Nanostructured Lipid Carriers Mediated Drug Delivery to Posterior Segment of Eye and their In-vivo Successes

Page: [713 - 723] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: The disease of the posterior segment of the eye is a major concern worldwide, and it affects more than 300 million people and leads to serious visual deterioration. The current treatment available is invasive and leads to serious eye complications. These shortcomings and patient discomfort lead to poor patient compliance. In the last decade, Nanostructured lipid carriers (NLC) have established a remarkable milestone in the delivery of drug substances to the posterior segment of the eye. Additionally, NLC can reduce the clearance due to adhesive properties which are imparted due to nano-metric size. This attribute might reduce the adverse effects associated with intravitreal therapy and thus enhance therapeutic efficacy, eventually raising patient adherence to therapy. The current review provides an inclusive account of NLC as a carrier to target diseases of the posterior segment of the eye.

Objective: The review focuses on the various barrier encountered in the delivery of drugs to the posterior segment of the eye and the detail about the physicochemical property of drug substances that are considered to be suitable candidates for encapsulation to lipid carriers. Therefore, a plethora of literature has been included in this review. The review is an attempt to describe methods adopted for assessing the in-vivo behavior that strengthens the potential of NLC to treat the disease of the posterior segment of the eye.

Conclusion: These NLC-based systems have proven to be a promising alternative in place of invasive intravitreal injections with improved patient compliance.

Graphical Abstract

[1]
Lynch, C.; Kondiah, P.P.D.; Choonara, Y.E.; du Toit, L.C.; Ally, N.; Pillay, V. Advances in biodegradable nano-sized polymer-based ocular drug delivery. Polymers., 2019, 11(8), 1371.
[http://dx.doi.org/10.3390/polym11081371] [PMID: 31434273]
[2]
Thrimawithana, T.R.; Young, S.; Bunt, C.R.; Green, C.; Alany, R.G. Drug delivery to the posterior segment of the eye. Drug Discov. Today, 2011, 16(5-6), 270-277.
[http://dx.doi.org/10.1016/j.drudis.2010.12.004] [PMID: 21167306]
[3]
Seah, I.; Zhao, X.; Lin, Q.; Liu, Z.; Su, S.Z.Z.; Yuen, Y.S.; Hunziker, W.; Lingam, G.; Loh, X.J.; Su, X. Use of biomaterials for sustained delivery of anti-VEGF to treat retinal diseases. Eye, 2020, 34(8), 1341-1356.
[http://dx.doi.org/10.1038/s41433-020-0770-y] [PMID: 32001821 ]
[4]
Platania, C.B.M.; Dei Cas, M.; Cianciolo, S.; Fidilio, A.; Lazzara, F.; Paroni, R.; Pignatello, R.; Strettoi, E.; Ghidoni, R.; Drago, F.; Bucolo, C. Novel ophthalmic formulation of myriocin: Implications in retinitis pigmentosa. Drug Deliv., 2019, 26(1), 237-243.
[http://dx.doi.org/10.1080/10717544.2019.1574936] [PMID: 30883241]
[5]
Araújo, J.; Nikolic, S.; Egea, M.A.; Souto, E.B.; Garcia, M.L. Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids Surf. B Biointerfaces, 2011, 88(1), 150-157.
[http://dx.doi.org/10.1016/j.colsurfb.2011.06.025] [PMID: 21764568]
[6]
Balguri, S.P.; Adelli, G.R.; Majumdar, S. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur. J. Pharm. Biopharm., 2016, 109, 224-235.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.015] [PMID: 27793755]
[7]
Sharif Makhmal Zadeh, B.; Niro, H.; Rahim, F.; Esfahani, G. Ocular delivery system for propranolol hydrochloride based on nanostructured lipid carrier. Sci. Pharm., 2018, 86(2), 16.
[http://dx.doi.org/10.3390/scipharm86020016] [PMID: 29677103]
[8]
Makoni, P.A.; Khamanga, S.M.; Walker, R.B. Muco-adhesive clarithromycin-loaded nanostructured lipid carriers for ocular delivery: Formulation, characterization, cytotoxicity and stability. J. Drug Deliv. Sci. Technol., 2021, 61, 102171.
[http://dx.doi.org/10.1016/j.jddst.2020.102171]
[9]
Nirbhavane, P.; Sharma, G.; Singh, B.; Begum, G.; Jones, M.C.; Rauz, S.; Vincent, R.; Denniston, A.K.; Hill, L.J.; Katare, O.P. Triamcinolone acetonide loaded-cationic nano-lipoidal formulation for uveitis: Evidences of improved biopharmaceutical performance and anti-inflammatory activity. Colloids Surf. B Biointerfaces, 2020, 190(February), 110902.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110902] [PMID: 32143010]
[10]
Silva, A.C.; González-Mira, E.; García, M.L.; Egea, M.A.; Fonseca, J.; Silva, R.; Santos, D.; Souto, E.B.; Ferreira, D. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound. Colloids Surf. B Biointerfaces, 2011, 86(1), 158-165.
[http://dx.doi.org/10.1016/j.colsurfb.2011.03.035] [PMID: 21530187]
[11]
zur Mühlen, A.; Schwarz, C.; Mehnert, W. Solid lipid nanoparticles (SLN) for controlled drug delivery – Drug release and release mechanism. Eur. J. Pharm. Biopharm., 1998, 45(2), 149-155.
[http://dx.doi.org/10.1016/S0939-6411(97)00150-1] [PMID: 9704911]
[12]
Bachu, R.; Chowdhury, P.; Al-Saedi, Z.; Karla, P.; Boddu, S. Ocular drug delivery barriers—role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics, 2018, 10(1), 28.
[http://dx.doi.org/10.3390/pharmaceutics10010028] [PMID: 29495528]
[13]
Kong, X.; Zhao, Y.; Quan, P.; Fang, L. Development of a topical ointment of betamethasone dipropionate loaded nanostructured lipid carrier. asian. J. Pharm. Sci., 2016, 11(2), 248-254.
[14]
Rizwanullah, M.; Ahmad, M.Z.; Garg, A.; Ahmad, J. Advancement in design of nanostructured lipid carriers for cancer targeting and theranostic application. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(9), 129936.
[http://dx.doi.org/10.1016/j.bbagen.2021.129936] [PMID: 34058266]
[15]
Harwansh, R.K.; Bahadur, S.; Deshmukh, R.; Rahman, M.A. Exciting potential of nanoparticlized lipidic system for effective treatment of breast cancer and clinical updates: A translational prospective. Curr. Pharm. Des., 2020, 26(11), 1191-1205.
[http://dx.doi.org/10.2174/1381612826666200131101156] [PMID: 32003686]
[16]
Mohammadi-Samani, S.; Ghasemiyeh, P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[17]
Gelfuso, G.M.; Cunha-Filho, M.S.S.; Gratieri, T. Nanostructured lipid carriers for targeting drug delivery to the epidermal layer. Vol. 7, Therapeutic delivery. Future Science, 2016, (Nov), 735-737.
[18]
How, C.W.; Abdullah, R.; Abbasalipourkabir, R. Physicochemical properties of nanostructured lipid carriers as colloidal carrier system stabilized with polysorbate 20 and polysorbate 80. Afr. J. Biotechnol., 2011, 10(9), 1684-1689.
[19]
Barone, A.; Mendes, M.; Cabral, C.; Mare, R.; Paolino, D.; Vitorino, C. Hybrid nanostructured films for topical administration of simvastatin as coadjuvant treatment of melanoma. J. Pharm. Sci., 2019, 108(10), 3396-3407.
[http://dx.doi.org/10.1016/j.xphs.2019.06.002] [PMID: 31201905]
[20]
Varela-Fernández, R.; Díaz-Tomé, V.; Luaces-Rodríguez, A.; Conde-Penedo, A.; García-Otero, X.; Luzardo-Álvarez, A.; Fernández-Ferreiro, A.; Otero-Espinar, F. Drug delivery to the posterior segment of the eye: Biopharmaceutic and pharmacokinetic considerations. Pharmaceutics, 2020, 12(3), 269.
[http://dx.doi.org/10.3390/pharmaceutics12030269] [PMID: 32188045]
[21]
Prabhu, R.H.; Patravale, V.B.; Joshi, M.D. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int. J. Nanomedicine, 2015, 10, 1001-1018.
[PMID: 25678788]
[22]
Lucks, S.; Muller, R. Medication vehicles made of solid lipid particles (solid lipid nanospheres-SLN). EP Patent 0605497B1, 1996.
[23]
Cholkar, K.; Patel, A.; Vadlapudi, A.D.; Mitra, A.K. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat. Nanomed., 2012, 2(2), 82-95.
[http://dx.doi.org/10.2174/1877912311202020082] [PMID: 25400717]
[24]
Gote, V.; Ansong, M.; Pal, D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin. Drug Metab. Toxicol., 2020, 16(10), 885-906.
[http://dx.doi.org/10.1080/17425255.2020.1803278] [PMID: 32729364]
[25]
Lai, S.; Wei, Y.; Wu, Q.; Zhou, K.; Liu, T.; Zhang, Y.; Jiang, N.; Xiao, W.; Chen, J.; Liu, Q.; Yu, Y. Liposomes for effective drug delivery to the ocular posterior chamber. J. Nanobiotechnology., 2019, 17(1), 64.
[http://dx.doi.org/10.1186/s12951-019-0498-7] [PMID: 31084611]
[26]
Diebold, Y.; Jarrín, M.; Sáez, V.; Carvalho, E.L.S.; Orea, M.; Calonge, M.; Seijo, B.; Alonso, M.J. Ocular drug delivery by liposome–chitosan nanoparticle complexes (LCS-NP). Biomaterials, 2007, 28(8), 1553-1564.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.028] [PMID: 17169422]
[27]
Bochot, A.; Fattal, E.; Boutet, V.; Deverre, J.R.; Jeanny, J.C.; Chacun, H.; Couvreur, P. Intravitreal delivery of oligonucleotides by sterically stabilized liposomes. Invest. Ophthalmol. Vis. Sci., 2002, 43(1), 253-259.
[PMID: 11773039]
[28]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles Production, characterization and applications. Adv. Drug Deliv. Rev., 2001, 47(2-3), 165-196.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3] [PMID: 11311991]
[29]
Chen, H.; Jin, Y.; Sun, L.; Li, X.; Nan, K.; Liu, H.; Zheng, Q.; Wang, B. Recent developments in ophthalmic drug delivery systems for therapy of both anterior and posterior segment diseases. Colloid Interface Sci. Commun., 2018, 24(March), 54-61.
[http://dx.doi.org/10.1016/j.colcom.2018.03.008]
[30]
Sutradhar, KB; Khatun, S; Luna, IP Increasing possibilities of nanosuspension. J Nanotechnol., 2013, 2013
[31]
de Oliveira, I.F.; Barbosa, E.J.; Peters, M.C.C.; Henostroza, M.A.B.; Yukuyama, M.N.; dos Santos, N.E.; Löbenberg, R.; Bou-Chacra, N. Cutting-edge advances in therapy for the posterior segment of the eye: Solid lipid nanoparticles and nanostructured lipid carriers. Int. J. Pharm., 2020, 589, 119831.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119831] [PMID: 32877729]
[32]
Pascolini, D.; Mariotti, S.P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol., 2012, 96(5), 614-618.
[http://dx.doi.org/10.1136/bjophthalmol-2011-300539] [PMID: 22133988]
[33]
Bonilla, L.; Espina, M.; Severino, P.; Cano, A.; Ettcheto, M.; Camins, A.; García, M.L.; Souto, E.B.; Sánchez-López, E. Lipid nanoparticles for the posterior eye segment. Pharmaceutics., 2021, 14(1), 90.
[http://dx.doi.org/10.3390/pharmaceutics14010090] [PMID: 35056986]
[34]
Nayak, K.; Misra, M. A review on recent drug delivery systems for posterior segment of eye. Biomed. Pharmacother., 2018, 107(February), 1564-1582.
[http://dx.doi.org/10.1016/j.biopha.2018.08.138] [PMID: 30257375]
[35]
Xu, Q.; Boylan, N.J.; Suk, J.S.; Wang, Y.Y.; Nance, E.A.; Yang, J.C.; McDonnell, P.J.; Cone, R.A.; Duh, E.J.; Hanes, J. Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo. J. Control. Release, 2013, 167(1), 76-84.
[http://dx.doi.org/10.1016/j.jconrel.2013.01.018] [PMID: 23369761]
[36]
Pai, R.V.; Vavia, P.R. Chitosan oligosaccharide enhances binding of nanostructured lipid carriers to ocular mucins: Effect on ocular disposition. Int. J. Pharm., 2020, 577, 119095.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119095] [PMID: 32004680]
[37]
Jounaki, K.; Makhmalzadeh, B.S.; Feghhi, M.; Heidarian, A. Topical ocular delivery of vancomycin loaded cationic lipid nanocarriers as a promising and non-invasive alternative approach to intravitreal injection for enhanced bacterial endophthalmitis management. Eur. J. Pharm. Sci., 2021, 167, 105991.
[http://dx.doi.org/10.1016/j.ejps.2021.105991] [PMID: 34517103]
[38]
Fangueiro, J.F.; Andreani, T.; Egea, M.A.; Garcia, M.L.; Souto, S.B.; Silva, A.M.; Souto, E.B. Design of cationic lipid nanoparticles for ocular delivery: Development, characterization and cytotoxicity. Int. J. Pharm., 2014, 461(1-2), 64-73.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.025] [PMID: 24275449]
[39]
Jung, J.H.; Ji, Y.W.; Hwang, H.S.; Oh, J.W.; Kim, H.C.; Lee, H.K.; Kim, K.P. Proteomic analysis of human lacrimal and tear fluid in dry eye disease. Sci. Rep., 2017, 7(1), 13363.
[http://dx.doi.org/10.1038/s41598-017-13817-y] [PMID: 29042648]
[40]
Garaszczuk, I.K.; Mousavi, M.; Cervino Exposito, A.; Bartuzel, M.M.; Montes-Micó, R.; Iskander, D.R. Evaluating tear clearance rate with optical coherence tomography. Cont. Lens Anterior Eye, 2018, 41(1), 54-59.
[http://dx.doi.org/10.1016/j.clae.2017.08.004] [PMID: 28847465]
[41]
Dargó, G.; Vincze, A.; Müller, J.; Kiss, H.J.; Nagy, Z.Z.; Balogh, G.T. Corneal-PAMPA: A novel, non-cell-based assay for prediction of corneal drug permeability. Eur. J. Pharm. Sci., 2019, 128, 232-239.
[http://dx.doi.org/10.1016/j.ejps.2018.12.012] [PMID: 30553815]
[42]
Kakizaki, H.; Ali, M.J. Anatomy, physiology, and immunology of the lacrimal system. In: Principles and practice of lacrimal surgery; Springer, 2018; pp. 19-39.
[http://dx.doi.org/10.1007/978-981-10-5442-6_3]
[43]
Janagam, D.R.; Wu, L.; Lowe, T.L. Nanoparticles for drug delivery to the anterior segment of the eye. Adv. Drug Deliv. Rev., 2017, 122, 31-64.
[http://dx.doi.org/10.1016/j.addr.2017.04.001] [PMID: 28392306]
[44]
Thassu, D; Chader, GJ Ocular drug delivery systems: barriers and application of nanoparticulate systems, 1st ed.; CRC Press, 2012.
[45]
Sánchez-López, E.; Espina, M.; Doktorovova, S.; Souto, E.B.; García, M.L. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye – Part I – Barriers and determining factors in ocular delivery. Eur. J. Pharm. Biopharm., 2017, 110, 70-75.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.009] [PMID: 27789358]
[46]
Rimpelä, A.K.; Reinisalo, M.; Hellinen, L.; Grazhdankin, E.; Kidron, H.; Urtti, A.; del Amo, E.M. Implications of melanin binding in ocular drug delivery. Adv. Drug Deliv. Rev., 2018, 126, 23-43.
[http://dx.doi.org/10.1016/j.addr.2017.12.008] [PMID: 29247767]
[47]
See, G.L.; Sagesaka, A.; Sugasawa, S.; Todo, H.; Sugibayashi, K. Eyelid skin as a potential site for drug delivery to conjunctiva and ocular tissues. Int. J. Pharm., 2017, 533(1), 198-205.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.070] [PMID: 28965801]
[48]
Mousavikhamene, Z.; Abdekhodaie, M.J.; Ahmadieh, H. Facilitation of transscleral drug delivery by drug loaded magnetic polymeric particles. Mater. Sci. Eng. C, 2017, 79, 812-820.
[http://dx.doi.org/10.1016/j.msec.2017.05.015] [PMID: 28629084]
[49]
Mains, J.; Wilson, C.G. The vitreous humor as a barrier to nanoparticle distribution. J. Ocul. Pharmacol. Ther., 2013, 29(2), 143-150.
[http://dx.doi.org/10.1089/jop.2012.0138] [PMID: 23113646]
[50]
del Amo, E.M.; Rimpelä, A.K.; Heikkinen, E.; Kari, O.K.; Ramsay, E.; Lajunen, T.; Schmitt, M.; Pelkonen, L.; Bhattacharya, M.; Richardson, D.; Subrizi, A.; Turunen, T.; Reinisalo, M.; Itkonen, J.; Toropainen, E.; Casteleijn, M.; Kidron, H.; Antopolsky, M.; Vellonen, K.S.; Ruponen, M.; Urtti, A. Pharmacokinetic aspects of retinal drug delivery. Prog. Retin. Eye Res., 2017, 57, 134-185.
[http://dx.doi.org/10.1016/j.preteyeres.2016.12.001] [PMID: 28028001]
[51]
O’Leary, F.; Campbell, M. The blood–retina barrier in health and disease. FEBS J., 2021, 290(4), 878-891.
[PMID: 34923749]
[52]
Kubo, Y.; Akanuma, S.; Hosoya, K. Influx transport of cationic drug at the blood–retinal barrier: Impact on the retinal delivery of neuroprotectants. Biol. Pharm. Bull., 2017, 40(8), 1139-1145.
[http://dx.doi.org/10.1248/bpb.b17-00090] [PMID: 28768994]
[53]
Wang, Y.; Xu, X.; Gu, Y.; Cheng, Y.; Cao, F. Recent advance of nanoparticle-based topical drug delivery to the posterior segment of the eye. Expert Opin. Drug Deliv., 2018, 15(7), 687-701.
[http://dx.doi.org/10.1080/17425247.2018.1496080] [PMID: 29985660]
[54]
Chapy, H.; Saubaméa, B.; Tournier, N.; Bourasset, F.; Behar-Cohen, F.; Declèves, X.; Scherrmann, J.M.; Cisternino, S. Blood-brain and retinal barriers show dissimilar ABC transporter impacts and concealed effect of P-glycoprotein on a novel verapamil influx carrier. Br. J. Pharmacol., 2016, 173(3), 497-510.
[http://dx.doi.org/10.1111/bph.13376] [PMID: 26507673]
[55]
Peters, M.C.C.; Santos Neto, E.; Monteiro, L.M.; Yukuyama, M.N.; Machado, M.G.M.; de Oliveira, I.F.; Zanin, M.H.A.; Löbenberg, R.; Bou-Chacra, N. Advances in ophthalmic preparation: The role of drug nanocrystals and lipid-based nanosystems. J. Drug Target., 2020, 28(3), 259-270.
[http://dx.doi.org/10.1080/1061186X.2019.1663858] [PMID: 31491352]
[56]
Khosa, A.; Reddi, S.; Saha, R.N. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother., 2018, 103, 598-613.
[http://dx.doi.org/10.1016/j.biopha.2018.04.055] [PMID: 29677547]
[57]
Salvi, VR Pawar, P Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol., 2019, 51, 255-267.
[58]
Alskär, L.C.; Porter, C.J.H.; Bergström, C.A.S. Tools for early prediction of drug loading in lipid-based formulations. Mol. Pharm., 2016, 13(1), 251-261.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00704] [PMID: 26568134]
[59]
Göke, K.; Bunjes, H. Drug solubility in lipid nanocarriers: Influence of lipid matrix and available interfacial area. Int. J. Pharm., 2017, 529(1-2), 617-628.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.025] [PMID: 28705617]
[60]
Hansch, C.; Hoekman, D.; Leo, A.; Zhang, L.; Li, P. The expanding role of quantitative structure-activity relationships (QSAR) in toxicology. Toxicol. Lett., 1995, 79(1-3), 45-53.
[http://dx.doi.org/10.1016/0378-4274(95)03356-P] [PMID: 7570673]
[61]
Selvaraj, K.; Kuppusamy, G.; Krishnamurthy, J.; Mahalingam, R.; Singh, S.K.; Gulati, M. Repositioning of itraconazole for the management of ocular neovascularization through surface-modified nanostructured lipid carriers. Assay Drug Dev. Technol., 2019, 17(4), 178-190.
[http://dx.doi.org/10.1089/adt.2018.898] [PMID: 30835139]
[62]
Lakhani, P.; Patil, A.; Wu, K.W.; Sweeney, C.; Tripathi, S.; Avula, B.; Taskar, P.; Khan, S.; Majumdar, S. Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery. Int. J. Pharm., 2019, 572(Dec), 118771.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118771] [PMID: 31669555]
[63]
Guadagni, V.; Novelli, E.; Piano, I.; Gargini, C.; Strettoi, E. Pharmacological approaches to retinitis pigmentosa: A laboratory perspective. Prog. Retin. Eye Res., 2015, 48, 62-81.
[http://dx.doi.org/10.1016/j.preteyeres.2015.06.005] [PMID: 26113212]
[64]
Zarbin, M.A.; Montemagno, C.; Leary, J.F.; Ritch, R. Nanotechnology in ophthalmology. Can. J. Ophthalmol., 2010, 45(5), 457-476.
[http://dx.doi.org/10.3129/i10-090] [PMID: 20871642]
[65]
Diebold, Y.; Calonge, M. Applications of nanoparticles in ophthalmology. Prog. Retin. Eye Res., 2010, 29(6), 596-609.
[http://dx.doi.org/10.1016/j.preteyeres.2010.08.002] [PMID: 20826225]
[66]
Nayak, K.; Misra, M. Triamcinolone acetonide-loaded PEGylated microemulsion for the posterior segment of eye. ACS Omega, 2020, 5(14), 7928-7939.
[http://dx.doi.org/10.1021/acsomega.9b04244] [PMID: 32309702]
[67]
L Kiss, E.; Berkó, S.; Gácsi, A.; Kovács, A.; Katona, G.; Soós, J.; Csányi, E.; Gróf, I.; Harazin, A.; Deli, M.A.; Budai-Szűcs, M. Design and optimization of nanostructured lipid carrier containing dexamethasone for ophthalmic use. Pharmaceutics, 2019, 11(12), 679.
[http://dx.doi.org/10.3390/pharmaceutics11120679] [PMID: 31847336]
[68]
Allam, A; El-mokhtar, MA; Elsabahy, M Vancomycin-loaded niosomes integrated within pH-sensitive in-situ forming gel for treatment of ocular infections while minimizing drug irritation. J Pharm Pharmacol., 2019, 71, 1209-1221.
[69]
Araújo, J.; Garcia, M.L.; Mallandrich, M.; Souto, E.B.; Calpena, A.C. Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): in vitro and ex vivo studies. Nanomedicine, 2012, 8(6), 1034-1041.
[http://dx.doi.org/10.1016/j.nano.2011.10.015] [PMID: 22115598]
[70]
Ban, J.; Zhang, Y.; Huang, X.; Deng, G.; Hou, D.; Chen, Y.; Lu, Z. Corneal permeation properties of a charged lipid nanoparticle carrier containing dexamethasone. Int. J. Nanomedicine, 2017, 12, 1329-1339.
[http://dx.doi.org/10.2147/IJN.S126199] [PMID: 28243093]