Objective: This study reports the diversity and community structure differences of the endophytic fungi of Panax japonicus of different ages to obtain novel endophytic fungi with glycoside hydrolytic activity for rare saponins production.
Methods: This study used the high-throughput sequencing method to analyze the diversity and community structure of endophytic fungi of P. japonicus. The endophytic fungi were processed by traditional isolation, culture, conservation, and ITS rDNA sequence analyses. Then the total saponins of P. japonicus were used as the substrate to evaluate the glycoside hydrolytic activity.
Results: The composition analysis of the community structure showed that the abundance, evenness, and diversity of endophytic fungi of nine-year-old P. japonicus were the best among all samples. A total of 210 endophytic fungi were isolated from P. japonicus samples and further annotated by sequencing the internal transcribed spacer. Then the biotransformation activity of obtained strains was further examined on total saponins of P. japonicus (TSPJ), with a strain identified as Fusarium equiseti (No.30) from 7-year-old P. japonicus showing significant glycoside hydrolytic activity on TSPJ, including ginsenoside Ro→zinglbroside R1, pseudoginsenoside RT1→pseudoginsenoside RP1, chikusetsusaponin IV→tarasaponin VI and chikusetsusaponin IVa →calenduloside E.
Conclusion: These results reveal the diversity and community structure differences of the endophytic fungi of P. japonicus with different ages and establish a resource library of endophytic fungi of P. japonicus. More importantly, we identified a valuable endophytic fungus with glycoside hydrolytic activity and provided a promising convenient microbial transformation approach to produce minor deglycosylated ginsenosides.