Synthesis and Medicinal Applications of Fenamic Acid Derivatives

Page: [1132 - 1142] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Fenamic acid-derived NSAIDs contain N-phenyl anthranilic acid as a pharmacophore with pKa ~ 4, which is completely ionized at the physiological pH and is mainly excreted in the urine by hydroxylation or glucuronidation. The acid (-COOH) functionality in fenamic acid provides a template for their fenamate derivatization for the development of analogues based on amidation, esterification, and etherification. Besides the repurposing of fenamates as neuroprotective agents in unmodified form, several of their derivatives have been reported for the management of disease pathogenesis by regulating the responsible pathways. In this review, we discuss the chemical modification of fenamic acid and its medicinal chemistry thereof.

Graphical Abstract

[1]
Díaz-González, F.; Sánchez-Madrid, F. NSAIDs: Learning new tricks from old drugs. Eur. J. Immunol., 2015, 45(3), 679-686.
[http://dx.doi.org/10.1002/eji.201445222] [PMID: 25523026]
[2]
Graham, G.G. Fenamates. In: Compendium of Inflammatory Diseases; Parnham, M., Ed.; Springer: Basel, 2016.
[http://dx.doi.org/10.1007/978-3-7643-8550-7_24]
[3]
Knych, H.K.; Arthur, R.M.; McKemie, D.S.; Baden, R.W.; Seminoff, K.; Kass, P.H. Pharmacokinetics and anti-inflammatory effects of flunixin meglumine as a sole agent and in combination with phenylbutazone in exercised Thoroughbred horses. Equine Vet. J., 2021, 53(1), 102-116.
[http://dx.doi.org/10.1111/evj.13260] [PMID: 32145701]
[4]
Acebedo-Martínez, F.J.; Alarcón-Payer, C.; Frontera, A.; Barbas, R.; Prohens, R.; Di Crisci, M.; Domínguez-Martín, A.; Gómez-Morales, J.; Choquesillo-Lazarte, D. Novel polymorphic cocrystals of the non-steroidal anti-inflammatory drug niflumic acid: Expanding the pharmaceutical landscape. Pharmaceutics, 2021, 13(12), 2140.
[http://dx.doi.org/10.3390/pharmaceutics13122140] [PMID: 34959421]
[5]
Prusakiewicz, J.J.; Duggan, K.C.; Rouzer, C.A.; Marnett, L.J. Differential sensitivity and mechanism of inhibition of COX-2 oxygenation of arachidonic acid and 2-arachidonoylglycerol by ibuprofen and mefenamic acid. Biochemistry, 2009, 48(31), 7353-7355.
[http://dx.doi.org/10.1021/bi900999z] [PMID: 19603831]
[6]
Pentikäinen, P.J.; Neuvonen, P.J.; Backman, C. Human pharmacokinetics of tolfenamic acid, a new anti-inflammatory agent. Eur. J. Clin. Pharmacol., 1981, 19(5), 359-365.
[http://dx.doi.org/10.1007/BF00544587] [PMID: 7238564]
[7]
Orlando, B.J.; Malkowski, M.G. Substrate-selective inhibition of cyclooxygeanse-2 by fenamic acid derivatives is dependent on peroxide tone. J. Biol. Chem., 2016, 291(29), 15069-15081.
[http://dx.doi.org/10.1074/jbc.M116.725713] [PMID: 27226593]
[8]
Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol., 2020, 180, 114147.
[http://dx.doi.org/10.1016/j.bcp.2020.114147] [PMID: 32653589]
[9]
Aronson, J.K. Meyler’s Side Effects of Analgesics and Anti-inflammatory Drugs; Elsevier, 2009.
[10]
Wolfe, J.A.; Plotzker, R.; Safina, F.J.; Ross, M.; Popky, G.; Rubin, W. Gastritis, duodenitis, and bleeding duodenal ulcer following mefenamic acid therapy. Arch. Intern. Med., 1976, 136(8), 923-925.
[http://dx.doi.org/10.1001/archinte.1976.03630080057017] [PMID: 949194]
[11]
Narsinghani, T.; Sharma, R. Lead optimization on conventional non-steroidal anti-inflammatory drugs: An approach to reduce gastrointestinal toxicity. Chem. Biol. Drug Des., 2014, 84(1), 1-23.
[http://dx.doi.org/10.1111/cbdd.12292] [PMID: 24460671]
[12]
Uusi-Oukari, M.; Vähätalo, L.; Liljeblad, A. Modifications of diflunisal and meclofenamate carboxyl groups affect their allosteric effects on GABAA receptor ligand binding. Neurochem. Res., 2014, 39(7), 1183-1191.
[http://dx.doi.org/10.1007/s11064-014-1351-x] [PMID: 24925262]
[13]
Kalgutkar, A.S.; Rowlinson, S.W.; Crews, B.C.; Marnett, L.J. Amide derivatives of meclofenamic acid as selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett., 2002, 12(4), 521-524.
[http://dx.doi.org/10.1016/S0960-894X(01)00792-2] [PMID: 11844663]
[14]
Deng, T.; Zhao, J.; Peng, D.; He, X.; Huang, X.; Lin, C.; Zhu, C.; Wang, L.; Liu, F. Probing the serum albumin binding site of fenamates and photochemical protein labeling with a fluorescent dye. Org. Biomol. Chem., 2022, 20(25), 5076-5085.
[http://dx.doi.org/10.1039/D2OB00717G] [PMID: 35697330]
[15]
Jarrar, Q.; Ayoub, R.; Moshawih, S.; Jarrar, Y.; Jilani, J. Synthesis and biological evaluation of hydroxypropyl ester of mefenamic acid as a promising prodrug. Lett. Drug Des. Discov., 2023, 20(2), 144-152.
[http://dx.doi.org/10.2174/1570180819666220330160134]
[16]
Hill, J.; Zawia, N.H. fenamates as potential therapeutics for neurodegenerative disorders. Cells, 2021, 10(3), 702.
[http://dx.doi.org/10.3390/cells10030702] [PMID: 33809987]
[17]
Daniels, M.J.D.; Rivers-Auty, J.; Schilling, T.; Spencer, N.G.; Watremez, W.; Fasolino, V.; Booth, S.J.; White, C.S.; Baldwin, A.G.; Freeman, S.; Wong, R.; Latta, C.; Yu, S.; Jackson, J.; Fischer, N.; Koziel, V.; Pillot, T.; Bagnall, J.; Allan, S.M.; Paszek, P.; Galea, J.; Harte, M.K.; Eder, C.; Lawrence, C.B.; Brough, D. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nat. Commun., 2016, 7(1), 12504.
[http://dx.doi.org/10.1038/ncomms12504] [PMID: 27509875]
[18]
Dourado, N.S.; Souza, C.S.; de Almeida, M.M.A.; Bispo da Silva, A.; dos Santos, B.L.; Silva, V.D.A.; De Assis, A.M.; da Silva, J.S.; Souza, D.O.; Costa, M.F.D.; Butt, A.M.; Costa, S.L. Neuroimmunomodulatory and neuroprotective effects of the flavonoid apigenin in in vitro Models of neuroinflammation associated with Alzheimer’s disease. Front. Aging Neurosci., 2020, 12, 119.
[http://dx.doi.org/10.3389/fnagi.2020.00119] [PMID: 32499693]
[19]
Sun, J.F.; Zhao, M.Y.; Xu, Y.J.; Su, Y.; Kong, X.H.; Wang, Z.Y. Fenamates inhibit human sodium channel Nav1.2 and protect glutamate-induced injury in SH-SY5Y cells. Cell. Mol. Neurobiol., 2020, 40(8), 1405-1416.
[http://dx.doi.org/10.1007/s10571-020-00826-1] [PMID: 32162200]
[20]
Prasher, P.; Sharma, M. Medicinal chemistry of anthranilic acid derivatives: A mini review. Drug Dev. Res., 2021, 82(7), 945-958.
[http://dx.doi.org/10.1002/ddr.21842] [PMID: 34117784]
[21]
Pai, S.G.; Carneiro, B.A.; Mota, J.M.; Costa, R.; Leite, C.A.; Barroso-Sousa, R.; Kaplan, J.B.; Chae, Y.K.; Giles, F.J. Wnt/beta-catenin pathway: Modulating anticancer immune response. J. Hematol. Oncol., 2017, 10(1), 101.
[http://dx.doi.org/10.1186/s13045-017-0471-6] [PMID: 28476164]
[22]
Zhang, X.; Li, C.; Wu, Y.; Cui, P. The research progress of Wnt/β-catenin signaling pathway in colorectal cancer. Clin. Res. Hepatol. Gastroenterol., 2023, 47(3), 102086.
[http://dx.doi.org/10.1016/j.clinre.2023.102086] [PMID: 36657523]
[23]
Chen, Y.; Chen, M.; Deng, K. Blocking the Wnt/β-catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies. Int. J. Oncol., 2022, 62(2), 24.
[http://dx.doi.org/10.3892/ijo.2022.5472] [PMID: 36579676]
[24]
Hashemi, M.; Hasani, S.; Hajimazdarany, S.; Ghadyani, F.; Olyaee, Y.; Khodadadi, M.; Ziyarani, M.F.; Dehghanpour, A.; Salehi, H.; Kakavand, A.; Goharrizi, M.A.S.B.; Aref, A.R.; Salimimoghadam, S.; Akbari, M.E.; Taheriazam, A.; Hushmandi, K.; Entezari, M. Biological functions and molecular interactions of Wnt/β-catenin in breast cancer: Revisiting signaling networks. Int. J. Biol. Macromol., 2023, 232, 123377.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123377] [PMID: 36702226]
[25]
Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol., 2020, 13(1), 165.
[http://dx.doi.org/10.1186/s13045-020-00990-3] [PMID: 33276800]
[26]
Mathew, B.; Hobrath, J.V.; Lu, W.; Li, Y.; Reynolds, R.C. Synthesis and preliminary assessment of the anticancer and Wnt/β-catenin inhibitory activity of small amide libraries of fenamates and profens. Med. Chem. Res., 2017, 26(11), 3038-3045.
[http://dx.doi.org/10.1007/s00044-017-2001-z] [PMID: 29104411]
[27]
Li, J.; Hu, X.; Zhang, H.; Peng, Y.; Li, S.; Xiong, Y.; Jiang, W.; Wang, Z. N-2-(Phenylamino) benzamide derivatives as dual inhibitors of COX-2 and topo I deter gastrointestinal cancers via targeting inflammation and tumor progression. J. Med. Chem., 2022, 65(15), 10481-10505.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00635] [PMID: 35868003]
[28]
Kaltschmidt, C.; Banz-Jansen, C.; Benhidjeb, T.; Beshay, M.; Förster, C.; Greiner, J.; Hamelmann, E.; Jorch, N.; Mertzlufft, F.; Pfitzenmaier, J.; Simon, M.; Schulte am Esch, J.; Vordemvenne, T.; Wähnert, D.; Weissinger, F.; Wilkens, L.; Kaltschmidt, B. A role for NF-κB in organ specific cancer and cancer stem cells. Cancers, 2019, 11(5), 655.
[http://dx.doi.org/10.3390/cancers11050655] [PMID: 31083587]
[29]
Zinatizadeh, M.R.; Schock, B.; Chalbatani, G.M.; Zarandi, P.K.; Jalali, S.A.; Miri, S.R. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis., 2021, 8(3), 287-297.
[http://dx.doi.org/10.1016/j.gendis.2020.06.005] [PMID: 33997176]
[30]
Gaptulbarova, K.A.; Tsyganov, M.M.; Pevzner, A.M.; Ibragimova, M.K.; Litviakov, N.V. NF-kB as a potential prognostic marker and a candidate for targeted therapy of cancer. Exp. Oncol., 2020, 42(4), 263-269.
[PMID: 33355866]
[31]
Wang, C.Y.; Guttridge, D.C.; Mayo, M.W.; Baldwin, A.S., Jr NF-kappaB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol. Cell. Biol., 1999, 19(9), 5923-5929.
[http://dx.doi.org/10.1128/MCB.19.9.5923] [PMID: 10454539]
[32]
Wang, T.; Jin, X.; Liao, Y.; Sun, Q.; Luo, C.; Wang, G.; Zhao, F.; Jin, Y. Association of NF-κB and AP-1 with MMP-9 overexpression in 2-chloroethanol exposed rat astrocytes. Cells, 2018, 7(8), 96.
[http://dx.doi.org/10.3390/cells7080096] [PMID: 30087244]
[33]
Chauhan, A.; Islam, A.U.; Prakash, H.; Singh, S. Phytochemicals targeting NF-κB signaling: Potential anti-cancer interventions. J. Pharm. Anal., 2022, 12(3), 394-405.
[http://dx.doi.org/10.1016/j.jpha.2021.07.002] [PMID: 35811622]
[34]
Yu, H.; Lin, L.; Zhang, Z.; Zhang, H.; Hu, H. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct. Target. Ther., 2020, 5(1), 209.
[http://dx.doi.org/10.1038/s41392-020-00312-6] [PMID: 32958760]
[35]
Verzella, D.; Pescatore, A.; Capece, D.; Vecchiotti, D.; Ursini, M.V.; Franzoso, G.; Alesse, E.; Zazzeroni, F. Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis., 2020, 11(3), 210.
[http://dx.doi.org/10.1038/s41419-020-2399-y] [PMID: 32231206]
[36]
Khan, F.H.; Dervan, E.; Bhattacharyya, D.D.; McAuliffe, J.D.; Miranda, K.M.; Glynn, S.A. The role of nitric oxide in cancer: Master regulator or NOt? Int. J. Mol. Sci., 2020, 21(24), 9393.
[http://dx.doi.org/10.3390/ijms21249393] [PMID: 33321789]
[37]
Yakovlev, V.A. Nitric oxide: Genomic instability and synthetic lethality. Redox Biol., 2015, 5, 414.
[http://dx.doi.org/10.1016/j.redox.2015.09.013] [PMID: 28162271]
[38]
Tamir, S.; Burney, S.; Tannenbaum, S.R. DNA damage by nitric oxide. Chem. Res. Toxicol., 1996, 9(5), 821-827.
[http://dx.doi.org/10.1021/tx9600311] [PMID: 8828916]
[39]
Wang, H.; Wang, L.; Xie, Z.; Zhou, S.; Li, Y.; Zhou, Y.; Sun, M. Nitric Oxide (NO) and NO Synthases (NOS)-based targeted therapy for colon cancer. Cancers, 2020, 12(7), 1881.
[http://dx.doi.org/10.3390/cancers12071881] [PMID: 32668616]
[40]
de Oliveira, G.A.; Cheng, R.Y.S.; Ridnour, L.A.; Basudhar, D.; Somasundaram, V.; McVicar, D.W.; Monteiro, H.P.; Wink, D.A. Inducible nitric oxide synthase in the carcinogenesis of gastrointestinal cancers. Antioxid. Redox Signal., 2017, 26(18), 1059-1077.
[http://dx.doi.org/10.1089/ars.2016.6850] [PMID: 27494631]
[41]
Sharma, V.; Fernando, V.; Letson, J.; Walia, Y.; Zheng, X.; Fackelman, D.; Furuta, S. S-nitrosylation in tumor microenvironment. Int. J. Mol. Sci., 2021, 22(9), 4600.
[http://dx.doi.org/10.3390/ijms22094600] [PMID: 33925645]
[42]
Mesquita, A.P.S.; Matsuoka, M.; Lopes, S.A.; Pernambuco Filho, P.C.A.; Cruz, A.S.; Nader, H.B.; Lopes, C.C. Nitric oxide regulates adhesiveness, invasiveness, and migration of anoikis-resistant endothelial cells. Braz. J. Med. Biol. Res., 2022, 55, e11612.
[http://dx.doi.org/10.1590/1414-431x2021e11612] [PMID: 35137850]
[43]
Caulfield, J.L.; Wishnok, J.S.; Tannenbaum, S.R. Nitric oxide-induced deamination of cytosine and guanine in deoxynucleosides and oligonucleotides. J. Biol. Chem., 1998, 273(21), 12689-12695.
[http://dx.doi.org/10.1074/jbc.273.21.12689] [PMID: 9582291]
[44]
Pérez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. The nitration of proteins, lipids and DNA by peroxynitrite derivatives-chemistry involved and biological relevance. Stresses, 2022, 2(1), 53-64.
[http://dx.doi.org/10.3390/stresses2010005]
[45]
Tang, C.H.; Wei, W.; Liu, L. Regulation of DNA repair by S-nitrosylation. Biochim. Biophys. Acta, Gen. Subj., 2012, 1820(6), 730-735.
[http://dx.doi.org/10.1016/j.bbagen.2011.04.014] [PMID: 21571039]
[46]
Al-Hazam, H.A.; Al-Shamkani, Z.A.; Al-Masoudi, N.A.; Saeed, B.A.; Pannecouque, C. New chalcones and thiopyrimidine analogues derived from mefenamic acid: Microwave-assisted synthesis, anti-HIV activity and cytotoxicity as antileukemic agents. Z. Naturforsch. B. J. Chem. Sci., 2017, 72(4), 249-256.
[http://dx.doi.org/10.1515/znb-2016-0223]
[47]
Vijaya Babu, P.; Ashfaq, M.A.; Shiva Kumar, K.; Mukkanti, K.; Pal, M. Mefenamic acid based novel indole analogues: Their synthesis and anti-proliferative effects. Arab. J. Chem., 2019, 12(8), 2749-2759.
[http://dx.doi.org/10.1016/j.arabjc.2015.05.018]
[48]
Subbaiah, M.A.M.; Meanwell, N.A. Bioisosteres of the phenyl ring: Recent strategic applications in lead optimization and drug design. J. Med. Chem., 2021, 64(19), 14046-14128.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01215] [PMID: 34591488]
[49]
Li, H.; Gao, Y.; Ma, J. Advances in nonclassical phenyl bioisosteres for drug structural optimization. Future Med. Chem., 2022, 14(22), 1681-1692.
[http://dx.doi.org/10.4155/fmc-2022-0188] [PMID: 36317661]
[50]
Useini, L.; Mojić, M.; Laube, M.; Lönnecke, P.; Dahme, J.; Sárosi, M.B.; Mijatović, S.; Maksimović-Ivanić, D.; Pietzsch, J.; Hey-Hawkins, E. Carboranyl analogues of mefenamic acid and their biological evaluation. ACS Omega, 2022, 7(28), 24282-24291.
[http://dx.doi.org/10.1021/acsomega.2c01523] [PMID: 35874202]
[51]
Corell, T. Pharmacology of tolfenamic acid. Pharmacol. Toxicol., 1994, 75(Suppl. 2), 14-21.
[http://dx.doi.org/10.1111/j.1600-0773.1994.tb01991.x] [PMID: 7816775]
[52]
Wax, J.; Clinger, W.A.; Varner, P.; Bass, P.; Winder, C.V. Relationship of the enterohepatic cycle to ulcerogenesis in the rat small bowel with flufenamic acid. Gastroenterology, 1970, 58(6), 772-780.
[http://dx.doi.org/10.1016/S0016-5085(70)80149-4] [PMID: 5423889]
[53]
Farrugia, G.; Nitecki, S.; Harty, G.J.; Camilleri, M.; Szurszewski, J.H. The effect of flufenamic acid on gastrointestinal myoelectrical activity and transit time in dogs. Gut, 1998, 42(2), 258-265.
[http://dx.doi.org/10.1136/gut.42.2.258] [PMID: 9536952]
[54]
Drina, M. Peptic ulcer disease and non-steroidal anti-inflammatory drugs. Aust. Prescr., 2017, 40(3), 91-93.
[http://dx.doi.org/10.18773/austprescr.2017.037] [PMID: 28798512]
[55]
Peskar, B.M. Role of cyclooxygenase isoforms in gastric mucosal defence. J. Physiol. Paris, 2001, 95(1-6), 3-9.
[http://dx.doi.org/10.1016/S0928-4257(01)00003-1] [PMID: 11595412]
[56]
Brzozowski, T.; Konturek, P.C.; Konturek, S.J.; Sliwowski, Z.; Pajdo, R.; Drozdowicz, D.; Ptak, A.; Hahn, E.G. Classic NSAID and selective cyclooxygenase (COX)-1 and COX-2 inhibitors in healing of chronic gastric ulcers. Microsc. Res. Tech., 2001, 53(5), 343-353.
[http://dx.doi.org/10.1002/jemt.1102] [PMID: 11376495]
[57]
Peskar, B.M. Role of cyclooxygenase isoforms in gastric mucosal defense and ulcer healing. Inflammopharmacology, 2005, 13(1-3), 15-26.
[http://dx.doi.org/10.1163/156856005774423809] [PMID: 16259725]
[58]
Zoubek, M.E.; Lucena, M.I.; Andrade, R.J.; Stephens, C. Systematic review: Ibuprofen-induced liver injury. Aliment. Pharmacol. Ther., 2020, 51(6), 603-611.
[http://dx.doi.org/10.1111/apt.15645] [PMID: 31984540]
[59]
Agúndez, J.A.G.; Lucena, M.I.; Martínez, C.; Andrade, R.J.; Blanca, M.; Ayuso, P.; García-Martín, E. Assessment of nonsteroidal anti-inflammatory drug-induced hepatotoxicity. Expert Opin. Drug Metab. Toxicol., 2011, 7(7), 817-828.
[http://dx.doi.org/10.1517/17425255.2011.574613] [PMID: 21473713]
[60]
Goldkind, L.; Laine, L. A systematic review of NSAIDs withdrawn from the market due to hepatotoxicity: Lessons learned from the bromfenac experience. Pharmacoepidemiol. Drug Saf., 2006, 15(4), 213-220.
[http://dx.doi.org/10.1002/pds.1207] [PMID: 16456879]
[61]
Boelsterli, U.A. Mechanisms of NSAID-induced hepatotoxicity: Focus on nimesulide. Drug Saf., 2002, 25(9), 633-648.
[http://dx.doi.org/10.2165/00002018-200225090-00003] [PMID: 12137558]
[62]
Alafeefy, A.M.; Bakht, M.A.; Ganaie, M.A.; Ansarie, M.N.; El-Sayed, N.N.; Awaad, A.S. Synthesis, analgesic, anti-inflammatory and anti-ulcerogenic activities of certain novel Schiff’s bases as fenamate isosteres. Bioorg. Med. Chem. Lett., 2015, 25(2), 179-183.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.088] [PMID: 25522819]
[63]
Jakobsson, J.; Palonek, E.; Lorentzon, M.; Ohlsson, C.; Rane, A.; Ekström, L. A novel polymorphism in the 17β-hydroxysteroid dehydrogenase type 5 (aldo-keto reductase 1C3) gene is associated with lower serum testosterone levels in caucasian men. Pharmacogenomics J., 2007, 7(4), 282-289.
[http://dx.doi.org/10.1038/sj.tpj.6500419] [PMID: 16983398]
[64]
Penning, T.M.; Wangtrakuldee, P.; Auchus, R.J. Structural and functional biology of aldo-keto reductase steroid-transforming enzymes. Endocr. Rev., 2019, 40(2), 447-475.
[http://dx.doi.org/10.1210/er.2018-00089] [PMID: 30137266]
[65]
Zeng, C.M.; Chang, L.L.; Ying, M.D.; Cao, J.; He, Q.J.; Zhu, H.; Yang, B. Aldo-Keto reductase AKR1C1-AKR1C4: Functions, regulation, and intervention for anti-cancer therapy. Front. Pharmacol., 2017, 8, 119.
[http://dx.doi.org/10.3389/fphar.2017.00119] [PMID: 28352233]
[66]
Batth, R.; Nicolle, C.; Cuciurean, I.S.; Simonsen, H.T. Biosynthesis and industrial production of androsteroids. Plants, 2020, 9(9), 1144.
[http://dx.doi.org/10.3390/plants9091144] [PMID: 32899410]
[67]
Wang, B.; Gu, Y.; Hui, K.; Huang, J.; Xu, S.; Wu, S.; Li, L.; Fan, J.; Wang, X.; Hsieh, J.T.; He, D.; Wu, K. AKR1C3, a crucial androgenic enzyme in prostate cancer, promotes epithelial-mesenchymal transition and metastasis through activating ERK signaling. Urol. Oncol., 2018, 36(10), 472.e11-472.e20.
[http://dx.doi.org/10.1016/j.urolonc.2018.07.005]
[68]
Adeniji, A.O.; Chen, M.; Penning, T.M. AKR1C3 as a target in castrate resistant prostate cancer. J. Steroid Biochem. Mol. Biol., 2013, 137, 136-149.
[http://dx.doi.org/10.1016/j.jsbmb.2013.05.012] [PMID: 23748150]
[69]
Endo, S.; Oguri, H.; Segawa, J.; Kawai, M.; Hu, D.; Xia, S.; Okada, T.; Irie, K.; Fujii, S.; Gouda, H.; Iguchi, K.; Matsukawa, T.; Fujimoto, N.; Nakayama, T.; Toyooka, N.; Matsunaga, T.; Ikari, A. Development of novel AKR1C3 inhibitors as new potential treatment for castration-resistant prostate cancer. J. Med. Chem., 2020, 63(18), 10396-10411.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00939] [PMID: 32847363]
[70]
Zhou, C.; Wang, Z.; Li, J.; Wu, X.; Fan, N.; Li, D.; Liu, F.; Plum, P.S.; Hoppe, S.; Hillmer, A.M.; Quaas, A.; Gebauer, F.; Chon, S.H.; Bruns, C.J.; Zhao, Y. Aldo-keto reductase 1C3 mediates chemotherapy resistance in esophageal adenocarcinoma via ROS detoxification. Cancers, 2021, 13(10), 2403.
[http://dx.doi.org/10.3390/cancers13102403] [PMID: 34065695]
[71]
Penning, T.M.; Jonnalagadda, S.; Trippier, P.C.; Rižner, T.L. Aldo-keto reductases and cancer drug resistance. Pharmacol. Rev., 2021, 73(3), 1150-1171.
[http://dx.doi.org/10.1124/pharmrev.120.000122] [PMID: 34312303]
[72]
Zheng, J.; Yang, Z.; Li, Y.; Yang, L.; Yao, R. Knockdown of AKR1C3 promoted sorafenib sensitivity through inhibiting the phosphorylation of AKT in hepatocellular carcinoma. Front. Oncol., 2022, 12, 823491.
[http://dx.doi.org/10.3389/fonc.2022.823491] [PMID: 35359392]
[73]
Xiong, W.; Zhao, J.; Yu, H.; Li, X.; Sun, S.; Li, Y.; Xia, Q.; Zhang, C.; He, Q.; Gao, X.; Zhang, L.; Zhou, D. Elevated expression of AKR1C3 increases resistance of cancer cells to ionizing radiation via modulation of oxidative stress. PLoS One, 2014, 9(11), e111911.
[http://dx.doi.org/10.1371/journal.pone.0111911] [PMID: 25419901]
[74]
Pippione, A.C.; Carnovale, I.M.; Bonanni, D.; Sini, M.; Goyal, P.; Marini, E.; Pors, K.; Adinolfi, S.; Zonari, D.; Festuccia, C.; Wahlgren, W.Y.; Friemann, R.; Bagnati, R.; Boschi, D.; Oliaro-Bosso, S.; Lolli, M.L. Potent and selective aldo-keto reductase 1C3 (AKR1C3) inhibitors based on the benzoisoxazole moiety: Application of a bioisosteric scaffold hopping approach to flufenamic acid. Eur. J. Med. Chem., 2018, 150, 930-945.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.040] [PMID: 29602039]
[75]
Hendriks, C.M.M.; Penning, T.M.; Zang, T.; Wiemuth, D.; Gründer, S.; Sanhueza, I.A.; Schoenebeck, F.; Bolm, C. Pentafluorosulfanyl-containing flufenamic acid analogs: Syntheses, properties and biological activities. Bioorg. Med. Chem. Lett., 2015, 25(20), 4437-4440.
[http://dx.doi.org/10.1016/j.bmcl.2015.09.012] [PMID: 26372652]
[76]
Andres-Bilbe, A.; Castellanos, A.; Pujol-Coma, A.; Callejo, G.; Comes, N.; Gasull, X. The background K+ channel TRESK in sensory physiology and pain. Int. J. Mol. Sci., 2020, 21(15), 5206.
[http://dx.doi.org/10.3390/ijms21155206] [PMID: 32717813]
[77]
Weir, G.A.; Pettingill, P.; Wu, Y.; Duggal, G.; Ilie, A.S.; Akerman, C.J.; Cader, M.Z. The role of TRESK in discrete sensory neuron populations and somatosensory processing. Front. Mol. Neurosci., 2019, 12, 170.
[http://dx.doi.org/10.3389/fnmol.2019.00170] [PMID: 31379497]
[78]
Huang, D.Y.; Yu, B.W.; Fan, Q.W. Roles of TRESK, a novel two-pore domain K+ channel, in pain pathway and general anesthesia. Neurosci. Bull., 2008, 24(3), 166-172.
[http://dx.doi.org/10.1007/s12264-008-0225-0] [PMID: 18500390]
[79]
Liu, J.P.; Jing, H.B.; Xi, K.; Zhang, Z.X.; Jin, Z.R.; Cai, S.Q.; Tian, Y.; Cai, J.; Xing, G.G. Contribution of TRESK two-pore domain potassium channel to bone cancer-induced spontaneous pain and evoked cutaneous pain in rats. Mol. Pain, 2021, 17.
[http://dx.doi.org/10.1177/17448069211023230] [PMID: 34102915]
[80]
Zhou, J.; Lin, W.; Chen, H.; Fan, Y.; Yang, C. TRESK contributes to pain threshold changes by mediating apoptosis via MAPK pathway in the spinal cord. Neuroscience, 2016, 339, 622-633.
[http://dx.doi.org/10.1016/j.neuroscience.2016.10.039] [PMID: 27789381]
[81]
Djillani, A.; Mazella, J.; Heurteaux, C.; Borsotto, M. Role of TREK-1 in health and disease, focus on the central nervous system. Front. Pharmacol., 2019, 10, 379.
[http://dx.doi.org/10.3389/fphar.2019.00379] [PMID: 31031627]
[82]
Lengyel, M.; Czirják, G.; Jacobson, D.A.; Enyedi, P. TRESK and TREK-2 two-pore-domain potassium channel subunits form functional heterodimers in primary somatosensory neurons. J. Biol. Chem., 2020, 295(35), 12408-12425.
[http://dx.doi.org/10.1074/jbc.RA120.014125] [PMID: 32641496]
[83]
Callejo, G.; Giblin, J.P.; Gasull, X. Modulation of TRESK background K+ channel by membrane stretch. PLoS One, 2013, 8(5), e64471.
[http://dx.doi.org/10.1371/journal.pone.0064471] [PMID: 23691227]
[84]
Park, H.; Kim, E.J.; Han, J.; Han, J.; Kang, D. Effects of analgesics and antidepressants on TREK-2 and TRESK currents. Korean J. Physiol. Pharmacol., 2016, 20(4), 379-385.
[http://dx.doi.org/10.4196/kjpp.2016.20.4.379] [PMID: 27382354]
[85]
Kollert, S.; Dombert, B.; Döring, F.; Wischmeyer, E. Activation of TRESK channels by the inflammatory mediator lysophosphatidic acid balances nociceptive signalling. Sci. Rep., 2015, 5(1), 12548.
[http://dx.doi.org/10.1038/srep12548] [PMID: 26224542]
[86]
Yang, Y.; Li, S.; Jin, Z.R.; Jing, H.B.; Zhao, H.Y.; Liu, B.H.; Liang, Y.J.; Liu, L.Y.; Cai, J.; Wan, Y.; Xing, G.G. Decreased abundance of TRESK two-pore domain potassium channels in sensory neurons underlies the pain associated with bone metastasis. Sci. Signal., 2018, 11(552), eaao5150.
[http://dx.doi.org/10.1126/scisignal.aao5150] [PMID: 30327410]
[87]
Monteillier, A.; Loucif, A.; Omoto, K.; Stevens, E.B.; Lainez, S.; Saintot, P.P.; Cao, L.; Pryde, D.C. Investigation of the structure activity relationship of flufenamic acid derivatives at the human TRESK channel K2P 18.1. Bioorg. Med. Chem. Lett., 2016, 26(20), 4919-4924.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.020] [PMID: 27641472]
[88]
Malko, P.; Jiang, L.H. TRPM2 channel-mediated cell death: An important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions. Redox Biol., 2020, 37, 101755.
[http://dx.doi.org/10.1016/j.redox.2020.101755] [PMID: 33130440]
[89]
Sita, G.; Hrelia, P.; Graziosi, A.; Ravegnini, G.; Morroni, F. TRPM2 in the brain: Role in health and disease. Cells, 2018, 7(7), 82.
[http://dx.doi.org/10.3390/cells7070082] [PMID: 30037128]
[90]
Belrose, J.C.; Jackson, M.F. TRPM2: A candidate therapeutic target for treating neurological diseases. Acta Pharmacol. Sin., 2018, 39(5), 722-732.
[http://dx.doi.org/10.1038/aps.2018.31] [PMID: 29671419]
[91]
Turlova, E.; Feng, Z.; Sun, H. The role of TRPM2 channels in neurons, glial cells and the blood-brain barrier in cerebral ischemia and hypoxia. Acta Pharmacol. Sin., 2018, 39(5), 713-721.
[http://dx.doi.org/10.1038/aps.2017.194] [PMID: 29542681]
[92]
Nazıroğlu, M. TRPM2 cation channels, oxidative stress and neurological diseases: Where are we now? Neurochem. Res., 2011, 36(3), 355-366.
[http://dx.doi.org/10.1007/s11064-010-0347-4] [PMID: 21140288]
[93]
Eisfeld, J.; Lückhoff, A. TRPM2. In: Transient Receptor Potential (TRP) Channels; Flockerzi, V.; Nilius, B., Eds.; Springer: Berlin, Heidelberg, 2007; p. 179.
[http://dx.doi.org/10.1007/978-3-540-34891-7_14]
[94]
Chen, G.L.; Zeng, B.; Eastmond, S.; Elsenussi, S.E.; Boa, A.N.; Xu, S.Z. Pharmacological comparison of novel synthetic fenamate analogues with econazole and 2-APB on the inhibition of TRPM2 channels. Br. J. Pharmacol., 2012, 167(6), 1232-1243.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02058.x] [PMID: 22646516]
[95]
Mansikkamäki, S.; Sinkkonen, S.T.; Korpi, E.R.; Lüddens, H. Multiple actions of fenamates and other nonsteroidal anti-inflammatory drugs on GABAA receptors. Eur. J. Pharmacol., 2019, 853, 247-255.
[http://dx.doi.org/10.1016/j.ejphar.2019.03.039] [PMID: 30930251]
[96]
Kuroyanagi, K.; Sasaki, J.; Nakazawa, K.; Takahashi, S.; Michi, K.; Tozuka, M.; Iwaki, H.; Nagumo, M.; Kurachi, Y.; Ito, H.; Takai, H.; Hinata, S.; Uchiyama, F.; Sekiyama, S.; Komoribayashi, N.; Mori, Y.; Guchi, T.; Fujimoto, H.; Kawai, T.; Inaba, O.; Nakamura, Y.; Okano, H.; Ohashi, Y.; Ueno, T.; Murase, M. Therapeutic effects of Niflumic Acid, new non-steroidal anti-inflammatory analgesic, by means of double blind test in the field of oral surgery. Japanese J. Oral Maxillofacial. Sur., 1976, 22(2), 235-243.
[http://dx.doi.org/10.5794/jjoms.22.235] [PMID: 1075316]
[97]
Kittrell, H.C.; Mochel, J.P.; Brown, J.T.; Forseth, A.M.K.; Hayman, K.P.; Rajewski, S.M.; Coetzee, J.F.; Schneider, B.K.; Ratliffe, B.; Skoland, K.J.; Karriker, L.A. Pharmacokinetics of intravenous, intramuscular, oral, and transdermal administration of flunixin meglumine in pre-wean piglets. Front. Vet. Sci., 2020, 7, 586.
[http://dx.doi.org/10.3389/fvets.2020.00586] [PMID: 33005646]
[98]
Kheradmand, A.; Navidpour, L.; Shafaroodi, H.; Saeedi-Motahar, G.; Shafiee, A. Design and synthesis of niflumic acid-based N-acylhydrazone derivatives as novel anti-inflammatory and analgesic agents. Med. Chem. Res., 2013, 22(5), 2411-2420.
[http://dx.doi.org/10.1007/s00044-012-0235-3]