Prospects in One-stage Conversion of Lipid-based Feedstocks into Biofuels Enriched with Branched Alkanes

Page: [1114 - 1118] Pages: 5

  • * (Excluding Mailing and Handling)

Graphical Abstract

[1]
Martinez-Valencia, L.; Camenzind, D.; Wigmosta, M.; Garcia-Perez, M.; Wolcott, M. Biomass supply chain equipment for renewable fuels production: A review. Biomass Bioenergy, 2021, 148(148), 106054.
[http://dx.doi.org/10.1016/j.biombioe.2021.106054]
[2]
Jim, L.; Cabrera-jim, R.; Mateo-sanz, J.M.; Gavald, J.; Pozo, C. Comparing biofuels through the lens of sustainability: A data envelopment analysis approach. Applied. Energy, 2022, 307, 118201.
[http://dx.doi.org/10.1016/j.apenergy.2021.118201]
[3]
Jayakumar, M.; Bizuneh Gebeyehu, K.; Deso Abo, L.; Wondimu Tadesse, A.; Vivekanandan, B.; Prabhu Sundramurthy, V.; Bacha, W.; Ashokkumar, V.; Baskar, G. A comprehensive outlook on topical processing methods for biofuel production and its thermal applications: Current advances, sustainability and challenges. Fuel, 2023, 349(May), 128690.
[http://dx.doi.org/10.1016/j.fuel.2023.128690]
[4]
Statistical Review of World Energy, 71st ed; , 2022.
[5]
Satyarthi, J.K.; Chiranjeevi, T.; Gokak, D.T.; Viswanathan, P.S. An overview of catalytic conversion of vegetable oils/fats into middle distillates. Catal. Sci. Technol., 2013, 3(1), 70-80.
[http://dx.doi.org/10.1039/C2CY20415K]
[6]
Lee, C.W.; Lin, P.Y.; Chen, B.H.; Kukushkin, R.G.; Yakovlev, V.A. Hydrodeoxygenation of palmitic acid over zeolite-supported nickel catalysts. Catal. Today, 2021, 379, 124-131.
[http://dx.doi.org/10.1016/j.cattod.2020.05.013]
[7]
Yeletsky, P.M.; Kukushkin, R.G.; Yakovlev, V.A.; Chen, B.H. Recent advances in one-stage conversion of lipid-based biomass-derived oils into fuel components - Aromatics and isomerized alkanes. Fuel, 2020, 278, 118255.
[http://dx.doi.org/10.1016/j.fuel.2020.118255] [PMID: 32834073]
[8]
Stauffer, E.; Dolan, J.A.; Newman, R. Flammable and combustible liquids. Fire Debris Analysis; Stauffer, E.; Dolan, J.A; Newman, R., Ed.; Academic Press: Burlington, 2008, pp. 199-233.
[http://dx.doi.org/10.1016/B978-012663971-1.50011-7]
[9]
Zvirin, Y.; Gutman, M.; Tartakovsky, L. Chapter 16 - Fuel Effects on Emissions; Academic Press: San Diego, 1998, pp. 547-651.
[http://dx.doi.org/10.1016/B978-012639855-7/50055-7]
[10]
Neste. NEXBTL technology Available from:https://www.neste.com/about-neste/innovation/nexbtl-technology
[12]
Qian, E.W.; Chen, N.; Gong, S. Role of support in deoxygenation and isomerization of methyl stearate over nickel-molybdenum catalysts. J. Mol. Catal. Chem., 2014, 387, 76-85.
[http://dx.doi.org/10.1016/j.molcata.2014.02.031]
[13]
Cai, Z.; Wang, Y.; Cao, Y.; Yu, P.; Ding, Y.; Ma, Y.; Zheng, Y.; Huang, K.; Jiang, L. Direct production of isomerized biodiesel over MoS2/ZrPOx under solvent-free conditions. Fuel, 2023, 337, 127175.
[http://dx.doi.org/10.1016/j.fuel.2022.127175]
[14]
Li, X.; Luo, X.; Jin, Y.; Li, J.; Zhang, H.; Zhang, A.; Xie, J. Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels. Renew. Sustain. Energy Rev., 2018, 82, 3762-3797.
[http://dx.doi.org/10.1016/j.rser.2017.10.091]
[15]
Goh, B.H.H.; Chong, C.T.; Ge, Y.; Ong, H.C.; Ng, J.H.; Tian, B.; Ashokkumar, V.; Lim, S.; Seljak, T.; Józsa, V. Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production. Energy Convers. Manage., 2020, 223, 113296.
[http://dx.doi.org/10.1016/j.enconman.2020.113296]
[16]
Malins, K. Production of renewable hydrocarbons from vegetable oil refining by-product/waste soapstock over selective sulfur-free high metal loading SiO2-Al2O3 supported Ni catalyst via hydrotreatment. J. Clean. Prod., 2021, 283, 125306.
[http://dx.doi.org/10.1016/j.jclepro.2020.125306]
[17]
Lim, J.H.K.; Gan, Y.Y.; Ong, H.C.; Lau, B.F.; Chen, W.H.; Chong, C.T.; Ling, T.C.; Klemeš, J.J. Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective. Renew. Sustain. Energy Rev., 2021, 149, 111396.
[http://dx.doi.org/10.1016/j.rser.2021.111396]
[18]
Kukushkin, R.G.; Yeletsky, P.M.; Grassin, C.T.; Chen, B.H.; Bulavchenko, O.A.; Saraev, A.A.; Yakovlev, V.A. Deoxygenation of esters over sulfur-free Ni-W/Al2O3 catalysts for production of biofuel components. Chem. Eng. J., 2020, 396(January), 125202.
[http://dx.doi.org/10.1016/j.cej.2020.125202]
[19]
Shinkevich, K.S.; Kukushkin, R.G.; Bulavchenko, O.A.; Zaikina, O.O.; Alekseeva, M.V.; Ruvinskiy, P.S.; Yakovlev, V.A. Influence of the support on activity and stability of Ni and Ni-Mo catalysts in the hydroprocessing of fatty acids into motor fuels components. Appl. Catal. A Gen., 2022, 644, 118801.
[http://dx.doi.org/10.1016/j.apcata.2022.118801]
[20]
Deldari, H. Suitable catalysts for hydroisomerization of long-chain normal paraffins. Appl. Catal. A Gen., 2005, 293, 1-10.
[http://dx.doi.org/10.1016/j.apcata.2005.07.008]
[21]
Akhmedov, V.M.; Al-Khowaiter, S.H. Recent advances and future aspects in the selective isomerization of high n-alkanes. Catal. Rev., Sci. Eng., 2007, 49(1), 33-139.
[http://dx.doi.org/10.1080/01614940601128427]
[22]
Li, H.; Fang, Z.; Smith, R.L.; Yang, S. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Prog. Energy Combust. Sci., 2016, 55, 98-194.
[23]
Gutierrez, A.; Kaila, R.K.; Honkela, M.L.; Slioor, R.; Krause, A.O.I. Hydrodeoxygenation of guaiacol on noble metal catalysts. Catal. Today, 2009, 147(3-4), 239-246.
[http://dx.doi.org/10.1016/j.cattod.2008.10.037]
[24]
Kikhtyanin, O.V.; Rubanov, A.E.; Ayupov, A.B.; Echevsky, G.V. Hydroconversion of sunflower oil on Pd/SAPO-31 catalyst. Fuel, 2010, 89(10), 3085-3092.
[http://dx.doi.org/10.1016/j.fuel.2010.05.033]
[25]
Verma, D.; Rana, B.S.; Kumar, R.; Sibi, M.G.; Sinha, A.K. Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11. Appl. Catal. A Gen., 2015, 490, 108-116.
[http://dx.doi.org/10.1016/j.apcata.2014.11.007]
[26]
Liu, S.; Zhu, Q.; Guan, Q.; He, L.; Li, W. Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts. Bioresour. Technol., 2015, 183, 93-100.
[http://dx.doi.org/10.1016/j.biortech.2015.02.056] [PMID: 25725407]
[27]
Chen, N.; Gong, S.; Qian, E.W. Effect of reduction temperature of NiMoO3-x/SAPO-11 on its catalytic activity in hydrodeoxygenation of methyl laurate. Appl. Catal. B, 2015, 174-175, 253-263.
[http://dx.doi.org/10.1016/j.apcatb.2015.03.011]
[28]
Shamanaev, I.V.; Shamanaeva, I.A.; Parkhomchuk, E.V.; Bukhtiyarova, G.A. Hydrodeoxygenation-isomerization of methyl palmitate over SAPO-11-supported Ni-phosphide catalysts. Catalysts, 2022, 12(11), 1486.
[http://dx.doi.org/10.3390/catal12111486]
[29]
Han, J.; Duan, J.; Chen, P.; Lou, H.; Zheng, X.; Hong, H. Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils. Green Chem., 2011, 13(9), 2561.
[http://dx.doi.org/10.1039/c1gc15421d]
[30]
Levy, R.B.; Boudart, M. Platinum-like behavior of tungsten carbide in surface catalysis. Science, 1973, 181(4099), 547-549.
[http://dx.doi.org/10.1126/science.181.4099.547] [PMID: 17777803]
[31]
Smith, K.J. Metal carbides, phosphides, and nitrides for biomass conversion. Curr. Opin. Green Sustain. Chem., 2020, 22, 47-53.
[http://dx.doi.org/10.1016/j.cogsc.2019.11.008]
[32]
Chen, N.; Wang, N.; Ren, Y.; Tominaga, H.; Qian, E.W. Effect of surface modification with silica on the structure and activity of Pt/ZSM-22@SiO2 catalysts in hydrodeoxygenation of methyl palmitate. J. Catal., 2017, 345, 124-134.
[http://dx.doi.org/10.1016/j.jcat.2016.09.005]
[33]
Li, X.; Fan, Q.; Wu, Y.; Lin, X.; Ma, S.; Li, S.; Ye, Y.; Wang, D.; Cheng, J.; Zheng, Z.; Jiang, J. Enhancing hydrodeoxygenation-isomerization of FAME over M-SAPO-11 in one-step process: Effect of in-situ isomorphic substitution of transition metals and synergy of PtxSny alloy. Chem. Eng. J., 2023, 452, 139528.
[http://dx.doi.org/10.1016/j.cej.2022.139528]
[34]
Scaldaferri, C.A.; Pasa, V.M.D. Hydrogen-free process to convert lipids into bio-jet fuel and green diesel over niobium phosphate catalyst in one-step. Chem. Eng. J., 2019, 370, 98-109.
[http://dx.doi.org/10.1016/j.cej.2019.03.063]
[35]
Sousa, F.P.; Silva, L.N.; de Rezende, D.B.; de Oliveira, L.C.A.; Pasa, V.M.D. Simultaneous deoxygenation, cracking and isomerization of palm kernel oil and palm olein over beta zeolite to produce biogasoline, green diesel and biojet-fuel. Fuel, 2018, 223, 149-156.
[http://dx.doi.org/10.1016/j.fuel.2018.03.020]
[36]
Rambabu, K.; Bharath, G.; Sivarajasekar, N.; Velu, S.; Sudha, P.N.; Wongsakulphasatch, S.; Banat, F. Sustainable production of bio-jet fuel and green gasoline from date palm seed oil via hydroprocessing over tantalum phosphate. Fuel, 2023, 331, 125688.
[http://dx.doi.org/10.1016/j.fuel.2022.125688]
[37]
Yeletsky, P.M.; Kukushkin, R.G.; Alekseeva, M.V.; Smirnov, A.A. Chapter 6. Application of heterogeneous catalysts for the conversion of biomassderived feedstocks into fuel components and eco-additives. In: RSC Energy and Environment Series; , 2020; pp. 150-179.
[http://dx.doi.org/10.1039/9781788019576-00150]
[38]
Misra, P.; Alvarez-Majmutov, A.; Chen, J. Isomerization catalysts and technologies for biorefining: Opportunities for producing sustainable aviation fuels. Fuel, 2023, 351, 128994.
[http://dx.doi.org/10.1016/j.fuel.2023.128994]
[39]
Chintakanan, P.; Vitidsant, T.; Reubroycharoen, P.; Kuchonthara, P.; Kida, T.; Hinchiranan, N. Bio-jet fuel range in biofuels derived from hydroconversion of palm olein over Ni/zeolite catalysts and freezing point of biofuels/Jet A-1 blends. Fuel, 2021, 293, 120472.
[http://dx.doi.org/10.1016/j.fuel.2021.120472]
[40]
Emori, E.Y.; Hirashima, F.H.; Zandonai, C.H.; Ortiz-Bravo, C.A.; Fernandes-Machado, N.R.C.; Olsen-Scaliante, M.H.N. Catalytic cracking of soybean oil using ZSM5 zeolite. Catal. Today, 2017, 279, 168-176.
[http://dx.doi.org/10.1016/j.cattod.2016.05.052]
[41]
Lovás, P.; Hudec, P.; Hadvinová, M.; Ház, A. Conversion of rapeseed oil via catalytic cracking: Effect of the ZSM-5 catalyst on the deoxygenation process. Fuel Process. Technol., 2015, 134, 223-230.
[http://dx.doi.org/10.1016/j.fuproc.2015.01.038]
[42]
Gurdeep Singh, H.K.; Yusup, S.; Quitain, A.T.; Abdullah, B.; Ameen, M.; Sasaki, M.; Kida, T.; Cheah, K.W. Biogasoline production from linoleic acid via catalytic cracking over nickel and copper-doped ZSM-5 catalysts. Environ. Res., 2020, 186, 109616.
[http://dx.doi.org/10.1016/j.envres.2020.109616] [PMID: 32668556]
[43]
Lipin, P.V.; Potapenko, O.V.; Sorokina, T.P.; Doronin, V.P. Key features of cotransformation of vacuum gas oils and vegetable oils on dual-zeolite cracking catalysts. Petrol. Chem., 2019, 59(7), 657-665.
[http://dx.doi.org/10.1134/S0965544119070090]
[44]
Kim, M.Y.; Kim, J.K.; Lee, M.E.; Lee, S.; Choi, M. Maximizing biojet fuel production from triglyceride: Importance of the hydrocracking catalyst and separate deoxygenation/hydrocracking steps. ACS Catal., 2017, 7(9), 6256-6267.
[http://dx.doi.org/10.1021/acscatal.7b01326]
[45]
Smirnova, M.Y.; Kikhtyanin, O.V.; Smirnov, M.Y.; Kalinkin, A.V.; Titkov, A.I.; Ayupov, A.B.; Ermakov, D.Y. Effect of calcination temperature on the properties of Pt/SAPO-31 catalyst in one-stage transformation of sunflower oil to green diesel. Appl. Catal. A Gen., 2015, 505, 524-531.
[http://dx.doi.org/10.1016/j.apcata.2015.06.019]
[46]
Muraza, O. Hydrous pyrolysis of heavy oil using solid acid minerals for viscosity reduction. J. Anal. Appl. Pyrolysis, 2015, 114, 1-10.
[http://dx.doi.org/10.1016/j.jaap.2015.04.005]
[47]
Rabaev, M.; Landau, M.V.; Vidruk-Nehemya, R.; Goldbourt, A.; Herskowitz, M. Improvement of hydrothermal stability of Pt/SAPO-11 catalyst in hydrodeoxygenation-isomerization-aromatization of vegetable oil. J. Catal., 2015, 332, 164-176.
[http://dx.doi.org/10.1016/j.jcat.2015.10.005]
[48]
Lang, M.; Li, H. Heterogeneous metal-based catalysts for cyclohexane synthesis from hydrodeoxygenation of lignin-derived phenolics. Fuel, 2023, 344(February), 128084.
[http://dx.doi.org/10.1016/j.fuel.2023.128084]
[49]
Wang, X.; Zhang, Z.; Yan, Z.; Li, Q.; Zhang, Y. Catalysts with metal-acid dual sites for selective hydrodeoxygenation of lignin derivatives: Progress in regulation strategies and applications. Appl. Catal. A Gen., 2023, 662(May), 119266.
[http://dx.doi.org/10.1016/j.apcata.2023.119266]
[50]
Çakan, A.; Kiren, B.; Ayas, N. Hydrodeoxygenation of safflower oil over cobalt-doped metal oxide catalysts for bio-aviation fuel production. Molecular Catalysis, 2023, 546(January), 113219.
[http://dx.doi.org/10.1016/j.mcat.2023.113219]
[51]
Almas, Q.; Sievers, C.; Jones, C.W. Role of the mesopore generation method in structure, activity and stability of MFI catalysts in glycerol acetylation. Appl. Catal. A Gen., 2019, 571(571), 107-117.
[http://dx.doi.org/10.1016/j.apcata.2018.12.015]
[52]
Hunsiri, W.; Chaihad, N.; Ngamcharussrivichai, C.; Tungasmita, D.N.; Reubroycharoen, P.; Hinchiranan, N. Branched-chain biofuels derived from hydroisomerization of palm olein using Ni/modified beta zeolite catalysts for biojet fuel production. Fuel Process. Technol., 2023, 248(May), 107825.
[http://dx.doi.org/10.1016/j.fuproc.2023.107825]