The Value IRS-1 rs1801278G > A Polymorphism Testing in Evaluating Infertile Women with Polycystic Ovarian Syndrome: A Case-control Study

Article ID: e060923220752 Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Polycystic ovary syndrome (PCOS) is a leading cause of infertility. Insulin resistance is a key element in pathogenesis. The insulin receptor causes phosphorylation of the insulin receptor substrate (IRS); IRS-1 rs1801278G > A polymorphism variant is the most common genetic variant associated with IR and PCOS.

Objective: We aimed to examine the frequency of IRS-1 rs1801278G > A polymorphism variant and test its value in evaluating infertile PCOS women.

Methods: A case-control study recruited 140 age and body-mass-matched participants in the university hospital, subdivided according to Rotterdam criteria into PCOS cases (70/140) and healthy controls (70/140). We collected demographic data, ultrasonic [antral follicles and endometrial thickness], hormonal [FSH, LH, AMH, E2], and genetic data by polymerase chain reaction for analysis.

Result: Wild GG SNP rs1801278 G was meaningfully higher among controls (58.57%, P<0.0001). Mutant AA SNP rs1801278 was significantly higher in PCOS women (37.14%, P-value =0.0001, an odds ratio of 20.50, 95% CI (9.42-28.63) to develop PCOS. Heterogenous GA gene SNP rs1801278 showed a trend of higher frequency in PCOS patients with 44.29%; OR of 3.91, 95% CI (1.37–7.55); P = 0.422. Upon correlating infertility parameters to SNP rs1801278 G>A polymorphism, statistical differences were found with AFC, LH/FSH ratio, and serum testosterone. As for the AMH, E2, and endometrial thickness, they failed to have a statistical value.

Conclusion: The significant correlation of genetic polymorphism to infertility parameters among PCOS women opens a new therapeutic and prognostic avenue that helps gynecologists tailor management for a better and safer outcome.

Graphical Abstract

[1]
Escobar-Morreale, H.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol., 2018, 14(5), 270-284.
[http://dx.doi.org/10.1038/nrendo.2018.24] [PMID: 29569621]
[2]
Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod., 2004, 19(1), 41-47.
[http://dx.doi.org/10.1093/humrep/deh098] [PMID: 14688154]
[3]
Wawrzkiewicz-Jałowiecka, A.; Kowalczyk, K.; Trybek, P. In search of new therapeutics-molecular aspects of the PCOS pathophysiology: Genetics, hormones, metabolism and beyond. Int. J. Mol. Sci., 2020, 21(19), 7054.
[http://dx.doi.org/10.3390/ijms21197054]
[4]
Ali, A.I.; Nori, W. Correlation of serum visfatin level in non-obese women with polycystic ovary syndrome and matched control. Reprod. Sci., 2022, 29(11), 3285-3293.
[http://dx.doi.org/10.1007/s43032-022-00986-z] [PMID: 35687303]
[5]
Rostamtabar, M.; Esmaeilzadeh, S.; Tourani, M. Pathophysiological roles of chronic low‐grade inflammation mediators in polycystic ovary syndrome. J. Cell. Physiol., 2021, 236(2), 824-838.
[http://dx.doi.org/10.1002/jcp.29912] [PMID: 32617971]
[6]
Ali, A.I.; Hassan, W.N.M.; Alrawi, S. A copeptin as a predictor marker for insulin resistance among women with polycystic ovary syndrome. Curr. Womens Health Rev., 2022, 18(4), e081221198670.
[http://dx.doi.org/10.2174/1573404817666211208152049]
[7]
James, D.E.; Stöckli, J.; Birnbaum, M.J. The aetiology and molecular landscape of insulin resistance. Nat. Rev. Mol. Cell Biol., 2021, 22(11), 751-771.
[http://dx.doi.org/10.1038/s41580-021-00390-6] [PMID: 34285405]
[8]
Rashidi, B.; Azizy, L.; Najmeddin, F.; Azizi, E. Prevalence of the insulin receptor substrate-1(IRS-1) Gly972Arg and the insulin receptor substrate-2(IRS-2) Gly1057Asp polymorphisms in PCOS patients and non-diabetic healthy women. J. Assist. Reprod. Genet., 2012, 29(2), 195-201.
[http://dx.doi.org/10.1007/s10815-011-9693-7] [PMID: 22205343]
[9]
Emamgholipour, S.; Ebrahimi, R.; Bahiraee, A.; Niazpour, F.; Meshkani, R. Acetylation and insulin resistance: A focus on metabolic and mitogenic cascades of insulin signaling. Crit. Rev. Clin. Lab. Sci., 2020, 57(3), 196-214.
[http://dx.doi.org/10.1080/10408363.2019.1699498] [PMID: 31894999]
[10]
Dhar, S.; Mridha, S.; Bhattacharjee, P. Mutational landscape screening through comprehensive in silico analysis for polycystic ovarian syndrome–related genes. Reprod. Sci., 2022, 29(2), 480-496.
[http://dx.doi.org/10.1007/s43032-021-00752-7] [PMID: 34697776]
[11]
Jamshidi, M.; Mohammadi Pour, S.; Bahadoram, M.; Mahmoudian-Sani, M.R.; Saeedi Boroujeni, A. Genetic polymorphisms associated with polycystic ovary syndrome among Iranian women. Int. J. Gynaecol. Obstet., 2021, 153(1), 33-44.
[http://dx.doi.org/10.1002/ijgo.13534] [PMID: 33314055]
[12]
Yu, Y. How induced pluripotent stem cells changed the research status of polycystic ovary syndrome. In: In: Current Progress in iPSC Disease Modeling; Academic Press, 2022; pp. 127-156.
[http://dx.doi.org/10.1016/B978-0-323-85765-9.00009-6]
[13]
Ilagan, M.K.C.C.; Paz-Pacheco, E.; Totesora, D.Z.; Clemente-Chua, L.R.; Jalique, J.R.K. The modified ferriman-gallwey score and hirsutism among filipino women. Endocrinol. Metab., 2019, 34(4), 374-381.
[http://dx.doi.org/10.3803/EnM.2019.34.4.374] [PMID: 31884737]
[14]
Borges, E., Jr; Setti, A.S.; Braga, D.P.A.F.; Figueira, R.C.S.; Iaconelli, A. Jr. Total motile sperm count has a superior predictive value over the WHO 2010 cut-off values for the outcomes of intracytoplasmic sperm injection cycles. Andrology, 2016, 4(5), 880-886.
[http://dx.doi.org/10.1111/andr.12199] [PMID: 27152971]
[15]
Charan, J.; Biswas, T. How to calculate sample size for different study designs in medical research? Indian J. Psychol. Med., 2013, 35(2), 121-126.
[http://dx.doi.org/10.4103/0253-7176.116232] [PMID: 24049221]
[16]
Nolan, T.; Hands, R.E.; Bustin, S.A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc., 2006, 1(3), 1559-1582.
[http://dx.doi.org/10.1038/nprot.2006.236] [PMID: 17406449]
[17]
Hill, W.G.; Mackay, T.F.C. D. S. Falconer and Introduction to quantitative genetics. Genetics, 2004, 167(4), 1529-1536.
[http://dx.doi.org/10.1093/genetics/167.4.1529] [PMID: 15342495]
[18]
Crespo, R.P.; Bachega, T.A.S.S.; Mendonça, B.B.; Gomes, L.G. An update of genetic basis of PCOS pathogenesis. Arch. Endocrinol. Metab., 2018, 62(3), 352-361.
[http://dx.doi.org/10.20945/2359-3997000000049] [PMID: 29972435]
[19]
Sheetz, J.B.; Mathea, S.; Karvonen, H. Structural insights into pseudokinase domains of receptor tyrosine kinases. Mol. Cell, 2020, 79(3), 390-405.e7.
[http://dx.doi.org/10.1016/j.molcel.2020.06.018] [PMID: 32619402]
[20]
Sesti, G.; Federici, M.; Hribal, M.L.; Lauro, D.; Sbraccia, P.; Lauro, R. Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J., 2001, 15(12), 2099-2111.
[http://dx.doi.org/10.1096/fj.01-0009rev] [PMID: 11641236]
[21]
Skrgatić, L.; Baldani, D.P.; Gersak, K.; Cerne, J.Z.; Ferk, P.; Corić, M. Genetic polymorphisms of INS, INSR and IRS-1 genes are not associated with polycystic ovary syndrome in Croatian women. Coll. Antropol., 2013, 37(1), 141-146.
[PMID: 23697264]
[22]
Ruan, Y.; Ma, J.; Xie, X. Association of IRS-1 and IRS-2 genes polymorphisms with polycystic ovary syndrome: a meta-analysis. Endocr. J., 2012, 59(7), 601-609.
[http://dx.doi.org/10.1507/endocrj.EJ11-0387] [PMID: 22523112]
[23]
Shi, X.; Xie, X.; Jia, Y.; Li, S. Associations of insulin receptor and insulin receptor substrates genetic polymorphisms with polycystic ovary syndrome: A systematic review and meta-analysis. J. Obstet. Gynaecol. Res., 2016, 42(7), 844-854.
[http://dx.doi.org/10.1111/jog.13002] [PMID: 27098445]
[24]
Wolf, W.; Wattick, R.; Kinkade, O.; Olfert, M. Geographical prevalence of polycystic ovary syndrome as determined by region and race/ethnicity. Int. J. Environ. Res. Public Health, 2018, 15(11), 2589.
[http://dx.doi.org/10.3390/ijerph15112589] [PMID: 30463276]
[25]
Tang, W.; Wang, Y.; Jiang, H. Insulin receptor substrate-1 (IRS-1) rs1801278G>A polymorphism is associated with polycystic ovary syndrome susceptibility: A meta-analysis. Int. J. Clin. Exp. Med., 2015, 8(10), 17451-17460.
[PMID: 26770335]
[26]
Vergotine, Z.; Yako, Y.Y.; Kengne, A.P.; Erasmus, R.T.; Matsha, T.E. Proliferator-activated receptor gamma Pro12Ala interacts with the insulin receptor substrate 1 Gly972Arg and increase the risk of insulin resistance and diabetes in the mixed ancestry population from South Africa. BMC Genet., 2014, 15(1), 10.
[http://dx.doi.org/10.1186/1471-2156-15-10] [PMID: 24447396]
[27]
de Luis, D.; Izaola, O.; Primo, D. APOA-5 genetic variant rs662799: Role in lipid changes and insulin resistance after a mediterranean diet in caucasian obese subjects. Dis. Markers, 2021, 2021, 1-8.
[http://dx.doi.org/10.1155/2021/1257145] [PMID: 34422134]
[28]
Dewailly, D.; Robin, G.; Peigne, M.; Decanter, C.; Pigny, P.; Catteau-Jonard, S. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum. Reprod. Update, 2016, 22(6), 709-724.
[http://dx.doi.org/10.1093/humupd/dmw027] [PMID: 27566840]
[29]
Korhonen, K.; Unkila-Kallio, L.; Alfthan, H. Plasma pentraxin 3 is higher in early ovarian hyperstimulation syndrome than in uncomplicated in vitro fertilization cycle of high-risk women. Arch. Gynecol. Obstet., 2020, 301(6), 1569-1578.
[http://dx.doi.org/10.1007/s00404-020-05556-9] [PMID: 32372340]
[30]
Dogra, Y.; Singh, N.; Mishra, N. Do basal luteinizing hormone and luteinizing hormone/follicle-stimulating hormone ratio have significance in prognosticating the outcome of In vitro fertilization cycles in polycystic ovary syndrome? J. Hum. Reprod. Sci., 2021, 14(1), 21-27.
[http://dx.doi.org/10.4103/jhrs.JHRS_96_20] [PMID: 34083988]
[31]
Sookaromdee, P.; Wiwanitkit, V. Do basal luteinizing hormone and luteinizing hormone/follicle-stimulating hormone ratio have significance in prognosticating the outcome of In vitro fertilization cycles in polycystic ovary syndrome? J. Hum. Reprod. Sci., 2021, 14(3), 325.
[http://dx.doi.org/10.4103/jhrs.jhrs_87_21] [PMID: 34759626]
[32]
Deswal, R.; Nanda, S.; Dang, A.S. Association of Luteinizing hormone and LH receptor gene polymorphism with susceptibility of Polycystic ovary syndrome. Syst Biol Reprod Med, 2019, 65(5), 400-408.
[http://dx.doi.org/10.1080/19396368.2019.1595217] [PMID: 30958034]
[33]
Segal, D.G.; DiMeglio, L.A.; Ryder, K.W.; Vollmer, P.A.; Pescovitz, O.H. Assay interference leading to misdiagnosis of central precocious puberty. Endocr. J., 2003, 20(3), 195-200.
[http://dx.doi.org/10.1385/ENDO:20:3:195] [PMID: 12721497]
[34]
Kollmann, M.; Martins, W.P.; Lima, M.L.S. Strategies for improving outcome of assisted reproduction in women with polycystic ovary syndrome: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol., 2016, 48(6), 709-718.
[http://dx.doi.org/10.1002/uog.15898] [PMID: 26924636]
[35]
Al Shaikhly, R. The Effect of Genetic Polymorphism on Therapeutic Response of Metformin in Women with Polycystic Ovarian Syndrome in Iraqi Population; Theses and Dissertations Lebanese American University, 2021.
[http://dx.doi.org/10.26756/th.2022.337]
[36]
Xu, Y.; Qiao, J. Association of insulin resistance and elevated androgen levels with polycystic ovarian syndrome (PCOS): A review of literature. J. Healthc. Eng., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/9240569] [PMID: 35356614]
[37]
Moolhuijsen, L.M.E.; Louwers, Y.V.; McLuskey, A. Association between an AMH promoter polymorphism and serum AMH levels in PCOS patients. Hum. Reprod., 2022, 37(7), 1544-1556.
[http://dx.doi.org/10.1093/humrep/deac082] [PMID: 35451015]
[38]
Gorsic, L.K.; Kosova, G.; Werstein, B. Pathogenic anti-müllerian hormone variants in polycystic ovary syndrome. J. Clin. Endocrinol. Metab., 2017, 102(8), 2862-2872.
[http://dx.doi.org/10.1210/jc.2017-00612] [PMID: 28505284]
[39]
Laganà, A.S.; Rossetti, P.; Buscema, M. Metabolism and ovarian function in PCOS women: A therapeutic approach with inositols. Int. J. Endocrinol., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/6306410] [PMID: 27579037]
[40]
Nori, W.; Shallal, F.; Zghair, M.A.G. Aspirin effect on mid luteal phase doppler indices in patients with recurrent pregnancy loss. Int J Pharm Res, 2020, 12(3), 2929-2934.
[http://dx.doi.org/10.31838/ijpr/2020.12.03.413]
[41]
De Leo, V.; Musacchio, M.C.; Cappelli, V.; Massaro, M.G.; Morgante, G.; Petraglia, F. Genetic, hormonal and metabolic aspects of PCOS: An update. Reprod. Biol. Endocrinol., 2016, 14(1), 38.
[http://dx.doi.org/10.1186/s12958-016-0173-x] [PMID: 27423183]
[42]
Wang, X.; Sun, X.; Tang, B.; Liu, L.; Feng, X. Effect of polymorphisms of MTHFR in controlled ovarian stimulation: A systematic review and meta-analysis. J. Assist. Reprod. Genet., 2021, 38(9), 2237-2249.
[http://dx.doi.org/10.1007/s10815-021-02236-8] [PMID: 34032987]
[43]
Ghaderian, S.M.H.; Akbarzadeh, R.; Mohajerani, F.; Khodaii, Z.; Salehpour, S. The implication of single‐nucleotide polymorphisms in ovarian hyperstimulation syndrome. Mol. Reprod. Dev., 2019, 86(8), 964-971.
[http://dx.doi.org/10.1002/mrd.23171] [PMID: 31115963]
[44]
Alviggi, C.; Longobardi, S.; Papaleo, E. Genetic variants of gonadotropins and their receptors could influence controlled ovarian stimulation: IVF data from a prospective multicenter study. Genes, 2023, 14(6), 1269.
[http://dx.doi.org/10.3390/genes14061269] [PMID: 37372449]
[45]
Fiala, L.; Bob, P.; Raboch, J. Oncological markers CA-125, CA 19-9 and endometriosis. Medicine, 2018, 97(51), e13759.
[http://dx.doi.org/10.1097/MD.0000000000013759] [PMID: 30572523]
[46]
Throwba, H.; Unnikrishnan, L.; Pangath, M. The epigenetic correlation among ovarian cancer, endometriosis and PCOS: A review. Crit. Rev. Oncol. Hematol., 2022, 180, 103852.
[http://dx.doi.org/10.1016/j.critrevonc.2022.103852] [PMID: 36283585]
[47]
Eiras, M.C.; Pinheiro, D.P.; Romcy, K.A.M.; Ferriani, R.A.; Reis, R.M.D.; Furtado, C.L.M. Polycystic ovary syndrome: The epigenetics behind the disease. Reprod. Sci., 2022, 29(3), 680-694.
[http://dx.doi.org/10.1007/s43032-021-00516-3] [PMID: 33826098]