Recent Patents on Nanotechnology

Author(s): Suchitra Nishal, Virender Kumar*, Parmita Phaugat, Davinder Kumar, Naveen Khatri and Gajendra Singh

DOI: 10.2174/1872210518666230907115056

DownloadDownload PDF Flyer Cite As
A Systematic Review and Meta-Analysis of the Metal Nano-Particles Loaded with Herbal Drugs Moieties Against Breast Cancer

Page: [120 - 130] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Breast cancer is the most prevalent cancer among women. About 685K deaths were globally listed in 2020 by the World Health Organization. Nowadays, scientists prefer to use herbal medicines due to their low toxicity. Herbal medicines are used to overcome the toxicity effects of surgical removal, radio-chemo therapy and medication, which have a lot of risk of damaging the healthy tissues. To overcome this, enhance bioavailability and target specify, nano-formulation chemotherapy was introduced using herbal moiety for anticancer activity. The use of metallic nanoparticles (MNPs), particularly those made of silver, cobalt, zinc, and gold as contrast, antibacterial, anticancer, and drug delivery agents has revolutionised the medicinal field. Although MNPs can be made via exacting physical and chemical processes, a biological method utilising natural materials has been established recently.

Objectives: This patent review article will offer a succinct explanation of the use of MNPs and its potential impact on herbal medicines in the future.

Methods: Using PRISMA principles, this review systematically examines studies that concentrate on metal nanoparticles loaded with herbal compounds for the treatment of breast cancer. Various Databases were studied: PubMed, Elsevier, ScienceDirect, SpringerLink, Taylor & Francis Online, ACS Publications, Publishing Royal Society of Chemistry, and Future Medicines. Studies were selected if they were peer-reviewed primary studies published in the past 10 years.

Results: We found that many herbal nano-formulations are more effective in breast cancer treatment than other types of formulations. Efficacy, safety and drug stability are also enhanced using nanoformulations.

Conclusion: Nano-formulation is found to be more effective in the treatment of breast cancer.

Keywords: Breast cancer, herbal medicines, toxicity, bioavailability, nano-formulations, metallic nanoparticles.

Graphical Abstract

[1]
Barani M, Mirzaei M, Torkzadeh-Mahani M, Nematollahi MH. Lawsone-loaded Niosome and its antitumor activity in MCF-7 breast Cancer cell line: A Nano-herbal treatment for Cancer. Daru 2018; 26(1): 11-7.
[http://dx.doi.org/10.1007/s40199-018-0207-3] [PMID: 30159762]
[2]
Fröhlich H, Patjoshi S, Yeghiazaryan K, Kehrer C, Kuhn W, Golubnitschaja O. Premenopausal breast cancer: Potential clinical utility of a multi-omics based machine learning approach for patient stratification. EPMA J 2018; 9(2): 175-86.
[http://dx.doi.org/10.1007/s13167-018-0131-0] [PMID: 29896316]
[3]
Gaber M, Hany M, Mokhtar S, Helmy MW, Elkodairy KA, Elzoghby AO. Boronic-targeted albumin-shell oily-core nanocapsules for synergistic aromatase inhibitor/herbal breast cancer therapy. Mater Sci Eng C 2019; 105: 110099.
[http://dx.doi.org/10.1016/j.msec.2019.110099] [PMID: 31546395]
[4]
Haggag YA, Ibrahim RR, Hafiz AA. Design, formulation and in vivo evaluation of novel honokiol-loaded PEGylated PLGA nanocapsules for treatment of breast cancer. Int J Nanomedicine 2020; 15: 1625-42.
[http://dx.doi.org/10.2147/IJN.S241428]
[5]
Chang R. Bioactive polysaccharides from traditional Chinese medicine herbs as anticancer adjuvants. J Altern Complement Med 2002; 8(5): 559-65.
[6]
Halith ASM, Pillai KK. C.b Anbalagan, Herbal nanoparticle for anticancer potential- a review. World J Pharm Pharm Sci 2014; 3(8): 2123-32.
[7]
Nguyen KT. Targeted nanoparticles for cancer therapy: Promises and challenge. J Nanomed Nanotechnol 2011; 2(5): 1000103e.
[http://dx.doi.org/10.4172/2157-7439.1000103e]
[8]
Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008; 14(5): 1310-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[9]
Andleeb A, Andleeb A, Asghar S, et al. A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy. Cancers 2021; 13(11): 2818.
[http://dx.doi.org/10.3390/cancers13112818] [PMID: 34198769]
[10]
Sharma H, Mishra PK, Talegaonkar S, Vaidya B. Metal nanoparticles: A theranostic nanotool against cancer. Drug Discov Today 2015; 20(9): 1143-51.
[http://dx.doi.org/10.1016/j.drudis.2015.05.009] [PMID: 26007605]
[11]
Rao PV, Nallappan D, Madhavi K, Rahman S, Jun WL, Gan SH. Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxid Med Cell Longev 2016; 2016: 1-15.
[http://dx.doi.org/10.1155/2016/3685671] [PMID: 27057273]
[12]
PRISMA. Available from: https://www.prisma-statement.org//PRISMAStatement/FlowDiagram(Accessed on 25 November 2022)
[13]
Bakhshi F, Nayeri ND, Khosravi A, Najafi Z. The effect of complementary and alternative medicineson quality of life in patients with breast cancer: A systematic review. Indian J Palliat Care 2020; 26(1): 95-104.
[http://dx.doi.org/10.4103/IJPC.IJPC_183_19] [PMID: 32132792]
[14]
Lin WF, Zhong MF, Zhou QH, et al. Efficacy of complementary and integrative medicine on health-related quality of life in cancer patients: A systematic review and meta-analysis. Cancer Manag Res 2019; 11: 6663-80.
[http://dx.doi.org/10.2147/CMAR.S195935] [PMID: 31413628]
[15]
Dai X, Li T, Bai Z, et al. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res 2015; 5(10): 2929-43.
[PMID: 26693050]
[16]
De Cicco P, Catani MV, Gasperi V, Sibilano M, Quaglietta M, Savini I. Nutrition and breast cancer: A literature review on prevention, treatment and recurrence. Nutrients 2019; 11(7): 1514.
[http://dx.doi.org/10.3390/nu11071514] [PMID: 31277273]
[17]
Larsen MJ, Kruse TA, Tan Q, et al. Classifications within molecular subtypes enables identification of BRCA1/BRCA2 mutation carriers by RNA tumor profiling. PLoS One 2013; 8(5): e64268.
[http://dx.doi.org/10.1371/journal.pone.0064268] [PMID: 23704984]
[18]
Hashmi AA, Hashmi KA, Irfan M, et al. Ki67 index in intrinsic breast cancer subtypes and its association with prognostic parameters. BMC Res Notes 2019; 12(1): 605.
[http://dx.doi.org/10.1186/s13104-019-4653-x] [PMID: 31547858]
[19]
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20(2): 101-24.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[20]
Ajazuddin Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia 2010; 81(7): 680-9.
[http://dx.doi.org/10.1016/j.fitote.2010.05.001] [PMID: 20471457]
[21]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[22]
Hu G, Guo M, Xu J, et al. Nanoparticles targeting macrophages as potential clinical therapeutic agents against cancer and inflammation. Front Immunol 2019; 10: 1998.
[http://dx.doi.org/10.3389/fimmu.2019.01998] [PMID: 31497026]
[23]
Kopac T. Protein corona, understanding the nanoparticle–protein interactions and future perspectives: A critical review. Int J Biol Macromol 2021; 169: 290-301.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.108] [PMID: 33340622]
[24]
Almeida JPM, Chen AL, Foster A, Drezek R. in vivo biodistribution of nanoparticles. Nanomedicine 2011; 6(5): 815-35.
[http://dx.doi.org/10.2217/nnm.11.79] [PMID: 21793674]
[25]
De Matteis V. Exposure to inorganic nanoparticles: Routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics 2017; 5(4): 29.
[http://dx.doi.org/10.3390/toxics5040029] [PMID: 29051461]
[26]
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015; 33(9): 941-51.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[27]
Majidzadeh H, Araj-Khodaei M, Ghaffari M, Torbati M, Ezzati Nazhad DJ, Hamblin MR. Nano-based delivery systems for berberine: A modern anti-cancer herbal medicine. Colloids Surf B Biointerfaces 2020; 194: 111188.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111188] [PMID: 32540763]
[28]
Oswald JT, Patel H, Khan D, et al. Drug delivery systems using surface markers for targeting cancer stem cells. Curr Pharm Des 2020; 26(17): 2057-71.
[http://dx.doi.org/10.2174/1381612826666200406084900] [PMID: 32250211]
[29]
Refaat A, Abdelhamed S, Yagita H, et al. Berberine enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast cancer. Oncol Lett 2013; 6(3): 840-4.
[http://dx.doi.org/10.3892/ol.2013.1434] [PMID: 24137422]
[30]
Zhao Y, Jing Z, Lv J, et al. Berberine activates caspase-9/cytochrome c-mediated apoptosis to suppress triple-negative breast cancer cells in vitro and in vivo. Biomed Pharmacother 2017; 95: 18-24.
[http://dx.doi.org/10.1016/j.biopha.2017.08.045] [PMID: 28826092]
[31]
Pandey S, Mewada A, Thakur M, Shah R, Oza G, Sharon M. Biogenic gold nanoparticles as fotillas to fire berberine hydrochloride using folic acid as molecular road map. Mater Sci Eng C 2013; 33(7): 3716-22.
[http://dx.doi.org/10.1016/j.msec.2013.05.007] [PMID: 23910269]
[32]
Ombredane AS, Silva VRP, Andrade LR, et al. In vivo efficacy and toxicity of curcumin nanoparticles in breast cancer treatment: A systematic review. Front Oncol 2021; 11: 612903.
[http://dx.doi.org/10.3389/fonc.2021.612903] [PMID: 33767985]
[33]
Banik U, Parasuraman S, Adhikary AK, Othman NH. Curcumin: The spicy modulator of breast carcinogenesis. J Exp Clin Cancer Res 2017; 36(1): 98.
[http://dx.doi.org/10.1186/s13046-017-0566-5] [PMID: 28724427]
[34]
Ghaffari SB, Sarrafzadeh MH, Fakhroueian Z, Khorramizadeh MR. Flower-like curcumin-loaded folic acid-conjugated ZnO-MPA- βcyclodextrin nanostructures enhanced anticancer activity and cellular uptake of curcumin in breast cancer cells. Mater Sci Eng C 2019; 103: 109827.
[http://dx.doi.org/10.1016/j.msec.2019.109827] [PMID: 31349522]
[35]
Ali I, Ahmed SBM, Elhaj BM, Ali HS, Alsubaie A, Almalki ASA. Enhanced anticancer activities of curcumin-loaded green gum acacia-based silver nanoparticles against melanoma and breast cancer cells. Appl Nanosci 2021; 11(11): 2679-87.
[http://dx.doi.org/10.1007/s13204-021-02176-w]
[36]
Mohebian Z, Babazadeh M, Zarghami N. In vitro efficacy of curcumin-loaded amine-functionalized mesoporous silica nanoparticles against MCF-7 breast cancer cells. Adv Pharm Bull 2022; 13(2): 317-27.
[PMID: 37342377]
[37]
Singh R, Singh SK, Lillard JW Jr, Singh R. shy Role of natural compounds in preventing and treating breast cancer. Front Biosci 2020; 12(1): 137-60.
[http://dx.doi.org/10.2741/s544] [PMID: 32114452]
[38]
Gong Y, Ji Y, Liu F, Li J, Cao Y. Cytotoxicity, oxidative stress and inflammation induced by ZnO nanoparticles in endothelial cells: Interaction with palmitate or lipopolysaccharide. J Appl Toxicol 2017; 37(8): 895-901.
[http://dx.doi.org/10.1002/jat.3415] [PMID: 27862064]
[39]
Sadhukhan P, Kundu M, Chatterjee S, et al. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater Sci Eng C 2019; 100: 129-40.
[http://dx.doi.org/10.1016/j.msec.2019.02.096] [PMID: 30948047]
[40]
Elsayed AM, Sherif NM, Hassan NS, Althobaiti F, Hanafy NAN, Sahyon HA. Novel quercetin encapsulated chitosan functionalized copper oxide nanoparticles as anti-breast cancer agent via regulating p53 in rat model. Int J Biol Macromol 2021; 185: 134-52.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.085] [PMID: 34147524]
[41]
Balakrishnan S, Bhat FA, Raja Singh P, et al. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif 2016; 49(6): 678-97.
[http://dx.doi.org/10.1111/cpr.12296] [PMID: 27641938]
[42]
Askar MA, El-Nashar HAS, Al-Azzawi MA, Rahman SSA, Elshawi OE. Synergistic effect of quercetin magnetite nanoparticles and targeted radiotherapy in treatment of breast cancer. Breast Cancer 2022; 16: 11782234221086728.
[http://dx.doi.org/10.1177/11782234221086728] [PMID: 35359610]
[43]
Granja A, Frias I, Neves AR, Pinheiro M, Reis S. Therapeutic potential of epigallocatechin gallate nanodelivery systems. BioMed Res Int 2017; 2017: 5813793.
[http://dx.doi.org/10.1155/2017/5813793]
[44]
Zhong Y, Chiou YS, Pan MH, Shahidi F. Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG) derivatives in LPS-stimulated murine macrophages. Food Chem 2012; 134(2): 742-8.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.172] [PMID: 23107686]
[45]
Yang QQ, Wei XL, Fang YP, et al. Nanochemoprevention with therapeutic benefits: An updated review focused on epigallocatechin gallate delivery. Crit Rev Food Sci Nutr 2020; 60(8): 1243-64.
[http://dx.doi.org/10.1080/10408398.2019.1565490] [PMID: 30799648]
[46]
Moon HS, Lee HG, Choi YJ, Kim TG, Cho CS. Proposed mechanisms of (−)-epigallocatechin-3-gallate for anti-obesity. Chem Biol Interact 2007; 167(2): 85-98.
[http://dx.doi.org/10.1016/j.cbi.2007.02.008] [PMID: 17368440]
[47]
Fujiki H, Yoshizawa S, Horiuchi T, et al. Anticarcinogenic effects of (−)-epigallocatechin gallate. Prev Med 1992; 21(4): 503-9.
[http://dx.doi.org/10.1016/0091-7435(92)90057-O] [PMID: 1409491]
[48]
Aggarwal V, Tuli HS, Tania M, et al. Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Semin Cancer Biol 2020; 80: 256-75.
[49]
Li K, Teng C, Min Q. Advanced nanovehicles-enabled delivery systems of epigallocatechin gallate for cancer therapy. Front Chem 2020; 8: 573297.
[http://dx.doi.org/10.3389/fchem.2020.573297] [PMID: 33195062]
[50]
Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A. Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol 2016; 44(1): 410-22.
[http://dx.doi.org/10.3109/21691401.2014.955107] [PMID: 25229833]
[51]
Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 2008; 1: 17-32.
[http://dx.doi.org/10.2147/NSA.S3788] [PMID: 24198458]
[52]
Chavva S, Deshmukh S, Kanchanapally R, et al. Epigallocatechin gallate-gold nanoparticles exhibit superior antitumor activity compared to conventional gold nanoparticles: Potential synergistic interactions. Nanomaterials 2019; 9(3): 396.
[http://dx.doi.org/10.3390/nano9030396] [PMID: 30857226]
[53]
Safwat MA, Kandil BA, Elblbesy MA, Soliman GM, Eleraky NE. Epigallocatechin-3-gallate-loaded gold nanoparticles: Preparation and evaluation of anticancer efficacy in ehrlich tumor-bearing mice. Pharmaceuticals 2020; 13(9): 254.
[http://dx.doi.org/10.3390/ph13090254] [PMID: 32961982]
[54]
McClements DJ. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnol Adv 2020; 38: 107287.
[http://dx.doi.org/10.1016/j.biotechadv.2018.08.004] [PMID: 30086329]
[55]
Yao M, McClements DJ, Xiao H. Improving oral bioavailability of nutraceuticals by engineered nanoparticle-based delivery systems. Curr Opin Food Sci 2015; 2: 14-9.
[http://dx.doi.org/10.1016/j.cofs.2014.12.005]
[56]
Elsaesser A, Howard CV. Toxicology of nanoparticles. Adv Drug Deliv Rev 2012; 64(2): 129-37.
[http://dx.doi.org/10.1016/j.addr.2011.09.001] [PMID: 21925220]
[57]
de Jong WH, Borm PJ. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[58]
Keck CM, Müller RH. Nanotoxicological classification system (NCS) - A guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur J Pharm Biopharm 2013; 84(3): 445-8.
[http://dx.doi.org/10.1016/j.ejpb.2013.01.001] [PMID: 23333302]
[59]
Jain S, Saxena N, Sharma MK, Chatterjee S. Metal nanoparticles and medicinal plants: Present status and future prospects in cancer therapy. Mater Today Proc 2020; 31: 662-73.
[http://dx.doi.org/10.1016/j.matpr.2020.06.602]
[60]
Gorain B, Pandey M, Leng NH, et al. Advanced drug delivery systems containing herbal components for wound healing. Int J Pharm 2022; 617: 121617.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121617] [PMID: 35218900]