10.1111/dom.13599] [PMID: 30485622]
[36]
Norata, G.D.; Tavori, H.; Pirillo, A.; Fazio, S.; Catapano, A.L. Biology of proprotein convertase subtilisin kexin 9: Beyond low-density lipoprotein cholesterol lowering. Cardiovasc. Res., 2016, 112(1), 429-442.
[http://dx.doi.org/10.1093/cvr/cvw194] [PMID: 27496869]
[37]
Giunzioni, I.; Tavori, H.; Covarrubias, R.; Major, A.S.; Ding, L.; Zhang, Y.; DeVay, R.M.; Hong, L.; Fan, D.; Predazzi, I.M.; Rashid, S.; Linton, M.F.; Fazio, S. Local effects of human PCSK9 on the atherosclerotic lesion. J. Pathol., 2016, 238(1), 52-62.
[http://dx.doi.org/10.1002/path.4630] [PMID: 26333678]
[38]
Wu, C.Y.; Tang, Z.H.; Jiang, L.; Li, X.F.; Jiang, Z.S.; Liu, L.S. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax–caspase9–caspase3 pathway. Mol. Cell. Biochem., 2012, 359(1-2), 347-358.
[http://dx.doi.org/10.1007/s11010-011-1028-6] [PMID: 21847580]
[39]
Kazi, D.S.; Moran, A.E.; Coxson, P.G.; Penko, J.; Ollendorf, D.A.; Pearson, S.D.; Tice, J.A.; Guzman, D.; Bibbins-Domingo, K. Cost-effectiveness of PCSK9 inhibitor therapy in patients with heterozygous familial hypercholesterolemia or atherosclerotic cardiovascular disease. JAMA, 2016, 316(7), 743-753.
[http://dx.doi.org/10.1001/jama.2016.11004] [PMID: 27533159]
[40]
Peng, W.; Qiang, F.; Peng, W.; Qian, Z.; Ke, Z.; Yi, L.; Jian, Z.; Chongrong, Q. Therapeutic efficacy of PCSK9 monoclonal antibodies in statin-nonresponsive patients with hypercholesterolemia and dyslipidemia: A systematic review and meta-analysis. Int. J. Cardiol., 2016, 222, 119-129.
[http://dx.doi.org/10.1016/j.ijcard.2016.07.239] [PMID: 27494723]
[41]
Colivicchi, F.; Massimo Gulizia, M.; Arca, M.; Luigi Temporelli, P.; Gonzini, L.; Venturelli, V.; Morici, N.; Indolfi, C.; Gabrielli, D.; De Luca, L. Lipid lowering treatment and eligibility for PCSK9 inhibition in post-myocardial infarction patients in Italy: Insights from two contemporary nationwide registries. Cardiovasc. Ther., 2020, 2020, 1-8.
[http://dx.doi.org/10.1155/2020/3856242] [PMID: 31969932]
[42]
Cariou, B.; Dijk, W. EGF-A peptides: A promising strategy for PCSK9 inhibition. Atherosclerosis, 2020, 292, 204-206.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.11.010] [PMID: 31784031]
[43]
Kathiresan, S. A PCSK9 missense variant associated with a reduced risk of early-onset myocardial infarction. N. Engl. J. Med., 2008, 358(21), 2299-2300.
[http://dx.doi.org/10.1056/NEJMc0707445] [PMID: 18499582]
[44]
Ferri, N.; Tibolla, G.; Pirillo, A.; Cipollone, F.; Mezzetti, A.; Pacia, S.; Corsini, A.; Catapano, A.L. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis, 2012, 220(2), 381-386.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.11.026] [PMID: 22176652]
[45]
Ridker, P.M.; Pradhan, A.; MacFadyen, J.G.; Libby, P.; Glynn, R.J. Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: An analysis from the JUPITER trial. Lancet, 2012, 380(9841), 565-571.
[http://dx.doi.org/10.1016/S0140-6736(12)61190-8] [PMID: 22883507]
[46]
Sharotri, V.; Collier, D.M.; Olson, D.R.; Zhou, R.; Snyder, P.M. Regulation of epithelial sodium channel trafficking by proprotein convertase subtilisin/kexin type 9 (PCSK9). J. Biol. Chem., 2012, 287(23), 19266-19274.
[http://dx.doi.org/10.1074/jbc.M112.363382] [PMID: 22493497]
[47]
Norata, G.D.; Pirillo, A.; Ammirati, E.; Catapano, A.L. Emerging role of high density lipoproteins as a player in the immune system. Atherosclerosis, 2012, 220(1), 11-21.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.06.045] [PMID: 21783193]
[48]
Diedrich, G. REVIEW ARTICLE: How does hepatitis C virus enter cells? FEBS J., 2006, 273(17), 3871-3885.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05379.x] [PMID: 16934030]
[49]
Handelsman, Y.; Lepor, N.E. PCSK9 inhibitors in lipid management of patients with diabetes mellitus and high cardiovascular risk: A review. J. Am. Heart Assoc., 2018, 7(13), e008953.
[http://dx.doi.org/10.1161/JAHA.118.008953] [PMID: 29934421]
[50]
Sabatine, M.S. PCSK9 inhibitors: Clinical evidence and implementation. Nat. Rev. Cardiol., 2019, 16(3), 155-165.
[http://dx.doi.org/10.1038/s41569-018-0107-8] [PMID: 30420622]
[51]
Rosenson, R.S.; Hegele, R.A.; Fazio, S.; Cannon, C.P. The evolving future of PCSK9 inhibitors. J. Am. Coll. Cardiol., 2018, 72(3), 314-329.
[http://dx.doi.org/10.1016/j.jacc.2018.04.054] [PMID: 30012326]
[52]
Momtazi, A.A.; Banach, M.; Pirro, M.; Stein, E.A.; Sahebkar, A. PCSK9 and diabetes: Is there a link? Drug Discov. Today, 2017, 22(6), 883-895.
[http://dx.doi.org/10.1016/j.drudis.2017.01.006] [PMID: 28111330]
[53]
Raal, F.J.; Stein, E.A.; Dufour, R.; Turner, T.; Civeira, F.; Burgess, L.; Langslet, G.; Scott, R.; Olsson, A.G.; Sullivan, D.; Hovingh, G.K.; Cariou, B.; Gouni-Berthold, I.; Somaratne, R.; Bridges, I.; Scott, R.; Wasserman, S.M.; Gaudet, D. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): A randomised, double-blind, placebo-controlled trial. Lancet, 2015, 385(9965), 331-340.
[http://dx.doi.org/10.1016/S0140-6736(14)61399-4] [PMID: 25282519]
[54]
Kastelein, J.J.P.; Ginsberg, H.N.; Langslet, G.; Hovingh, G.K.; Ceska, R.; Dufour, R.; Blom, D.; Civeira, F.; Krempf, M.; Lorenzato, C.; Zhao, J.; Pordy, R.; Baccara-Dinet, M.T.; Gipe, D.A.; Geiger, M.J.; Farnier, M. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur. Heart J., 2015, 36(43), ehv370.
[http://dx.doi.org/10.1093/eurheartj/ehv370] [PMID: 26330422]
[55]
Ginsberg, H.N.; Rader, D.J.; Raal, F.J.; Guyton, J.; Lorenzato, C.; Pordy, R.; Baccara-Dinet, M.T.; Stroes, E. ODYSSEY HIGH FH: Efficacy and safety of alirocumab in patients with severe heterozygous familial hypercholesterolemia. Circulation, 2014, 130(23), 2119.
[56]
Wiegman, A.; Gidding, S.S.; Watts, G.F.; Chapman, M.J.; Ginsberg, H.N.; Cuchel, M.; Ose, L.; Averna, M.; Boileau, C.; Borén, J.; Bruckert, E.; Catapano, A.L.; Defesche, J.C.; Descamps, O.S.; Hegele, R.A.; Hovingh, G.K.; Humphries, S.E.; Kovanen, P.T.; Kuivenhoven, J.A.; Masana, L.; Nordestgaard, B.G.; Pajukanta, P.; Parhofer, K.G.; Raal, F.J.; Ray, K.K.; Santos, R.D.; Stalenhoef, A.F.H.; Steinhagen- Thiessen, E.; Stroes, E.S.; Taskinen, M.R.; Tybjærg-Hansen, A.; Wiklund, O. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur. Heart J., 2015, 36(36), 2425-2437.
[http://dx.doi.org/10.1093/eurheartj/ehv157] [PMID: 26009596]
[57]
Gaudet, D.; Langslet, G.; Gidding, S.S.; Luirink, I.K.; Ruzza, A.; Kurtz, C.; Lu, C.; Somaratne, R.; Raal, F.J.; Wiegman, A. Efficacy, safety, and tolerability of evolocumab in pediatric patients with heterozygous familial hypercholesterolemia: Rationale and design of the HAUSER-RCT study. J. Clin. Lipidol., 2018, 12(5), 1199-1207.
[http://dx.doi.org/10.1016/j.jacl.2018.05.007] [PMID: 30318065]
[58]
Cannon, C.P.; Cariou, B.; Blom, D.; McKenney, J.M.; Lorenzato, C.; Pordy, R.; Chaudhari, U.; Colhoun, H.M. Efficacy and safety of aliro-cumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: The ODYSSEY COMBO II randomized controlled trial. Eur. Heart J., 2015, 36(19), 1186-1194.
[http://dx.doi.org/10.1093/eurheartj/ehv028] [PMID: 25687353]
[59]
Bays, H.; Gaudet, D.; Weiss, R.; Ruiz, J.L.; Watts, G.F.; Gouni-Berthold, I.; Robinson, J.; Zhao, J.; Hanotin, C.; Donahue, S. Alirocumab as add-on to atorvastatin versus other lipid treatment strategies: ODYSSEY OPTIONS I randomized trial. J. Clin. Endocrinol. Metab., 2015, 100(8), 3140-3148.
[http://dx.doi.org/10.1210/jc.2015-1520] [PMID: 26030325]
[60]
Bays, H.; Farnier, M.; Gaudet, D.; Weiss, R.; Lima Ruiz, J.; Watts, G.F.; Gouni-Berthold, I.; Robinson, J.G.; Jones, P.H.; Severance, R.; Averna, M. Efficacy and safety of combining alirocumab with atorvastatin or rosuvastatin versus statin intensification or adding ezetimibe in high cardiovascular risk patients: ODYSSEY OPTIONS I and II. Circulation, 2014, 130(23), 2118-2120.
[61]
Mayne, J.; Dewpura, T.; Raymond, A.; Cousins, M.; Chaplin, A.; Lahey, K.A.; LaHaye, S.A.; Mbikay, M.; Ooi, T.; Chrétien, M. Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health Dis., 2008, 7(1), 22.
[http://dx.doi.org/10.1186/1476-511X-7-22] [PMID: 18547436]
[62]
Stroes, E.; Colquhoun, D.; Sullivan, D.; Civeira, F.; Rosenson, R.S.; Watts, G.F.; Bruckert, E.; Cho, L.; Dent, R.; Knusel, B.; Xue, A.; Scott, R.; Wasserman, S.M.; Rocco, M. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: The GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J. Am. Coll. Cardiol., 2014, 63(23), 2541-2548.
[http://dx.doi.org/10.1016/j.jacc.2014.03.019] [PMID: 24694531]
[63]
Moriarty, P.M.; Thompson, P.D.; Cannon, C.P.; Guyton, J.R.; Bergeron, J.; Zieve, F.J.; Bruckert, E.; Jacobson, T.A.; Kopecky, S.L.; Baccara-Dinet, M.T.; Du, Y.; Pordy, R.; Gipe, D.A. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. J. Clin. Lipidol., 2015, 9(6), 758-769.
[http://dx.doi.org/10.1016/j.jacl.2015.08.006] [PMID: 26687696]
[64]
Burke, A.C.; Dron, J.S.; Hegele, R.A.; Huff, M.W. PCSK9: regulation and target for drug development for dyslipidemia. Annu. Rev. Pharmacol. Toxicol., 2017, 57(1), 223-244.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-104944] [PMID: 27575716]
[65]
Sible, A.M.; Nawarskas, J.J.; Anderson, J.R. PCSK9 Inhibitors. Cardiology, 2016, 24(3), 141-152.
[PMID: 26886466]
[66]
Dias, C.S.; Shaywitz, A.J.; Wasserman, S.M.; Smith, B.P.; Gao, B.; Stolman, D.S.; Crispino, C.P.; Smirnakis, K.V.; Emery, M.G.; Colbert, A.; Gibbs, J.P.; Retter, M.W.; Cooke, B.P.; Uy, S.T.; Matson, M.; Stein, E.A. Effects of AMG 145 on low-density lipoprotein cholesterol levels: Results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J. Am. Coll. Cardiol., 2012, 60(19), 1888-1898.
[http://dx.doi.org/10.1016/j.jacc.2012.08.986] [PMID: 23083772]
[67]
Stein, E.A.; Mellis, S.; Yancopoulos, G.D.; Stahl, N.; Logan, D.; Smith, W.B.; Lisbon, E.; Gutierrez, M.; Webb, C.; Wu, R.; Du, Y.; Kranz, T.; Gasparino, E.; Swergold, G.D. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N. Engl. J. Med., 2012, 366(12), 1108-1118.
[http://dx.doi.org/10.1056/NEJMoa1105803] [PMID: 22435370]
[68]
Mitchell, T.; Chao, G.; Sitkoff, D.; Lo, F.; Monshizadegan, H.; Meyers, D.; Low, S.; Russo, K.; DiBella, R.; Denhez, F.; Gao, M.; Myers, J.; Duke, G.; Witmer, M.; Miao, B.; Ho, S.P.; Khan, J.; Parker, R.A. Pharmacologic profile of the Adnectin BMS-962476, a small protein biologic alternative to PCSK9 antibodies for low-density lipoprotein lowering. J. Pharmacol. Exp. Ther., 2014, 350(2), 412-424.
[http://dx.doi.org/10.1124/jpet.114.214221] [PMID: 24917546]
[69]
Fitzgerald, K.; Frank-Kamenetsky, M.; Shulga-Morskaya, S.; Liebow, A.; Bettencourt, B.R.; Sutherland, J.E.; Hutabarat, R.M.; Clausen, V.A.; Karsten, V.; Cehelsky, J.; Nochur, S.V.; Kotelianski, V.; Horton, J.; Mant, T.; Chiesa, J.; Ritter, J.; Munisamy, M.; Vaishnaw, A.K.; Gollob, J.A.; Simon, A. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: A randomised, single-blind, placebo-controlled, phase 1 trial. Lancet, 2014, 383(9911), 60-68.
[http://dx.doi.org/10.1016/S0140-6736(13)61914-5] [PMID: 24094767]
[70]
Wiciński, M.; Żak, J.; Malinowski, B.; Popek, G.; Grześk, G. PCSK9 signaling pathways and their potential importance in clinical practice. EPMA J., 2017, 8(4), 391-402.
[http://dx.doi.org/10.1007/s13167-017-0106-6] [PMID: 29209441]
[71]
Xia, X.; Peng, Z.; Gu, H.; Wang, M.; Wang, G.; Zhang, D. Regulation of PCSK9 expression and function: Mechanisms and therapeutic implications. Front. Cardiovasc. Med., 2021, 8, 764038.
[http://dx.doi.org/10.3389/fcvm.2021.764038] [PMID: 34782856]
[72]
Huang, G.; Lu, X.; Duan, Z.; Zhang, K.; Xu, L.; Bao, H.; Xiong, X.; Lin, M.; Li, C.; Li, Y.; Zhou, H.; Luo, Z.; Li, W. PCSK9 Knockdown can improve myocardial ischemia/reperfusion injury by inhibiting autophagy. Cardiovasc. Toxicol., 2022, 22(12), 951-961.
[http://dx.doi.org/10.1007/s12012-022-09771-5] [PMID: 36342620]
[73]
Huang, G.; Lu, X.; Zhou, H.; Li, R.; Huang, Q.; Xiong, X.; Luo, Z.; Li, W. PCSK9 inhibition protects against myocardial ischemia-reperfusion injury via suppressing autophagy. Microvasc. Res., 2022, 142, 104371.
[http://dx.doi.org/10.1016/j.mvr.2022.104371] [PMID: 35460665]
[74]
Sahebkar, A. Circulating levels of proprotein convertase subtilisin kexin type 9 are elevated by fibrate therapy: A systematic review and meta-analysis of clinical trials. Cardiology, 2014, 22(6), 306-312.
[PMID: 24614537]
[75]
Zhang, H.; Liu, Y.; Wang, L.; Li, Z.; Zhang, H.; Wu, J.; Rahman, N.; Guo, Y.; Li, D.; Li, N.; Huhtaniemi, I.; Tsang, S.Y.; Gao, G.F.; Li, X. Differential effects of estrogen/androgen on the prevention of nonalcoholic fatty liver disease in the male rat. J. Lipid Res., 2013, 54(2), 345-357.
[http://dx.doi.org/10.1194/jlr.M028969] [PMID: 23175777]
[76]
Ma, D.; Liu, T.; Chang, L.; Rui, C.; Xiao, Y.; Li, S.; Hogenesch, J.B.; Chen, Y.E.; Lin, J.D. The liver clock controls cholesterol homeostasis through Trib1 protein-mediated regulation of PCSK9/low density lipoprotein receptor (LDLR) axis. J. Biol. Chem., 2015, 290(52), 31003-31012.
[http://dx.doi.org/10.1074/jbc.M115.685982] [PMID: 26547624]
[77]
Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; Cho, L.; Kastelein, J.J.P.; Koenig, W.; Somaratne, R.; Kassahun, H.; Yang, J.; Wasserman, S.M.; Scott, R.; Ungi, I.; Podolec, J.; Ophuis, A.O.; Cornel, J.H.; Borgman, M.; Brennan, D.M.; Nissen, S.E. Effect of evolocumab on progression of coronary disease in statin-treated patients: The GLAGOV randomized clinical trial. JAMA, 2016, 316(22), 2373-2384.
[http://dx.doi.org/10.1001/jama.2016.16951] [PMID: 27846344]
[78]
Zanchin, C.; Koskinas, K.C.; Ueki, Y.; Losdat, S.; Häner, J.D.; Bär, S.; Otsuka, T.; Inderkum, A.; Jensen, M.R.J.; Lonborg, J.; Fahrni, G.; Ondracek, A.S.; Daemen, J.; van Geuns, R.J.; Iglesias, J.F.; Matter, C.M.; Spirk, D.; Juni, P.; Mach, F.; Heg, D.; Engstrom, T.; Lang, I.; Windecker, S.; Räber, L. Effects of the PCSK9 antibody alirocumab on coronary atherosclerosis in patients with acute myocardial infarction: A serial, multivessel, intravascular ultrasound, near-infrared spectroscopy and optical coherence tomography imaging study–Rationale and design of the PACMAN-AMI trial. Am. Heart J., 2021, 238, 33-44.
[http://dx.doi.org/10.1016/j.ahj.2021.04.006] [PMID: 33951415]
[79]
Roth, E.M.; Taskinen, M.R.; Ginsberg, H.N.; Kastelein, J.J.P.; Colhoun, H.M.; Robinson, J.G.; Merlet, L.; Pordy, R.; Baccara-Dinet, M.T. Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: Results of a 24week, double-blind, randomized Phase 3 trial. Int. J. Cardiol., 2014, 176(1), 55-61.
[http://dx.doi.org/10.1016/j.ijcard.2014.06.049] [PMID: 25037695]
[80]
Cho, L.; Dent, R.; Stroes, E.S.G.; Stein, E.A.; Sullivan, D.; Ruzza, A.; Flower, A.; Somaratne, R.; Rosenson, R.S. Persistent safety and efficacy of evolocumab in patients with statin intolerance: a subset analysis of the OSLER open-label extension studies. Cardiovasc. Drugs Ther., 2018, 32(4), 365-372.
[http://dx.doi.org/10.1007/s10557-018-6817-7] [PMID: 30073585]
[81]
Ginsberg, H.N.; Rader, D.J.; Raal, F.J.; Guyton, J.R.; Baccara-Dinet, M.T.; Lorenzato, C.; Pordy, R.; Stroes, E. Efficacy and safety of alirocumab in patients with heterozygous familial hypercholesterolemia and LDL-C of 160 mg/dl or higher. Cardiovasc. Drugs Ther., 2016, 30(5), 473-483.
[http://dx.doi.org/10.1007/s10557-016-6685-y] [PMID: 27618825]
[82]
Mehta, S.R.; Pare, G.; Lonn, E.M.; Jolly, S.S.; Natarajan, M.K.; Pinilla-Echeverri, N.; Schwalm, J.D.; Sheth, T.N.; Sibbald, M.; Tsang, M.; Valettas, N.; Velianou, J.L.; Lee, S.F.; Ferdous, T.; Nauman, S.; Nguyen, H.; McCready, T.; McQueen, M.J. Effects of routine early treatment with PCSK9 inhibitors in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: a randomised, double-blind, sham-controlled trial. EuroIntervention, 2022, 18(11), e888-e896.
[http://dx.doi.org/10.4244/EIJ-D-22-00735] [PMID: 36349701]
[83]
Rosenson, R.S.; Jacobson, T.A.; Preiss, D.; Djedjos, C.S.; Dent, R.; Bridges, I.; Miller, M. Efficacy and safety of the PCSK9 inhibitor evolocumab in patients with mixed hyperlipidemia. Cardiovasc. Drugs Ther., 2016, 30(3), 305-313.
[http://dx.doi.org/10.1007/s10557-016-6666-1] [PMID: 27240673]
[84]
Lin, P.L.; Wu, Y.W.; Lin, C.F.; Yeh, H.I.; Chang, W.T.; Charng, M.J.; Huang, P.H.; Lin, C.C.; Lin, T.H.; Lin, W.W.; Hsieh, I.C.; Kuo, F.Y.; Chen, C.P.; Li, Y.H. Real-world analyses of the treatment conditions in patients initiating proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor in Taiwan. J. Atheroscler. Thromb., 2022, 63789.
[http://dx.doi.org/10.5551/jat.63789] [PMID: 36418110]
[85]
Navar, A.M.; Taylor, B.; Mulder, H.; Fievitz, E.; Monda, K.L.; Fievitz, A.; Maya, J.F.; López, J.A.G.; Peterson, E.D. Association of prior authorization and out-of-pocket costs with patient access to PCSK9 inhibitor therapy. JAMA Cardiol., 2017, 2(11), 1217-1225.
[http://dx.doi.org/10.1001/jamacardio.2017.3451] [PMID: 28973087]
[86]
Chng, B.L.K.; Heng, W.M.P.; Soon, Y.M.; Hon, J.S.; Lau, Y.H.; Tan, R.S.; Tan, J.W.C. Safety, adherence and efficacy of PCSK9 inhibitors: A retrospective real-world study. Proceedings of Singapore Healthcare, 2022, 31
[http://dx.doi.org/10.1177/20101058221144115]
[87]
Broder, M.S.; Zambrano, J.M.; Lee, J.; Marken, R.S. Systematic bias in predictions of new drugs’ budget impact: Analysis of a sample of recent US drug launches. Curr. Med. Res. Opin., 2018, 34(5), 765-773.
[http://dx.doi.org/10.1080/03007995.2017.1320276] [PMID: 28418263]
[88]
Blais, J.E.; Wei, Y.; Knapp, M.; Wong, I.C.K.; Wei, L.; Chan, E.W. Trends in PCSK9 inhibitor utilization in the United States, Europe, and other countries: An analysis of international sales data. Am. Heart J., 2022, 248, 13-20.
[http://dx.doi.org/10.1016/j.ahj.2022.02.008] [PMID: 35240102]
[89]
Hao, Q; Aertgeerts, B; Guyatt, G; Bekkering, GE; Vandvik, PO; Khan, SU; Rodondi, N; Jackson, R; Reny, JL; Al Ansary, L; Van Driel, M PCSK9 inhibitors and ezetimibe for the reduction of cardiovascular events: A clinical practice guideline with risk-stratified recommendations. BMJ, 2022, 4, 377.
[90]
Verma, A.; Aggarwal, K.; Agrawal, R.; Pradhan, K.; Goyal, A. Molecular mechanisms regulating the pharmacological actions of icariin with special focus on PI3K-AKT and Nrf-2 signaling pathways. Mol. Biol. Rep., 2022, 49(9), 9023-9032.
[http://dx.doi.org/10.1007/s11033-022-07778-3] [PMID: 35941411]
[91]
Agrawal, N.; Mujwar, S.; Goyal, A.; Gupta, J.K. Phytoestrogens as potential antiandrogenic agents against prostate cancer: An in silico analysis. Lett. Drug Des. Discov., 2022, 19(1), 69-78.
[http://dx.doi.org/10.2174/1570180818666210813121431]
[92]
Goyal, A.; Verma, A.; Dubey, N.; Raghav, J.; Agrawal, A. Naringenin: A prospective therapeutic agent for Alzheimer’s and Parkinson’s disease. J. Food Biochem., 2022, 46(12), e14415.
[http://dx.doi.org/10.1111/jfbc.14415] [PMID: 36106706]
[93]
Goyal, A.; Solanki, A.; Verma, A. Preclinical evidence-based review on therapeutic potential of eugenol for the treatment of brain disorders. Curr. Mol. Med., 2023, 23(5), 390-400.
[http://dx.doi.org/10.2174/1566524022666220525145521] [PMID: 35619280]
[94]
Gupta, J.; Gupta, R. PCSK9 Biomarker and Key Modulator for Cardiovascular Disorders: Heralding a New Therapeutic Era and Their Future Perspectives. Curr. Mol. Pharmacol., 2023, 16(8), 832-854.
[PMID: 36476440]