Acute Bronchiolitis: The Less, the Better?

Page: [216 - 223] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Acute bronchiolitis is a viral infection of the lower respiratory tract affecting infants aged under 12 months, variably presenting with respiratory distress, diffuse crackles and inflammatory wheezing. The main causative agent is Respiratory Syncytial Virus (RSV). The diagnosis is clinical and treatment mainly supportive. Despite the availability of more than 30 international guidelines, consistent management recommendations are lacking and considerable variability in patients’ care persists among different providers.

Objective: To review and describe current knowledge about epidemiology, physiopathology, clinic, diagnosis and management of acute bronchiolitis, with particular emphasis on updated evidence and future perspectives in terms of treatment and prevention.

Methods and Results: We searched Cochrane for systematic reviews and PubMed for scientific articles published in the last 10 years, using a combination of the following search terms: “bronchiolitis”, “respiratory syncytial virus”, “epidemiology”, “risk factors”, “severity”, “diagnosis”, “clinic”, “diagnostic imaging”, “management”, “asthma”, “wheezing”, “bronchodilator”, “steroids”, “hypertonic saline”, “oxygen”, “blood gas analysis”, “HHHFNC”, “rehydration”, “enteral feeding”, “parenteral hydration”, “prevention”, “vaccine” and “COVID-19 or SARS-CoV2”. We accordingly performed a deep and extensive selection of the most updated and considerable literature on the matter, summarizing the most significant evidence concerning all aspects of acute bronchiolitis (epidemiology, clinic, diagnosis, management and prevention). Furthermore, we examined references and available guidelines from UK, USA, Canada, Italy and Spain. Results are extensively discussed below.

Conclusion: Although acute bronchiolitis has been a widely known disease for decades, its therapeutic approach remained unchanged and essentially limited to respiratory and metabolic support. Despite the abundance of studies, there is no significant evidence concerning therapeutic alternatives (e.g. steroids, inhaled hypertonic solution), which are therefore not recommended. According to most recent data, “acute bronchiolitis” definition encompasses a plethora of different clinical entities related to each subject’s genetic and immune predisposition. Therefore, future research should focus on the precise characterization of such subcategories in order to individualize therapeutic management and ensure the most appropriate evidence-based care.

Graphical Abstract

[1]
Shi T, McAllister DA, O’Brien KL, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: A systematic review and modelling study. Lancet 2017; 390(10098): 946-58.
[http://dx.doi.org/10.1016/S0140-6736(17)30938-8] [PMID: 28689664]
[2]
Nicolai A, Ferrara M, Schiavariello C, et al. Viral bronchiolitis in children: A common condition with few therapeutic options. Early Hum Dev 2013; 89(Suppl. 3): S7-S11.
[http://dx.doi.org/10.1016/j.earlhumdev.2013.07.016] [PMID: 23972293]
[3]
Sander B, Finkelstein Y, Lu H, et al. Healthcare cost attributable to bronchiolitis: A population-based cohort study. PLoS One 2021; 16(12): e0260809.
[http://dx.doi.org/10.1371/journal.pone.0260809] [PMID: 34855892]
[4]
Vandini S, Biagi C, Lanari M. Respiratory syncytial virus: The influence of serotype and genotype variability on clinical course of infection. Int J Mol Sci 2017; 18(8): 1717.
[http://dx.doi.org/10.3390/ijms18081717] [PMID: 28783078]
[5]
Silver AH, Nazif JM. Bronchiolitis. Pediatr Rev 2019; 40(11): 568-76.
[http://dx.doi.org/10.1542/pir.2018-0260] [PMID: 31676530]
[6]
Bohmwald K, Espinoza J, Rey-Jurado E, et al. Human respiratory syncytial virus: Infection and pathology. Semin Respir Crit Care Med 2016; 37(4): 522-37.
[http://dx.doi.org/10.1055/s-0036-1584799] [PMID: 27486734]
[7]
García CG, Bhore R, Soriano-Fallas A, et al. Risk factors in children hospitalized with RSV bronchiolitis versus non-RSV bronchiolitis. Pediatrics 2010; 126(6): e1453-60.
[http://dx.doi.org/10.1542/peds.2010-0507] [PMID: 21098154]
[8]
Milani GP, Bollati V, Ruggiero L, et al. Bronchiolitis and SARS-CoV-2. Arch Dis Child 2021; 106(10): 999-1001.
[http://dx.doi.org/10.1136/archdischild-2020-321108] [PMID: 33707224]
[9]
Andina-Martinez D, Alonso-Cadenas JA, Cobos-Carrascosa E, et al. SARS-CoV-2 acute bronchiolitis in hospitalized children: Neither frequent nor more severe. Pediatr Pulmonol 2022; 57(1): 57-65.
[http://dx.doi.org/10.1002/ppul.25731] [PMID: 34664782]
[10]
Flores-Pérez P, Gerig N, Cabrera-López MI, de Unzueta-Roch JL, del Rosal T, Calvo C. Acute bronchiolitis during the COVID-19 pandemic. Enferm Infecc Microbiol Clin 2022; 40(10): 572-5.
[http://dx.doi.org/10.1016/j.eimc.2021.06.012] [PMID: 34219854]
[11]
Petrarca L, Nenna R, Frassanito A, et al. Acute bronchiolitis: Influence of viral co-infection in infants hospitalized over 12 consecutive epidemic seasons. J Med Virol 2018; 90(4): 631-8.
[http://dx.doi.org/10.1002/jmv.24994] [PMID: 29226974]
[12]
Fretzayas A, Moustaki M. Etiology and clinical features of viral bronchiolitis in infancy. World J Pediatr 2017; 13(4): 293-9.
[http://dx.doi.org/10.1007/s12519-017-0031-8] [PMID: 28470580]
[13]
Janet S, Broad J, Snape MD. Respiratory syncytial virus seasonality and its implications on prevention strategies. Hum Vaccin Immunother 2018; 14(1): 234-44.
[http://dx.doi.org/10.1080/21645515.2017.1403707] [PMID: 29194014]
[14]
Barbati F, Moriondo M, Pisano L, et al. Epidemiology of respiratory syncytial virus-related hospitalization over a 5-year period in italy: Evaluation of seasonality and age distribution before vaccine Introduction. Vaccines 2020; 8(1): 15.
[http://dx.doi.org/10.3390/vaccines8010015] [PMID: 31947976]
[15]
Van Brusselen D, De Troeyer K, ter Haar E, et al. Bronchiolitis in COVID-19 times: A nearly absent disease? Eur J Pediatr 2021; 180(6): 1969-73.
[http://dx.doi.org/10.1007/s00431-021-03968-6] [PMID: 33517482]
[16]
Jiang X, Wang T, Dai G, et al. Clinical characteristics and etiology of children with bronchiolitis before and during the COVID-19 pandemic in Suzhou, China. Front Pediatr 2022; 10: 974769.
[http://dx.doi.org/10.3389/fped.2022.974769] [PMID: 36452360]
[17]
Nenna R, Matera L, Pierangeli A, et al. First COVID-19 lockdown resulted in most respiratory viruses disappearing among hospitalised children, with the exception of rhinoviruses. Acta Paediatr 2022; 111(7): 1399-403.
[http://dx.doi.org/10.1111/apa.16326] [PMID: 35266576]
[18]
Foley DA, Yeoh DK, Minney-Smith CA, et al. The Interseasonal resurgence of respiratory syncytial virus in australian children following the reduction of coronavirus disease 2019-related public health measures. Clin Infect Dis 2021; 73(9): e2829-30.
[http://dx.doi.org/10.1093/cid/ciaa1906] [PMID: 33594407]
[19]
Bermúdez Barrezueta L, Gutiérrez Zamorano M, López-Casillas P, Brezmes-Raposo M, Sanz Fernández I, Pino Vázquez MA. Influence of the COVID-19 pandemic on the epidemiology of acute bronchiolitis. Enferm Infecc Microbiol Clin 2023; 41(6): 348-51.
[20]
Gill PJ, Chanchlani N, Mahant S. Bronchiolitis. CMAJ 2022; 194(6): E216.
[http://dx.doi.org/10.1503/cmaj.211810] [PMID: 35165133]
[21]
Guitart C, Bobillo-Perez S, Alejandre C, et al. Bronchiolitis, epidemiological changes during the SARS-CoV-2 pandemic. BMC Infect Dis 2022; 22(1): 84.
[http://dx.doi.org/10.1186/s12879-022-07041-x] [PMID: 35073855]
[22]
Fan R, Wen B, Liu W, et al. Altered regulatory cytokine profiles in cases of pediatric respiratory syncytial virus infection. Cytokine 2018; 103: 57-62.
[http://dx.doi.org/10.1016/j.cyto.2017.12.028] [PMID: 29324262]
[23]
Sebina I, Phipps S. The contribution of neutrophils to the pathogenesis of RSV bronchiolitis. Viruses 2020; 12(8): 808.
[http://dx.doi.org/10.3390/v12080808] [PMID: 32726921]
[24]
Dalziel SR, Haskell L, O’Brien S, et al. Bronchiolitis. Lancet 2022; 400(10349): 392-406.
[http://dx.doi.org/10.1016/S0140-6736(22)01016-9] [PMID: 35785792]
[25]
Eber E, Midulla F. ERS Handbook of Paediatric Respiratory Medicine. (2nd ed..), European Respiratory Society 2021.
[http://dx.doi.org/10.1183/9781849841313.eph01]
[26]
Mitri EJ, Zheng DX, Garg V, et al. Blood eosinophils, specific immunoglobulin E, and bronchiolitis severity. Pediatr Pulmonol 2021; 56(9): 2997-3004.
[http://dx.doi.org/10.1002/ppul.25543] [PMID: 34156171]
[27]
Raita Y, Pérez-Losada M, Freishtat RJ, et al. Integrated omics endotyping of infants with respiratory syncytial virus bronchiolitis and risk of childhood asthma. Nat Commun 2021; 12(1): 3601.
[http://dx.doi.org/10.1038/s41467-021-23859-6] [PMID: 34127671]
[28]
Jartti T, Smits HH, Bønnelykke K, et al. Bronchiolitis needs a revisit: Distinguishing between virus entities and their treatments. Allergy 2019; 74(1): 40-52.
[http://dx.doi.org/10.1111/all.13624] [PMID: 30276826]
[29]
Dumas O, Mansbach JM, Jartti T, et al. A clustering approach to identify severe bronchiolitis profiles in children. Thorax 2016; 71(8): 712-8.
[http://dx.doi.org/10.1136/thoraxjnl-2016-208535] [PMID: 27339060]
[30]
Cangiano G, Nenna R, Frassanito A, et al. Bronchiolitis: Analysis of 10 consecutive epidemic seasons. Pediatr Pulmonol 2016; 51(12): 1330-5.
[http://dx.doi.org/10.1002/ppul.23476] [PMID: 27228123]
[31]
Petrarca L, Nenna R, Di Mattia G, et al. Bronchiolitis phenotypes identified by latent class analysis may influence the occurrence of respiratory sequelae. Pediatr Pulmonol 2022; 57(3): 616-22.
[http://dx.doi.org/10.1002/ppul.25799] [PMID: 34931488]
[32]
Schroeder AR, Mansbach JM, Stevenson M, et al. Apnea in children hospitalized with bronchiolitis. Pediatrics 2013; 132(5): e1194-201.
[http://dx.doi.org/10.1542/peds.2013-1501] [PMID: 24101759]
[33]
National Institute for Health and Care Excellence (NICE). Bronchiolitis in children: Diagnosis and management. 2021. Available from:https://www.nice.org.uk/guidance/ng9 (cited: Dec 18, 2022)
[34]
Florin TA, Plint AC, Zorc JJ. Viral bronchiolitis. Lancet 2017; 389(10065): 211-24.
[http://dx.doi.org/10.1016/S0140-6736(16)30951-5] [PMID: 27549684]
[35]
Mansbach JM, Clark S, Piedra PA, et al. Hospital course and discharge criteria for children hospitalized with bronchiolitis. J Hosp Med 2015; 10(4): 205-11.
[http://dx.doi.org/10.1002/jhm.2318] [PMID: 25627657]
[36]
Hancock DG, Charles-Britton B, Dixon DL, Forsyth KD. The heterogeneity of viral bronchiolitis: A lack of universal consensus definitions. Pediatr Pulmonol 2017; 52(9): 1234-40.
[http://dx.doi.org/10.1002/ppul.23750] [PMID: 28672069]
[37]
Rodriguez-Martinez CE, Sossa-Briceño MP, Nino G. Systematic review of instruments aimed at evaluating the severity of bronchiolitis. Paediatr Respir Rev 2018; 25: 43-57.
[PMID: 28258885]
[38]
Midulla F, Petrarca L, Frassanito A, Di Mattia G, Zicari AM, Nenna R. Bronchiolitis clinics and medical treatment. Minerva Pediatr 2018; 70(6): 600-11.
[http://dx.doi.org/10.23736/S0026-4946.18.05334-3] [PMID: 30334624]
[39]
Friedman JN, Davis T, Somaskanthan A, Ma A. Avoid doing chest x rays in infants with typical bronchiolitis. BMJ 2021; 375: e064132.
[http://dx.doi.org/10.1136/bmj-2021-064132] [PMID: 34686495]
[40]
Sarmiento L, Rojas-Soto GE, Rodríguez-Martínez CE. Predictors of inappropriate use of diagnostic tests and management of bronchiolitis. BioMed Res Int 2017; 2017: 1-6.
[http://dx.doi.org/10.1155/2017/9730696] [PMID: 28758127]
[41]
Supino MC, Buonsenso D, Scateni S, et al. Point-of-care lung ultrasound in infants with bronchiolitis in the pediatric emergency department: A prospective study. Eur J Pediatr 2019; 178(5): 623-32.
[http://dx.doi.org/10.1007/s00431-019-03335-6] [PMID: 30747262]
[42]
La Regina DP, Bloise S, Pepino D, et al. Lung ultrasound in bronchiolitis. Pediatr Pulmonol 2021; 56(1): 234-9.
[http://dx.doi.org/10.1002/ppul.25156] [PMID: 33151023]
[43]
Stollar F, Alcoba G, Gervaix A, Argiroffo CB. Virologic testing in bronchiolitis: Does it change management decisions and predict outcomes? Eur J Pediatr 2014; 173(11): 1429-35.
[http://dx.doi.org/10.1007/s00431-014-2334-2] [PMID: 24858463]
[44]
Librizzi J, McCulloh R, Koehn K, Alverson B. Appropriateness of testing for serious bacterial infection in children hospitalized with bronchiolitis. Hosp Pediatr 2014; 4(1): 33-8.
[http://dx.doi.org/10.1542/hpeds.2013-0073] [PMID: 24435599]
[45]
McDaniel CE, Ralston S, Lucas B, Schroeder AR. Association of diagnostic criteria with urinary tract infection prevalence in bronchiolitis. JAMA Pediatr 2019; 173(3): 269-77.
[http://dx.doi.org/10.1001/jamapediatrics.2018.5091] [PMID: 30688987]
[46]
Mahant S, Wahi G, Bayliss A, et al. Intermittent vs continuous pulse oximetry in hospitalized infants with stabilized bronchiolitis. JAMA Pediatr 2021; 175(5): 466-74.
[http://dx.doi.org/10.1001/jamapediatrics.2020.6141] [PMID: 33646286]
[47]
Nagakumar P, Doull I. Current therapy for bronchiolitis. Arch Dis Child 2012; 97(9): 827-30.
[http://dx.doi.org/10.1136/archdischild-2011-301579] [PMID: 22734014]
[48]
Oakley E, Borland M, Neutze J, et al. Nasogastric hydration versus intravenous hydration for infants with bronchiolitis: A randomised trial. Lancet Respir Med 2013; 1(2): 113-20.
[http://dx.doi.org/10.1016/S2213-2600(12)70053-X] [PMID: 24429091]
[49]
Oakley E, Bata S, Rengasamy S, et al. Nasogastric hydration in infants with bronchiolitis less than 2 months of age. J Pediatr 2016; 178: 241-245.e1.
[http://dx.doi.org/10.1016/j.jpeds.2016.07.012] [PMID: 27522439]
[50]
Van Ginderdeuren F, Vandenplas Y, Deneyer M, Vanlaethem S, Buyl R, Kerckhofs E. Effectiveness of airway clearance techniques in children hospitalized with acute bronchiolitis. Pediatr Pulmonol 2017; 52(2): 225-31.
[http://dx.doi.org/10.1002/ppul.23495] [PMID: 27254132]
[51]
Cunningham S, Rodriguez A, Adams T, et al. Oxygen saturation targets in infants with bronchiolitis (BIDS): A double-blind, randomised, equivalence trial. Lancet 2015; 386(9998): 1041-8.
[http://dx.doi.org/10.1016/S0140-6736(15)00163-4] [PMID: 26382998]
[52]
Lin J, Zhang Y, Xiong L, Liu S, Gong C, Dai J. High-flow nasal cannula therapy for children with bronchiolitis: A systematic review and meta-analysis. Arch Dis Child 2019; 104(6): 564-76.
[http://dx.doi.org/10.1136/archdischild-2018-315846] [PMID: 30655267]
[53]
O’Brien S, Craig S, Babl FE, Borland ML, Oakley E, Dalziel SR. ‘Rational use of high-flow therapy in infants with bronchiolitis. What do the latest trials tell us?’ A paediatric research in emergency departments international collaborative perspective. J Paediatr Child Health 2019; 55(7): 746-52.
[http://dx.doi.org/10.1111/jpc.14496] [PMID: 31270867]
[54]
Durand P, Guiddir T, Kyheng C, et al. A randomised trial of high-flow nasal cannula in infants with moderate bronchiolitis. Eur Respir J 2020; 56(1): 1901926.
[http://dx.doi.org/10.1183/13993003.01926-2019] [PMID: 32381496]
[55]
Kepreotes E, Whitehead B, Attia J, et al. High-flow warm humidified oxygen versus standard low-flow nasal cannula oxygen for moderate bronchiolitis (HFWHO RCT): An open, phase 4, randomised controlled trial. Lancet 2017; 389(10072): 930-9.
[http://dx.doi.org/10.1016/S0140-6736(17)30061-2] [PMID: 28161016]
[56]
Ralston SL. High-flow nasal cannula therapy for pediatric patients with bronchiolitis. JAMA Pediatr 2020; 174(7): 635-6.
[http://dx.doi.org/10.1001/jamapediatrics.2020.0040] [PMID: 32202628]
[57]
Dafydd C, Saunders BJ, Kotecha SJ, Edwards MO. Efficacy and safety of high flow nasal oxygen for children with bronchiolitis: Systematic review and meta-analysis. BMJ Open Respir Res 2021; 8(1): e000844.
[http://dx.doi.org/10.1136/bmjresp-2020-000844] [PMID: 34326153]
[58]
Tortosa F, Izcovich A, Carrasco G, Varone G, Haluska P, Sanguine V. High-flow oxygen nasal cannula for treating acute bronchiolitis in infants: A systematic review and meta-analysis. Medwave 2021; 21(4): e8190.
[http://dx.doi.org/10.5867/medwave.2021.04.8190] [PMID: 34086669]
[59]
Lipshaw MJ, Florin TA. “Don’t Just Do Something, Stand There”: Embracing deimplementation of bronchiolitis therapeutics. Pediatrics 2021; 147(5): e2020048645.
[http://dx.doi.org/10.1542/peds.2020-048645] [PMID: 33893228]
[60]
Elliott SA, Gaudet LA, Fernandes RM, et al. Comparative efficacy of bronchiolitis interventions in acute care: A network meta-analysis. Pediatrics 2021; 147(5): e2020040816.
[http://dx.doi.org/10.1542/peds.2020-040816] [PMID: 33893229]
[61]
Nordal EB, Granslo HN, Esaiassen E, Leknessund CBB, Forsdahl BA. Bronchiolitis should not be treated with glucocorticoids or antibiotics. Tidsskr Nor Laegeforen 2021; 141(2)
[http://dx.doi.org/10.4045/tidsskr.21.0862] [PMID: 35107946]
[62]
Heikkilä P, Korppi M. Hypertonic saline in bronchiolitis: An updated meta-analysis. Arch Dis Child 2021; 106(1): 102.2-.
[http://dx.doi.org/10.1136/archdischild-2020-319048] [PMID: 32213483]
[63]
Plint AC, Johnson DW, Patel H, et al. Epinephrine and dexamethasone in children with bronchiolitis. N Engl J Med 2009; 360(20): 2079-89.
[http://dx.doi.org/10.1056/NEJMoa0900544] [PMID: 19439742]
[64]
Manti S, Staiano A, Orfeo L, et al. UPDATE - 2022 Italian guidelines on the management of bronchiolitis in infants. Ital J Pediatr 2023; 49(1): 19.
[http://dx.doi.org/10.1186/s13052-022-01392-6] [PMID: 36765418]
[65]
Gadomski AM, Scribani MB. Bronchodilators for bronchiolitis. Cochrane Database Syst Rev 2014; 2014(6): CD001266.
[PMID: 24937099]
[66]
Chung A, Reeves RM, Nair H, et al. Hospital admission trends for bronchiolitis in Scotland, 2001-2016: A national retrospective observational study. J Infect Dis 2020; 222(Suppl. 7): S592-8.
[http://dx.doi.org/10.1093/infdis/jiaa323] [PMID: 32794556]
[67]
Hasegawa K, Mansbach JM, Ajami NJ, et al. Association of nasopharyngeal microbiota profiles with bronchiolitis severity in infants hospitalised for bronchiolitis. Eur Respir J 2016; 48(5): 1329-39.
[http://dx.doi.org/10.1183/13993003.00152-2016] [PMID: 27799386]
[68]
Norlander AE, Peebles RS Jr. Innate type 2 responses to respiratory syncytial virus infection. Viruses 2020; 12(5): 521.
[http://dx.doi.org/10.3390/v12050521] [PMID: 32397226]
[69]
Blanken MO, Rovers MM, Molenaar JM, et al. Respiratory syncytial virus and recurrent wheeze in healthy preterm infants. N Engl J Med 2013; 368(19): 1791-9.
[http://dx.doi.org/10.1056/NEJMoa1211917] [PMID: 23656644]
[70]
Brunwasser SM, Snyder BM, Driscoll AJ, et al. Assessing the strength of evidence for a causal effect of respiratory syncytial virus lower respiratory tract infections on subsequent wheezing illness: A systematic review and meta-analysis. Lancet Respir Med 2020; 8(8): 795-806.
[http://dx.doi.org/10.1016/S2213-2600(20)30109-0] [PMID: 32763206]
[71]
Midulla F, Nicolai A, Ferrara M, et al. Recurrent wheezing 36 months after bronchiolitis is associated with rhinovirus infections and blood eosinophilia. Acta Paediatr 2014; 103(10): 1094-9.
[http://dx.doi.org/10.1111/apa.12720] [PMID: 24948158]
[72]
Wang G, Han D, Jiang Z, Li M, Yang S, Liu L. Association between early bronchiolitis and the development of childhood asthma: A meta-analysis. BMJ Open 2021; 11(5): e043956.
[http://dx.doi.org/10.1136/bmjopen-2020-043956] [PMID: 34049905]
[73]
Mooney K, Melvin M, Douglas T. Ribavirin: The need for exposure precautions. Clin J Oncol Nurs 2014; 18(5): E93-6.
[http://dx.doi.org/10.1188/14.CJON.E93-E96] [PMID: 25253120]
[74]
Noor A, Krilov LR. Respiratory syncytial virus vaccine: Where are we now and what comes next? Expert Opin Biol Ther 2018; 18(12): 1247-56.
[http://dx.doi.org/10.1080/14712598.2018.1544239] [PMID: 30426788]
[75]
Brady MT, Byington CL, Davies HD, et al. Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics 2014; 134(2): e620-38.
[http://dx.doi.org/10.1542/peds.2014-1666] [PMID: 25070304]
[76]
Garegnani L, Styrmisdóttir L, Roson Rodriguez P, Escobar Liquitay CM, Esteban I, Franco JV. Palivizumab for preventing severe respiratory syncytial virus (RSV) infection in children. Cochrane Database Syst Rev 2021; 11(11): CD013757.
[PMID: 34783356]
[77]
Gonzales T, Bergamasco A, Cristarella T, et al. Effectiveness and safety of palivizumab for the prevention of serious lower respiratory tract infection caused by respiratory syncytial virus: A systematic review. Am J Perinatol 2023.
[http://dx.doi.org/10.1055/a-1990-2633] [PMID: 36452969]
[78]
Zhu Q, McLellan JS, Kallewaard NL, et al. A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants. Sci Transl Med 2017; 9(388): eaaj1928.
[http://dx.doi.org/10.1126/scitranslmed.aaj1928]
[79]
Griffin MP, Yuan Y, Takas T, et al. Single-dose nirsevimab for prevention of RSV in preterm infants. N Engl J Med 2020; 383(5): 415-25.
[http://dx.doi.org/10.1056/NEJMoa1913556] [PMID: 32726528]
[80]
Hammitt LL, Dagan R, Yuan Y, et al. Nirsevimab for prevention of RSV in healthy late-preterm and term infants. N Engl J Med 2022; 386(9): 837-46.
[http://dx.doi.org/10.1056/NEJMoa2110275] [PMID: 35235726]
[81]
Maas BM, Lommerse J, Plock N, et al. Forward and reverse translational approaches to predict efficacy of neutralizing respiratory syncytial virus (RSV) antibody prophylaxis. EBioMedicine 2021; 73: 103651.
[http://dx.doi.org/10.1016/j.ebiom.2021.103651] [PMID: 34775220]
[82]
Mazur NI, Terstappen J, Baral R, et al. Respiratory syncytial virus prevention within reach: The vaccine and monoclonal antibody landscape. Lancet Infect Dis 2023; 23(1): e2-e21.
[http://dx.doi.org/10.1016/S1473-3099(22)00291-2] [PMID: 35952703]
[83]
Aranda SS, Polack FP. Prevention of pediatric respiratory syncytial virus lower respiratory tract illness: perspectives for the next decade. Front Immunol 2019; 10: 1006.
[http://dx.doi.org/10.3389/fimmu.2019.01006] [PMID: 31134078]
[84]
Smith TRF, Schultheis K, Broderick KE. Nucleic acid-based vaccines targeting respiratory syncytial virus: Delivering the goods. Hum Vaccin Immunother 2017; 13(11): 2626-9.
[http://dx.doi.org/10.1080/21645515.2017.1363134] [PMID: 28881156]
[85]
Scheltema NM, Kavelaars XM, Thorburn K, et al. Potential impact of maternal vaccination on life-threatening respiratory syncytial virus infection during infancy. Vaccine 2018; 36(31): 4693-700.
[http://dx.doi.org/10.1016/j.vaccine.2018.06.021] [PMID: 29941327]
[86]
Pfizer Inc. Pfizer Announces Positive Top-Line Data of Phase 3 Global Maternal Immunization Trial for its Bivalent Respiratory Syncytial Virus (RSV) Vaccine Candidate. 2022. Available from:https://www.pfizer.com/news/press-release/press-release-detail/pfizer-announces-positive-top-line-data-phase-3-global (cited: Dec 18, 2022)
[87]
Achten NB, Wu P, Bont L, et al. Interference between respiratory syncytial virus and human rhinovirus infection in infancy. J Infect Dis 2017; 215(7): 1102-6.
[http://dx.doi.org/10.1093/infdis/jix031] [PMID: 28368456]