Current Nanomaterials

Author(s): Mulatu Degefa, Guta Muleta and Kirubel Teshome*

DOI: 10.2174/2405461508666230905115443

DownloadDownload PDF Flyer Cite As
Synthesis of Cu-doped ZnO Nanoparticles Using Aloe vera Leaf Extract for Antibacterial and Photocatalytic Activities Evaluation

Page: [64 - 77] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Fabrication of nanoparticles (NPs) by the biological approach has gained extensive attention recently due to its low cost, simplicity, non-toxic and environmentally-friendly nature, as compared to the toxic as well as expensive chemical and physical methods. This study aimed to synthesize ZnO and Cu-doped ZnO NPs using Aloe vera leaf extract for their photocatalytic and antibacterial activities evaluation.

Methods: ZnO and Cu-doped ZnO NPs were synthesized using Aloe vera extract by optimizing the reaction parameters, including precursor salt concentration, plant extract volume, and solution pH. The as-synthesized nanoproducts were characterized using FT-IR, UV-Vis, SEM, and XRD spectroscopic techniques, and tested as antibacterial agents and photocatalysts.

Results: The XRD pattern data indicated all the synthesized NPs to have a crystallite nature with a particle size of 19.24 nm, 23.74 nm, and 24.91 nm for ZnO, 1% Cu-doped ZnO, and 4% Cu-doped ZnO NPs, respectively. SEM image revealed crushed-ice, irregular, and spherical shapes of the NPs. The synthesized nanoproducts displayed good antibacterial activity, and the best potential was observed against gram-positive bacteria (B. cereus and S. aureus) of 4% Cu-doped ZnO NPs, followed by 1% Cu-doped ZnO NPs, with the reference to the selected standards gentamicin and DMSO, while the least inhibition zone was seen against gram-negative bacteria (E. coli and S. typhi). 1% Cu-doped ZnO and 4% Cu-doped ZnO NPs displayed good photocatalytic potential at 78.48% and 88.07%, respectively, after 180 min of irradiation, while 4% Cu-doped ZnO NPs displayed better degrading potential with effective reusability.

Conclusion: The good antibacterial and photocatalytic activities of the synthesized Cu-doped ZnO NPs may lead to the application of the nanomaterials in antimicrobial and catalysis fields with the required modifications for enhancement of their potential.

Keywords: Zinc oxide nanoparticles, aloe vera, green synthesis, antibacterial activities, photocatalytic activities, methylene blue.

Graphical Abstract

[1]
Galatage ST, Hebalkar AS, Gote RV, Mali OR, Killedar SG. Silver nano particles by green synthesis: An overview. Res J Pharm Technol 2020; 13(3): 1503-10.
[http://dx.doi.org/10.5958/0974-360X.2020.00274.7]
[2]
Sarsar V, Selwal KK, Selwal K. Green synthesis of silver nanoparticles using leaf extract of Mangifera indica and evaluation of their antimicrobial activity. J Microbiol Biotechnol Res 2013; 3: 27-32.
[3]
Murphy CJ, Sau TK, Gole AM, et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B 2005; 109(29): 13857-70.
[http://dx.doi.org/10.1021/jp0516846] [PMID: 16852739]
[4]
Yuvakkumar R, Suresh J, Saravanakumar B, Joseph Nathanael A, Hong SI, Rajendran V. Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc 2015; 137: 250-8.
[http://dx.doi.org/10.1016/j.saa.2014.08.022] [PMID: 25228035]
[5]
Rahman A, Harunsani MH, Tan AL, Khan MM. Zinc oxide and zinc oxide-based nanostructures: Biogenic and phytogenic synthesis, properties and applications. Bioprocess Biosyst Eng 2021; 44(7): 1333-72.
[http://dx.doi.org/10.1007/s00449-021-02530-w] [PMID: 33661388]
[6]
Rahman BMA, Viphavakit C, Chitaree R, et al. Optical fiber, nanomaterial, and THz-metasurface-mediated nano-biosensors: A review. Biosensors 2022; 12(1): 42.
[http://dx.doi.org/10.3390/bios12010042] [PMID: 35049670]
[7]
Musa I, Qamhieh N. Study of optical energy gap and quantum confinement effects in zinc oxide nanoparticles and nanorods. Dig J Nanomater Biostruct 2019; 14: 119-25.
[8]
Saravanan R, Karthikeyan S, Gupta VK, Sekaran G, Narayanan V, Stephen A. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng C 2013; 33(1): 91-8.
[http://dx.doi.org/10.1016/j.msec.2012.08.011] [PMID: 25428048]
[9]
Rekha K, Nirmala M, Nair MG, Anukaliani A. Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Physica B 2010; 405(15): 3180-5.
[http://dx.doi.org/10.1016/j.physb.2010.04.042]
[10]
Yao CB, Zhang KX, Wen X, Li J, Li Q-H, Yang S-B. Morphologies, field-emission and ultrafast nonlinear optical behavior of pure and Ag-doped ZnO nanostructures. J Alloys Compd 2017; 698: 284-90.
[http://dx.doi.org/10.1016/j.jallcom.2016.12.158]
[11]
Karthik KV, Raghu AV, Reddy KR, et al. Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere 2022; 287(Pt 2): 132081.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132081] [PMID: 34500333]
[12]
Hasnidawani JN, Azlina HN, Norita H, Bonnia NN, Ratim S, Ali ES. Synthesis of ZnO nanostructures using sol-gel method. Procedia Chem 2016; 19: 211-6.
[http://dx.doi.org/10.1016/j.proche.2016.03.095]
[13]
Aga KW, Efa MT, Beyene TT. Effects of sulfur doping and temperature on the energy bandgap of ZnO nanoparticles and their antibacterial activities. ACS Omega 2022; 7(12): 10796-803.
[http://dx.doi.org/10.1021/acsomega.2c00647] [PMID: 35382288]
[14]
Khalid A, Ahmad P, Alharthi AI, et al. Synergistic effects of Cu-doped ZnO nanoantibiotic against Gram-positive bacterial strains. PLoS One 2021; 16(5): e0251082.
[http://dx.doi.org/10.1371/journal.pone.0251082] [PMID: 33989295]
[15]
Wahab R, Khan ST, Dwivedi S, Ahamed M, Musarrat J, Al-Khedhairy AA. Effective inhibition of bacterial respiration and growth by CuO microspheres composed of thin nanosheets. Colloids Surf B Biointerfaces 2013; 111: 211-7.
[http://dx.doi.org/10.1016/j.colsurfb.2013.06.003] [PMID: 23816782]
[16]
Fakhari S, Jamzad M, Kabiri Fard H. Green synthesis of zinc oxide nanoparticles: A comparison. Green Chem Lett Rev 2019; 12(1): 19-24.
[http://dx.doi.org/10.1080/17518253.2018.1547925]
[17]
Nilavukkarasi M, Vijayakumar S, Prathipkumar S. Capparis zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications. Mater Sci Energy Technol 2020; 3: 335-43.
[http://dx.doi.org/10.1016/j.mset.2019.12.004]
[18]
Tabrizi Hafez Moghaddas SM, Elahi B, Javanbakht V. Biosynthesis of pure zinc oxide nanoparticles using Quince seed mucilage for photocatalytic dye degradation. J Alloys Compd 2020; 821: 153519.
[http://dx.doi.org/10.1016/j.jallcom.2019.153519]
[19]
Chung IM, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G. Plant-mediated synthesis of silver nanoparticles: Their characteristic properties and therapeutic applications. Nanoscale Res Lett 2016; 11(1): 40.
[http://dx.doi.org/10.1186/s11671-016-1257-4] [PMID: 26821160]
[20]
Borah D, Das N, Das N, et al. Alga‐mediated facile green synthesis of silver nanoparticles: Photophysical, catalytic and antibacterial activity. Appl Organomet Chem 2020; 34(5): 5597.
[http://dx.doi.org/10.1002/aoc.5597]
[21]
Dubey SP, Lahtinen M, Särkkä H, Sillanpää M. Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf B Biointerfaces 2010; 80(1): 26-33.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.024] [PMID: 20620889]
[22]
Paul NS, Yadav RP. A simple biogenic method for the synthesis of silver nanoparticles using Syngonium podophyllum, an ornamental plant. J Med Sci 2016; 3(3): 111-5.
[http://dx.doi.org/10.5005/jp-journals-10036-1103]
[23]
Rajan R, Chandran K, Harper SL, Yun S-I, Kalaichelvan PT. Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials. Ind Crops Prod 2015; 70: 356-73.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.015]
[24]
Mukherjee S, Patra CR. Biologically synthesized metal nanoparticles: Recent advancement and future perspectives in cancer theranostics. Future Sci OA 2017; 3(3): FSO203.
[http://dx.doi.org/10.4155/fsoa-2017-0035]
[25]
Shah AA, Bhatti MA, Tahira A, et al. Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange. Ceram Int 2020; 46(8): 9997-10005.
[http://dx.doi.org/10.1016/j.ceramint.2019.12.024]
[26]
Sajjad M, Ullah I, Khan MI, Khan J, Khan MY, Qureshi MT. Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results Phys 2018; 9: 1301-9.
[http://dx.doi.org/10.1016/j.rinp.2018.04.010]
[27]
Handago DT, Zereffa EA, Gonfa BA. Effects of Azadirachta indica leaf extract, capping agents, on the synthesis of pure and Cu doped ZnO-nanoparticles: A green approach and microbial activity. Open Chem 2019; 17(1): 246-53.
[http://dx.doi.org/10.1515/chem-2019-0018]
[28]
Dar A, Rehman R, Zaheer W, Shafique U, Anwar J. Synthesis and characterization of ZnO-nanocomposites by utilizing Aloe Vera leaf gel and extract of Terminalia arjuna nuts and exploring their antibacterial potency. J Chem 2021; 2021: 1-7.
[http://dx.doi.org/10.1155/2021/9448894]
[29]
Khan MM, Harunsani MH, Tan AL, Hojamberdiev M, Poi YA, Ahmad N. Antibacterial studies of ZnO and Cu-Doped ZnO nanoparticles synthesized using aqueous leaf extract of Stachytarpheta jamaicensis. Bionanoscience 2020; 10(4): 1037-48.
[http://dx.doi.org/10.1007/s12668-020-00775-5]
[30]
Goutam SP, Yadav AK, Da AJ. Coriander extract mediated green synthesis of zinc oxide nanoparticles and their structural, optical and antibacterial properties. J Nanosci Technol 2017; 3: 249-52.
[31]
Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 2015; 32: 55-61.
[http://dx.doi.org/10.1016/j.mssp.2014.12.053]
[32]
Hemalatha P, Karthick SN, Hemalatha KV, Yi M, Kim H-J, Alagar M. La-doped ZnO nanoflower as photocatalyst for methylene blue dye degradation under UV irradiation. J Mater Sci Mater Electron 2016; 27(3): 2367-78.
[http://dx.doi.org/10.1007/s10854-015-4034-8]
[33]
Elmorsi TM, Elsayed MH, Bakr MF. Na doped ZnO nanoparticles assisted photocatalytic degradation of congo red dye using solar light. Am J Appl Chem 2017; 7: 48-57.
[34]
López-López J, Tejeda-Ochoa A, López-Beltrán A, Herrera-Ramírez J, Méndez-Herrera P. Sunlight photocatalytic performance of ZnO nanoparticles synthesized by green chemistry using different botanical extracts and zinc acetate as a precursor. Molecules 2021; 27(1): 6.
[http://dx.doi.org/10.3390/molecules27010006] [PMID: 35011237]
[35]
Rajendran NK, George BP, Houreld NN, Abrahamse H. Synthesis of zinc oxide nanoparticles using Rubus fairholmianus root extract and their activity against pathogenic bacteria. Molecules 2021; 26(10): 3029.
[http://dx.doi.org/10.3390/molecules26103029] [PMID: 34069558]
[36]
Awan S, Shahzadi K, Javad S, Tariq A, Ahmad A, Ilyas S. A preliminary study of influence of zinc oxide nanoparticles on growth parameters of Brassica oleracea var italic. J Saudi Soc Agric Sci 2021; 20(1): 18-24.
[http://dx.doi.org/10.1016/j.jssas.2020.10.003]
[37]
Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 2006; 22(2): 577-83.
[http://dx.doi.org/10.1021/bp0501423] [PMID: 16599579]
[38]
Hebeish A, El-Shafei A, Sharaf S, Zaghloul S. Novel precursors for green synthesis and application of silver nanoparticles in the realm of cotton finishing. Carbohydr Polym 2011; 84(1): 605-13.
[http://dx.doi.org/10.1016/j.carbpol.2010.12.032]
[39]
Hashemi S, Asrar Z, Pourseyedi S, Nadernejad N. Green synthesis of ZnO nanoparticles by olive (Olea europaea). IET Nanobiotechnol 2016; 10(6): 400-4.
[http://dx.doi.org/10.1049/iet-nbt.2015.0117] [PMID: 27906141]
[40]
Armendariz V, Herrera I. peralta-videa JR, et al Size controlled gold nanoparticle formation by Avena sativa biomass: Use of plants in nanobiotechnology. J Nanopart Res 2004; 6(4): 377-82.
[http://dx.doi.org/10.1007/s11051-004-0741-4]
[41]
Bali R, Harris AT. Biogenic synthesis of Au nanoparticles using vascular plants. Ind Eng Chem Res 2010; 49(24): 12762-72.
[http://dx.doi.org/10.1021/ie101600m]
[42]
Poojary MM, Passamonti P, Adhikari AV. Green synthesis of silver and gold nanoparticles using root bark extract of Mammea suriga: Characterization, process optimization, and their antibacterial activity. Bionanoscience 2016; 6(2): 110-20.
[http://dx.doi.org/10.1007/s12668-016-0199-8]
[43]
Shahpal A, Aziz Choudhary M, Ahmad Z. An investigation on the synthesis and catalytic activities of pure and Cu-doped zinc oxide nanoparticles. Cogent Chem 2017; 3(1): 1301241.
[http://dx.doi.org/10.1080/23312009.2017.1301241]
[44]
Mittal M, Sharma M, Pandey OP. UV–Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method. Sol Energy 2014; 110: 386-97.
[http://dx.doi.org/10.1016/j.solener.2014.09.026]
[45]
Chakraborty T, Chakraborty A, Shukla M, Chattopadhyay T. ZnO–Bentonite nanocomposite: An efficient catalyst for discharge of dyes, phenol and Cr(VI) from water. J Coord Chem 2019; 72(1): 53-68.
[http://dx.doi.org/10.1080/00958972.2018.1560429]
[46]
Getie S, Belay A, Chandra Reddy AR, et al. Synthesis and characterizations of zinc oxide nanoparticles for antibacterial applications. J Nanomed Nanotechnol 2017; 8(5)
[47]
Musić S, Popović S, Maljković M, Dragčević Đ. Influence of synthesis procedure on the formation and properties of zinc oxide. J Alloys Compd 2002; 347(1-2): 324-32.
[http://dx.doi.org/10.1016/S0925-8388(02)00792-2]
[48]
Okeke IS, Agwu KK, Ubachukwu AA, Maaza M, Ezema FI. Impact of Cu doping on ZnO nanoparticles phyto-chemically synthesized for improved antibacterial and photocatalytic activities. J Nanopart Res 2020; 22(9): 272.
[http://dx.doi.org/10.1007/s11051-020-04996-3]
[49]
Singhal S, Kaur J, Namgyal T, Sharma R. Cu-doped ZnO nanoparticles: Synthesis, structural and electrical properties. Physica B 2012; 407(8): 1223-6.
[http://dx.doi.org/10.1016/j.physb.2012.01.103]
[50]
Faheem M, Siddiqi HM, Habib A, Shahid M, Afzal A. ZnO/Zn(OH)2 nanoparticles and self-cleaning coatings for the photocatalytic degradation of organic pollutants. Front Environ Sci 2022; 10: 965925.
[http://dx.doi.org/10.3389/fenvs.2022.965925]
[51]
Ali J, Irshad R, Li B, et al. Synthesis and characterization of phytochemical fabricated zinc oxide nanoparticles with enhanced antibacterial and catalytic applications. J Photochem Photobiol B 2018; 183: 349-56.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.05.006] [PMID: 29763757]
[52]
Sagar Raut DP, Thorat RT. Green synthesis of zinc oxide (ZnO) nanoparticles using Ocimum tenuiflorum leaves. Int J Sci Res 2015; 4: 1225-8.
[53]
Muthukumaran S, Gopalakrishnan R. Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt Mater 2012; 34(11): 1946-53.
[http://dx.doi.org/10.1016/j.optmat.2012.06.004]
[54]
Khan MI, Fatima N, Shakil M, et al. Investigation of in-vitro antibacterial and seed germination properties of green synthesized pure and nickel doped ZnO nanoparticles. Physica B 2021; 601: 412563.
[http://dx.doi.org/10.1016/j.physb.2020.412563]
[55]
Luque PA, Nava O, Soto-Robles CA, Vilchis-Nestor AR, Garrafa-Galvez HE, Castro-Beltran A. Effects of Daucus carota extract used in green synthesis of zinc oxide nanoparticles. J Mater Sci Mater Electron 2018; 29(20): 17638-43.
[http://dx.doi.org/10.1007/s10854-018-9867-5]
[56]
Tsogoo A, Tsedev N, Gibaud A, et al. Experimental and ab initio studies on the structural, magnetic, photocatalytic, and antibacterial properties of Cu-doped ZnO nanoparticles. RSC Advances 2023; 13(2): 1256-66.
[http://dx.doi.org/10.1039/D2RA07204A] [PMID: 36686939]
[57]
Anju Chanu L, Joychandra Singh W, Jugeshwar Singh K, Nomita Devi K. Effect of operational parameters on the photocatalytic degradation of Methylene blue dye solution using manganese doped ZnO nanoparticles. Results Phys 2019; 12: 1230-7.
[http://dx.doi.org/10.1016/j.rinp.2018.12.089]
[58]
Pardeshi SK, Patil AB. Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method. J Mol Catal Chem 2009; 308(1-2): 32-40.
[http://dx.doi.org/10.1016/j.molcata.2009.03.023]