Synthesis and Antimicrobial Activities of Indole-based Schiff Bases and their Metal Complexes: A Review

Page: [941 - 961] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Heterocyclic compounds containing nitrogen have emerged as crucial entities in the realm of medicinal chemistry. Among these, Schiff bases derived from indole or compounds incorporating an indole moiety have demonstrated a wide range of biological properties, including antibacterial, anticancer, antitumor and antimicrobial activities. The diverse characteristics exhibited by Schiff bases have stimulated the exploration of their antimicrobial potential, with the aim of developing more effective drugs to save precious lives. This review article focuses on the synthesis of various Schiff bases derived from the indole moiety and their antimicrobial activities. The extensive body of work in synthesizing these Schiff bases and evaluating their antimicrobial properties is comprehensively discussed. The insights provided in this review can serve as a valuable resource for researchers engaged in the development of efficient drugs.

Graphical Abstract

[1]
Sapra, R.; Patel, D.; Meshram, D. Recent developments of heterocyclic chemistry in some drug discovery scaffolds synthesis. J. Med. Chem. Sci., 2020, 3(1), 71-78.
[http://dx.doi.org/10.26655/JMCHEMSCI.2020.1.9]
[2]
Qadir, T.; Amin, A.; Sarkar, D.; Sharma, P.K. A review on recent advances in the synthesis of aziridines and their applications in organic synthesis. Curr. Org. Chem., 2021, 25(16), 1868-1893.
[http://dx.doi.org/10.2174/1385272825666210728100022]
[3]
Majumdar, P.; Pati, A.; Patra, M.; Behera, R.K.; Behera, A.K. Acid hydrazides, potent reagents for synthesis of oxygen-, nitrogen-, and/or sulfur-containing heterocyclic rings. Chem. Rev., 2014, 114(5), 2942-2977.
[http://dx.doi.org/10.1021/cr300122t] [PMID: 24506477]
[4]
Newman, D.J. Drug discovery from natural sources. Curr. Pharmacol. Rep., 2023, 9(2), 67-89.
[http://dx.doi.org/10.1007/s40495-023-00313-3]
[5]
Kumar, A.; Singh, A.K.; Singh, H.; Vijayan, V.; Kumar, D.; Naik, J.; Thareja, S.; Yadav, J.P.; Pathak, P.; Grishina, M.; Verma, A.; Khalilullah, H.; Jaremko, M.; Emwas, A.H.; Kumar, P. Nitrogen containing heterocycles as anticancer agents: A medicinal chemistry perspective. Pharmaceuticals., 2023, 16(2), 299.
[http://dx.doi.org/10.3390/ph16020299] [PMID: 37259442]
[6]
Malla, T.R.; Brewitz, L.; Muntean, D.G.; Aslam, H.; Owen, C.D.; Salah, E.; Tumber, A.; Lukacik, P.; Strain-Damerell, C.; Mikolajek, H.; Walsh, M.A.; Schofield, C.J. Penicillin derivatives inhibit the SARS-CoV-2 main protease by reaction with its nucleophilic cysteine. J. Med. Chem., 2022, 65(11), 7682-7696.
[http://dx.doi.org/10.1021/acs.jmedchem.1c02214] [PMID: 35549342]
[7]
Costa, A.; Moreira, L.; Pinto, R.; Alves, T.; Schwan, V.; de Queiroz, V.; Praça-Fontes, M.; Teixeira, R.R.; Morais, P.; de Jesus, W. Synthesis of glycerol-derived 4-alkyl-substituted 1,2,3-triazoles and evaluation of their fungicidal, phytotoxic, and antiproliferative activities. J. Braz. Chem. Soc., 2020, 31(4), 821-832.
[http://dx.doi.org/10.21577/0103-5053.20190246]
[8]
Yuan, S.; Shen, D.D.; Bai, Y.R.; Zhang, M.; Zhou, T.; Sun, C.; Zhou, L.; Wang, S.Q.; Liu, H.M. Oxazolidinone: A promising scaffold for the development of antibacterial drugs. Eur. J. Med. Chem., 2023, 250, 115239.
[http://dx.doi.org/10.1016/j.ejmech.2023.115239] [PMID: 36893700]
[9]
da Rocha, M.N.; da Fonseca, A.M.; Dantas, A.N.M.; dos Santos, H.S.; Marinho, E.S.; Marinho, G.S. In silico study in MPO and molecular docking of the synthetic drynaran analogues against the chronic tinnitus: Modulation of the m1 muscarinic acetylcholine receptor. Mol. Biotechnol., 2023, 1-16.
[http://dx.doi.org/10.1007/s12033-023-00748-5] [PMID: 37079267]
[10]
Kaur, G. Utreja, Ekta D.; Kaur, J. Synthesis of metal complexes of Schiff bases of halogenated anilines and their antifungal activity. Plant Dis. Res., 2017, 32(2), 228-231.
[11]
Dawar, M.; Utreja, D.; Rani, R.; Kaur, K. Synthesis and evaluation of isatin derivatives as antifungal agents. Lett. Org. Chem., 2020, 17(3), 199-205.
[http://dx.doi.org/10.2174/1570178616666190724120308]
[12]
Salotra, R.; Utreja, D. A comprehensive appraisal of chalcones and their heterocyclic analogs as antimicrobial agents. Curr. Org. Chem., 2020, 24(23), 2755-2781.
[http://dx.doi.org/10.2174/1385272824999200922090524]
[13]
Alamri, A.; Alafnan, A.; Huwaimel, B.; Abouzied, A.S.; Alanazi, J.; Alghamdi, A.; Alrofaidi, M.A.; Alanazi, M.S.; Alshehri, A.; Hagbani, T.A.; Alobaida, A.; Younes, K.M.; Farghaly, T.A. Synthesis of novel series of heterocyclic compounds having two azoles against Methicillin-sensitive Staphylococcus aureus. J. Mol. Struct., 2023, 1277, 134863.
[http://dx.doi.org/10.1016/j.molstruc.2022.134863]
[14]
Kaur, K.; Utreja, D.; Dhillon, N.K.; Pathak, R.K.; Singh, K. N-alkyl isatin derivatives: Synthesis, nematicidal evaluation and protein target identifications for their mode of action. Pestic. Biochem. Physiol., 2021, 171, 104736.
[http://dx.doi.org/10.1016/j.pestbp.2020.104736] [PMID: 33357558]
[15]
Utreja, D.; Kaur, K.; Dhillon, N.K. Anupam; Buttar, H.S. Heterocyclic moieties as prospective nematicides: An overview. Curr. Org. Chem., 2022, 26(18), 1703-1724.
[http://dx.doi.org/10.2174/1385272827666221209094444]
[16]
Mermer, A.; Keles, T.; Sirin, Y. Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorg. Chem., 2021, 114, 105076.
[http://dx.doi.org/10.1016/j.bioorg.2021.105076] [PMID: 34157555]
[17]
Shalaby, M.A.; Fahim, A.M.; Rizk, S.A. Microwave-assisted synthesis, antioxidant activity, docking simulation, and DFT analysis of different heterocyclic compounds. Sci. Rep., 2023, 13(1), 4999.
[http://dx.doi.org/10.1038/s41598-023-31995-w] [PMID: 36973332]
[18]
Mandour, A.A.; Nabil, N.; Zaazaa, H.E.; Abdelkawy, M. Review on analytical studies of some pharmaceutical compounds containing heterocyclic rings: Brinzolamide, timolol maleate, flumethasone pivalate, and clioquinol. Future J. Pharm. Sci., 2020, 6(1), 52.
[http://dx.doi.org/10.1186/s43094-020-00068-4]
[19]
Sheetal; Batra, R.; Singh, A.K.; Singh, M.; Thakur, S.; Pani, B.; Kaya, S. Advancement of corrosion inhibitor system through N-heterocyclic compounds: A review. Corros. Eng. Sci. Technol., 2023, 58(1), 73-101.
[http://dx.doi.org/10.1080/1478422X.2022.2137979]
[20]
Noor, R.; Zahoor, A.F.; Mansha, A.; Khan, S.G.; Haq, A.U.; Ahmad, S.; Al-Hussain, S.A.; Irfan, A.; Zaki, M.E.A. Synthetic potential of regio- and stereoselective ring expansión reactions of six-membered carbo- and heterocyclic ring systems: A review. Int. J. Mol. Sci., 2023, 24(7), 6692.
[http://dx.doi.org/10.3390/ijms24076692] [PMID: 37047665]
[21]
Shan, Y.; Su, L.; Zhao, Z.; Chen, D. The construction of nitrogen-containing heterocycles from alkynyl imines. Adv. Synth. Catal., 2021, 363(4), 906-923.
[http://dx.doi.org/10.1002/adsc.202001283]
[22]
Shekarkhand, M.; Zare, K.; Monajjemi, M.; Tazikeh-Lemeski, E.; Sayadian, M. Aromaticity study of heterocyclic anticancer compounds through computational s-nics method. Nexo Rev. Cient., 2020, 33(1), 109-120.
[http://dx.doi.org/10.5377/nexo.v33i01.10051]
[23]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[24]
Salman, M.; Ansari, K.R.; Srivastava, V.; Chauhan, D.S.; Haque, J.; Quraishi, M.A. Chromeno naphthyridines based heterocyclic compounds as novel acidizing corrosion inhibitors: Experimental, surface and computational study. J. Mol. Liq., 2021, 322, 114825.
[http://dx.doi.org/10.1016/j.molliq.2020.114825]
[25]
Hassan, A.Y.; Abou-Amra, E.S.; El-Sebaey, S.A. Design and synthesis of new series of chiral pyrimidine and purine analogs as COX-2 inhibitors: Anticancer screening, molecular modeling, and in silico studies. J. Mol. Struct., 2023, 1278, 134930.
[http://dx.doi.org/10.1016/j.molstruc.2023.134930]
[26]
Zhang, W.; Chen, J.; Du, X. 2-Phenylpyridine derivatives: Synthesis and insecticidal activity against Mythimna separata, Aphis craccivora, and Tetranychus cinnabarinus. Molecules, 2023, 28(4), 1567.
[http://dx.doi.org/10.3390/molecules28041567] [PMID: 36838555]
[27]
Khallaf, A.; Wang, P.; Zhuo, S.; Zhu, H.; Liu, H. Structural design and insecticidal activity of 1,3,4‐oxadiazole‐ring containing pyridylpyrazole‐4‐carboxamides. J. Heterocycl. Chem., 2023, 60(1), 145-155.
[http://dx.doi.org/10.1002/jhet.4571]
[28]
Li, L.; Li, J.; Ma, L.; Shang, H.; Zou, Z. SAR-guided development of indole-matrine hybrids as potential anticancer agents via mitochondrial stress/cytochrome c/caspase 3 signaling pathway. Bioorg. Chem., 2023, 134, 106341.
[http://dx.doi.org/10.1016/j.bioorg.2023.106341] [PMID: 36842321]
[29]
Jia, H.W.; Yang, H.L.; Xiong, Z.L.; Deng, M.H.; Wang, T.; Liu, Y.; Cheng, M. Design, synthesis and antitumor activity evaluation of novel indole acrylamide derivatives as IMPDH inhibitors. Bioorg. Chem., 2022, 129, 106213.
[http://dx.doi.org/10.1016/j.bioorg.2022.106213] [PMID: 36308854]
[30]
Poyraz, S. Döndaş H.A.; Sansano, J.M.; Belveren, S.; Yamali, C.; Ülger, M.; Döndaş N.Y.; Sağlık, B.N.; Pask, C.M. N-Benzoylthiourea-pyrrolidine carboxylic acid derivatives bearing an imidazole moiety: Synthesis, characterization, crystal structure, in vitro ChEs inhibition, and antituberculosis, antibacterial, antifungal studies. J. Mol. Struct., 2023, 1273, 134303.
[http://dx.doi.org/10.1016/j.molstruc.2022.134303]
[31]
Siddiqui, N.; Azad, B.; Alam, M.S.; Ali, R. Indoles: Role in diverse biological activities. Int. J. Pharm. Clin. Res., 2010, 2(4), 121-127.
[32]
Suliphuldevara Mathada, B.; Gunavanthrao Yernale, N.; Basha, J.N. The multi‐pharmacological targeted role of indole and its derivatives: A review. ChemistrySelect, 2023, 8(1), e202204181.
[http://dx.doi.org/10.1002/slct.202204181]
[33]
Singhal, S.; Khanna, P.; Khanna, L. Synthesis, comparative in vitro antibacterial, antioxidant and UV fluorescence studies of bis indole Schiff bases and molecular docking with ct‐DNA and SARS‐CoV‐2 Mpro. Luminescence, 2021, 36(6), 1531-1543.
[http://dx.doi.org/10.1002/bio.4098] [PMID: 34087041]
[34]
Priya, B.; Utreja, D.; Kalia, A. Schiff bases of indole-3-carbaldehyde: Synthesis and evaluation as antimicrobial agents. Russ. J. Bioorganic Chem., 2022, 48(6), 1282-1290.
[http://dx.doi.org/10.1134/S1068162022060188]
[35]
Munawar, K.S.; Ali, S.; Muhammad, S.; Ashfaq, M.; Abbas, S.M.; Tahir, M.N.; Siddeeg, S.M.; Ahmed, G. Synthesis, crystal structure, Hirshfeld surface analysis, DNA binding, optical and nonlinear optical properties of Schiff bases derived from o-aminophenol. J. Mol. Struct., 2023, 1274(2), 134427.
[http://dx.doi.org/10.1016/j.molstruc.2022.134427]
[36]
Wang, Y.F.; Wang, C.J.; Feng, Q.Z.; Zhai, J.J.; Qi, S.S.; Zhong, A.G.; Chu, M.M.; Xu, D.Q. Copper-catalyzed asymmetric 1,6-conjugate addition of in situ generated para-quinone methides with β-ketoesters. Chem. Commun., 2022, 58(46), 6653-6656.
[http://dx.doi.org/10.1039/D2CC00146B] [PMID: 35593224]
[37]
Aytac, S.; Gundogdu, O.; Bingol, Z. Gulcin, İ. Synthesis of Schiff bases containing phenol rings and investigation of their antioxidant capacity, anticholinesterase, butyrylcholinesterase, and carbonic anhydrase inhibition properties. Pharmaceutics, 2023, 15(3), 779.
[http://dx.doi.org/10.3390/pharmaceutics15030779] [PMID: 36986640]
[38]
Yao, W.; Wang, J.; Zhong, A.; Wang, S.; Shao, Y. Transition-metal-free catalytic hydroboration reduction of amides to amines. Org. Chem. Front., 2020, 7(21), 3515-3520.
[http://dx.doi.org/10.1039/D0QO01092H]
[39]
Rezaei, M.T.; Keypour, H.; Hajari, S. yaghoobi, F.; Moazzami Farida, S.H.; Saadati, M.; Gable, R.W. Theoretical and solid-state structures of three new macroacyclic Schiff base complexes and the investigation of their anticancer, antioxidant and antibacterial properties. RSC Advances, 2023, 13(14), 9418-9427.
[http://dx.doi.org/10.1039/D3RA00153A] [PMID: 36968044]
[40]
Saundane, A.R.; Nandibeoor Mathada, K. Synthesis, characterization, and biological evaluation of Schiff bases containing indole moiety and their derivatives. Monatsh. Chem., 2015, 146(10), 1751-1761.
[http://dx.doi.org/10.1007/s00706-015-1440-9]
[41]
Liu, S.Y.; Wang, D.G.; Zhong, A.G.; Wen, H.R. One-step rapid synthesis of π-conjugated large oligomers via C–H activation coupling. Org. Chem. Front., 2018, 5(4), 653-661.
[http://dx.doi.org/10.1039/C7QO00960G]
[42]
Miloud, M.M.; El-Ajaily, M.M.; Al-Noor, T.H.; Al-Barki, N.S. Antifungal activity of some mixed ligand complexes incorporating Schiff bases. J. Bacteriol. Mycol., 2020, 7(1), 1122.
[43]
Abdel-Rahman, L.H.; Abdelghani, A.A.; AlObaid, A.A.; El-ezz, D.A.; Warad, I.; Shehata, M.R.; Abdalla, E.M. Novel bromo and methoxy substituted Schiff base complexes of Mn(II), Fe(III), and Cr(III) for anticancer, antimicrobial, docking, and ADMET studies. Sci. Rep., 2023, 13(1), 3199.
[http://dx.doi.org/10.1038/s41598-023-29386-2] [PMID: 36823294]
[44]
Yao, W.; Wang, J.; Zhong, A.; Li, J.; Yang, J. Combined KOH/BEt3 catalyst for selective deaminative hydroboration of aromatic carboxamides for construction of luminophores. Org. Lett., 2020, 22(20), 8086-8090.
[http://dx.doi.org/10.1021/acs.orglett.0c03033] [PMID: 33026813]
[45]
Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff bases: A versatile pharmacophore. J. Catal., 2013, 2013, 1-14.
[http://dx.doi.org/10.1155/2013/893512]
[46]
Yao, W.; He, L.; Han, D.; Zhong, A. Sodium triethylborohydride-catalyzed controlled reduction of unactivated amides to secondary or tertiary amines. J. Org. Chem., 2019, 84(22), 14627-14635.
[http://dx.doi.org/10.1021/acs.joc.9b02211] [PMID: 31663738]
[47]
Iscen, A.; Brue, C.R.; Roberts, K.F.; Kim, J.; Schatz, G.C.; Meade, T.J. Inhibition of amyloid-β aggregation by cobalt (III) Schiff base complexes: A computational and experimental approach. J. Am. Chem. Soc., 2019, 141(42), 16685-16695.
[http://dx.doi.org/10.1021/jacs.9b06388] [PMID: 31573804]
[48]
Yao, W.; Wang, J.; Lou, Y.; Wu, H.; Qi, X.; Yang, J.; Zhong, A. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst. Org. Chem. Front., 2021, 8(16), 4554-4559.
[http://dx.doi.org/10.1039/D1QO00705J]
[49]
Chinnasamy, R.; Sundararajan, R.; Govindaraj, S. Synthesis, characterization, and analgesic activity of novel Schiff base of isatin derivatives. J. Adv. Pharm. Technol. Res., 2010, 1(3), 342-347.
[http://dx.doi.org/10.4103/0110-5558.72428] [PMID: 22247869]
[50]
Uddin, M.N.; Ahmed, S.S.; Alam, S.M.R. REVIEW: Biomedical applications of Schiff base metal complexes. J. Coord. Chem., 2020, 73(23), 3109-3149.
[http://dx.doi.org/10.1080/00958972.2020.1854745]
[51]
Karatas, H.; Aydin, M.; Turkmenoglu, B.; Akkoc, S.; Sahin, O.; Kokbudak, Z. Design, synthesis, cytotoxic activity, and in silico studies of new Schiff bases including pyrimidine core. ChemistrySelect, 2023, 8(6), e202204221.
[http://dx.doi.org/10.1002/slct.202204221]
[52]
Sridhar, S.K.; Pandeya, S.N.; Stables, J.P.; Ramesh, A. Anticonvulsant activity of hydrazones, Schiff and Mannich bases of isatin derivatives. Eur. J. Pharm. Sci., 2002, 16(3), 129-132.
[http://dx.doi.org/10.1016/S0928-0987(02)00077-5] [PMID: 12128166]
[53]
Mohanan, P.V.; Pradeep, S.D. Advancements in Schiff bases of 1h-indole-2,3dione: A versatile heterocyclic compound in pharmacological field. Mini Rev. Org. Chem., 2023, 20(1), 45-54.
[http://dx.doi.org/10.2174/1570193X19666220309142035]
[54]
Basu Baul, T.S.; Hlychho, B.; Addepalli, M.R.; Duthie, A.; Sarkar, O.; Bhowmik, A.D.; Chattopadhyay, A.; Vasquez-Ríos, M.G.; Höpfl, H. Synthesis and structures of diorganotin(IV) Schiff base complexes [R2Sn(L)Cl2] and their proliferative responses on breast cancer cells. J. Mol. Struct., 2023, 1277, 134827.
[http://dx.doi.org/10.1016/j.molstruc.2022.134827]
[55]
Amin, N.H.; El-Saadi, M.T.; Abdel-Fattah, M.M.; Mohammed, A.A.; Said, E.G. Development of certain aminoquinazoline scaffolds as potential multitarget anticancer agents with apoptotic and anti-proliferative effects: Design, synthesis and biological evaluation. Bioorg. Chem., 2023, 135, 106496.
[http://dx.doi.org/10.1016/j.bioorg.2023.106496] [PMID: 36989735]
[56]
Zhao, P.; Qiu, H.; Wei, Q.; Li, Y.; Gao, L.; Zhao, P. Anti-tumor effect of novel amino acid Schiff base nickel (II) complexes on oral squamous cell carcinoma cells (CAL-27) in vitro. Mol. Cell. Toxicol., 2023, 19(2), 265-275.
[http://dx.doi.org/10.1007/s13273-022-00255-9]
[57]
Hosny, S.; Ragab, M.S.; Abd El-Baki, R.F. Synthesis of a new sulfadimidine Schiff base and their nano complexes as potential anti-COVID-19 and anti-cancer activity. Sci. Rep., 2023, 13(1), 1502.
[http://dx.doi.org/10.1038/s41598-023-28402-9] [PMID: 36707628]
[58]
Patel, U.P.; Dabhi, R.C.; Maru, J.J.; Maru, J.J. Synthesis, computational insights, and anticancer activity of novel indole–Schiff base derivatives. Russ. J. Bioorganic Chem., 2022, 48(3), 601-608.
[http://dx.doi.org/10.1134/S1068162022030116]
[59]
Ali, E.A.; Abo-Salem, H.M.; Arafa, A.A.; Nada, A.A. Chitosan Schiff base electrospun fabrication and molecular docking assessment for nonleaching antibacterial nanocomposite production. Cellulose, 2023, 30(6), 3505-3522.
[http://dx.doi.org/10.1007/s10570-023-05124-9] [PMID: 36994234]
[60]
Zabiulla; Kouser, S.; Joythi, M.; Bushra Begum, A.; Asha, M.S.; Hezam Al-Ostoot, F.; Lakshmeesha, D.P.; Ramu, R.; Ara Khanum, S. Molecular docking, synthesis and antimicrobial evaluation of metal complexes with Schiff base. Results Chem., 2023, 5, 100650.
[http://dx.doi.org/10.1016/j.rechem.2022.100650]
[61]
Alorini, T.; Daoud, I.; Al-Hakimi, A.N.; Alminderej, F.; Albadri, A.E.A.E. An experimental and theoretical investigation of antimicrobial and anticancer properties of some new Schiff base complexes. Res. Chem. Intermed., 2023, 49(4), 1701-1730.
[http://dx.doi.org/10.1007/s11164-022-04922-3]
[62]
Kons, A.; Mishnev, A.; Mukhametzyanov, T.A.; Buzyurov, A.V.; Lapuk, S.E. Be̅rziņš, A. Hexamorphism of dantrolene: Insight into the crystal structures, stability, and phase transformations. Cryst. Growth Des., 2021, 21(2), 1190-1201.
[http://dx.doi.org/10.1021/acs.cgd.0c01508]
[63]
Wang, X.; Ye, J.; Gao, M.; Zhang, D.; Jiang, H.; Zhang, H.; Zhao, S.; Liu, X. Nifuroxazide inhibits the growth of glioblastoma and promotes the infiltration of CD8 T cells to enhance antitumour immunity. Int. Immunopharmacol., 2023, 118, 109987.
[http://dx.doi.org/10.1016/j.intimp.2023.109987] [PMID: 36924564]
[64]
Kaushik, S.; Paliwal, S.K.; Iyer, M.R.; Patil, V.M. Promising Schiff bases in antiviral drug design and discovery. Med. Chem. Res., 2023, 32(6), 1063-1076.
[http://dx.doi.org/10.1007/s00044-023-03068-0] [PMID: 37305208]
[65]
Farjallah, A.; Chiarelli, L.R.; Forbak, M.; Degiacomi, G.; Danel, M.; Goncalves, F.; Carayon, C.; Seguin, C.; Fumagalli, M.; Záhorszká, M.; Vega, E.; Abid, S.; Grzegorzewicz, A.; Jackson, M.; Peixoto, A.; Korduláková, J.; Pasca, M.R.; Lherbet, C.; Chassaing, S. A coumarin-based analogue of thiacetazone as dual covalent inhibitor and potential fluorescent label of hada in Mycobacterium tuberculosis. ACS Infect. Dis., 2021, 7(3), 552-565.
[http://dx.doi.org/10.1021/acsinfecdis.0c00325] [PMID: 33617235]
[66]
Sree Devi, R.K. SudhaKumari, S. Synthesis, characterization and antimicrobial studies of Schiff base ligand from amino acid l-arginine and its cu(II), Ni(II), Co(II) complexes. Int. J. Chemtech Res., 2020, 13(2), 130201.
[http://dx.doi.org/10.20902/IJCTR.2019.130201]
[67]
Pradeep, S.D.; Gopalakrishnan, A.K.; Manoharan, D.K.; Soumya, R.S.; Gopalan, R.K.; Mohanan, P.V. Isatin derived novel Schiff bases: An efficient pharmacophore for versatile biological applications. J. Mol. Struct., 2023, 1271, 134121.
[http://dx.doi.org/10.1016/j.molstruc.2022.134121]
[68]
Alkam, H.H.; Atiyah, E.M.; Majeed, N.M.; Alwan, W.M. Cupper (II) and Mercury (II) complexes with Schiff base ligands from benzidine with isatin and benzone: Synthesis, spectral characterization, thermal studies and biological activities. Sys. Rev. Pharm., 2021, 12(1), 107-115.
[69]
Sharma, A.; Singh, S.; Utreja, D. Recent advances in synthesis and antifungal activity of 1,3,5-triazines. Curr. Org. Synth., 2016, 13(4), 484-503.
[http://dx.doi.org/10.2174/1570179412666150905002356]
[70]
Jain, N.; Utreja, D.; Dhillon, N.K. A convenient one pot synthesis and antinemic studies of nicotinic acid derivatives. Russ. J. Org. Chem., 2019, 55(6), 845-851.
[http://dx.doi.org/10.1134/S1070428019060150]
[71]
Aspenberg, M.; Maad Sasane, S.; Nilsson, F.; Brown, S.P.; Wollein Waldetoft, K. Hygiene may attenuate selection for antibiotic resistance by changing microbial community structure. Evol. Med. Public Health, 2023, 11(1), 1-7.
[http://dx.doi.org/10.1093/emph/eoac038] [PMID: 36687161]
[72]
Zhou, X. Antibiotic culture: A history of antibiotic use in the second half of the 20th and early 21st century in the People’s Republic of China. Antibiotics, 2023, 12(3), 510.
[http://dx.doi.org/10.3390/antibiotics12030510] [PMID: 36978376]
[73]
European Commission. A European one health action plan against antimicrobial resistance (AMR); European Commission, 2017.
[74]
Shi, X.; Fu, J.; Li, X.; Lv, Q.; Wan, X.; Xu, Q. Cost-effectiveness of ceftazidime/avibactam plus metronidazole versus meropenem as first-line empiric therapy for the treatment of complicated intra-abdominal infections: A study based on the in-vitro surveillance data in China. J. Infect. Public Health, 2023, 16(3), 361-367.
[http://dx.doi.org/10.1016/j.jiph.2023.01.008] [PMID: 36689854]
[75]
Sharmila, A.; Thamizhini, P.; Prabha, K.L. Study on synthesis, spectral characterization and antimicrobial activity of bidendate Schiff base transition metal complexes. Rasayan J. Chem., 2021, 14(1), 653-658.
[http://dx.doi.org/10.31788/RJC.2021.1415935]
[76]
Salem, M.A.; Ragab, A.; El-Khalafawy, A.; Makhlouf, A.H.; Askar, A.A.; Ammar, Y.A. Design, synthesis, in vitro antimicrobial evaluation and molecular docking studies of indol-2-one tagged with morpholinosulfonyl moiety as DNA gyrase inhibitors. Bioorg. Chem., 2020, 96, 103619.
[http://dx.doi.org/10.1016/j.bioorg.2020.103619] [PMID: 32036161]
[77]
Arshad, M. Design, computational, synthesis, characterization, antimicrobial, MTT and molecular docking assessment of bipyrimidine derivatives possessing indole moiety. J. Indian Chem. Soc., 2020, 17(6), 1305-1315.
[http://dx.doi.org/10.1007/s13738-020-01855-9]
[78]
Sulaiman, A.T.; Sarsam, S.W. Synthesis, characterization and antibacterial activity evaluation of new indole-based derivatives. Iraqi J. Pharm Sci., 2020, 29(1), 207-215.
[http://dx.doi.org/10.31351/vol29iss1pp207-2015]
[79]
Devi, J.; Yadav, J.; Kumar, D.; Jindal, D.K.; Basu, B. Synthesis, spectral analysis and in vitro cytotoxicity of diorganotin (IV) complexes derived from indole‐3‐butyric hydrazide. Appl. Organomet. Chem., 2020, 34(10), 1-17.
[http://dx.doi.org/10.1002/aoc.5815]
[80]
Mohebbi, S.; Hassan, M.; Ghaffari, R.; Sardari, S.; Farahani, Y.F. Discovery of novel isatin-based thiosemicarbazones: Synthesis, antibacterial, antifungal, and antimycobacterial screening. Res. Pharm. Sci., 2020, 15(3), 281-290.
[http://dx.doi.org/10.4103/1735-5362.288435] [PMID: 33088328]
[81]
Liu, H.; Chu, Z.W.; Xia, D.G.; Cao, H.Q.; Lv, X.H. Discovery of novel multi-substituted benzo-indole pyrazole Schiff base derivatives with antibacterial activity targeting DNA gyrase. Bioorg. Chem., 2020, 99, 103807.
[http://dx.doi.org/10.1016/j.bioorg.2020.103807] [PMID: 32272364]
[82]
Verma, V.A.; Saundane, A.R.; Meti, R.S.; Shamrao, R.; Katkar, V. Synthesis, biological evaluation and docking studies of some new indolyl-Pyridine containing thiazolidinone and Azetidinone analogs. Polycycl. Aromat. Compd., 2022, 42(4), 1545-1559.
[http://dx.doi.org/10.1080/10406638.2020.1786706]
[83]
Tiwari, S.; Kirar, S.; Banerjee, U.C.; Neerupudi, K.B.; Singh, S.; Wani, A.A.; Bharatam, P.V.; Singh, I.P. Synthesis of N-substituted indole derivatives as potential antimicrobial and antileishmanial agents. Bioorg. Chem., 2020, 99, 103787.
[http://dx.doi.org/10.1016/j.bioorg.2020.103787] [PMID: 32251947]
[84]
Gür, M. Yerlikaya, S.; Şener, N.; Özkınalı S.; Baloglu, M.C.; Gökçe, H.; Altunoglu, Y.C.; Demir, S.; Şener, İ. Antiproliferative-antimicrobial properties and structural analysis of newly synthesized Schiff bases derived from some 1,3,4-thiadiazole compounds. J. Mol. Struct., 2020, 1219, 128570.
[http://dx.doi.org/10.1016/j.molstruc.2020.128570]
[85]
Ashoka, K.S.; Mamatha, G.P.; Santhosh, H.M. Synthesis, antimicrobial and electrochemical studies of four substituted isatin derivatives at a glassy carbon electrode. Anal. Bioanal. Electrochem., 2020, 12(3), 415-424.
[86]
Puthran, D.; Poojary, B.; Nayak, S.G.; Purushotham, N.; Bhat, M.; Hedge, H. Novel Schiff bases–based thiophenes: Design, synthesis and biological evaluation. J. Chin. Chem. Soc., 2020, 67(7), 1278-1288.
[http://dx.doi.org/10.1002/jccs.201900388]
[87]
Singhal, S.; Khanna, P.; Khanna, L. Synthesis, DFT studies, molecular docking, antimicrobial screening and UV fluorescence studies on ct-DNA for novel Schiff bases of 2-(1-aminobenzyl) benzimidazole. Heliyon, 2019, 5(10), e02596.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02596] [PMID: 31667415]
[88]
Bawazir, W.A.B. Synthesis of some new thioethers and 4-thiazolidinones bearing 3-(pyridine-4-yl)-1,2,4- triazion (5,6-b) Indole moiety as antifungal agent. Int. J. Org. Chem., 2019, 9(1), 37-46.
[http://dx.doi.org/10.4236/ijoc.2019.91004]
[89]
Ikotun, A.A.; Oladimeji, A.O.; Oluranti, O.O. Synthesis, physicochemical and antimicrobial properties of Co (II) and Ni (II) metal complexes of the Schiff base of isatin and 4-methylaniline. J. Appl. Sci. Environ. Manag., 2020, 23(11), 1957-1962.
[http://dx.doi.org/10.4314/jasem.v23i11.8]
[90]
Ikotun, A.A.; Omolekan, T.O. Microwave-assisted synthesis, characterization antimicrobial and antioxidant activities of 1-benzyl-3-[(4-methylphenyl)Imino]-indoline-2-one and its Co(II) complex. Chem. Sci. Int. J., 2019, 28(1), 1-12.
[http://dx.doi.org/10.9734/CSJI/2019/v28i130130]
[91]
Nyawade, E.A.; Onani, M.O.; Meyer, S.; Dube, P. Synthesis, characterization and antibacterial activity studies of new 2-pyrral-L-amino acid Schiff base palladium (II) complexes. Chem. Pap., 2020, 74(11), 3705-3715.
[http://dx.doi.org/10.1007/s11696-019-00986-5]
[92]
Hashem, H.E.; Haneen, D.S.A.; Saied, K.F.; Youssef, A.S.A. Synthesis of new annulated pyridazine derivatives and studying their antioxidant and antimicrobial activities. Synth. Commun., 2019, 49(22), 3169-3180.
[http://dx.doi.org/10.1080/00397911.2019.1658786]
[93]
Arunadevi, A.; Raman, N. Indole-derived water-soluble N, O bi-dentate ligand-based mononuclear transition metal complexes: In silico and in vitro biological screening, molecular docking and macromolecule interaction studies. J. Biomol. Struct. Dyn., 2020, 38(5), 1499-1513.
[http://dx.doi.org/10.1080/07391102.2019.1611475] [PMID: 31035905]
[94]
Nartop, D.; Özkan, E.H.; Gündem, M.; Çeker, S. Ağar, G.; Öğütcü, H.; Sarı N. Synthesis, antimicrobial and antimutagenic effects of novel polymeric-Schiff bases including indol. J. Mol. Struct., 2019, 1195, 877-882.
[http://dx.doi.org/10.1016/j.molstruc.2019.06.042]
[95]
Dar, O.A.; Lone, S.A.; Malik, M.A.; Wani, M.Y.; Ahmad, A.; Hashmi, A.A. New transition metal complexes with a pendent indole ring: Insights into the antifungal activity and mode of action. RSC Advances, 2019, 9(27), 15151-15157.
[http://dx.doi.org/10.1039/C9RA02600B] [PMID: 35514852]
[96]
Mhaske, G.S.; Khiste, R.H.; Shinde, S.A.; Jadhav, S.A. Synthesis,Characterization and biological screening of substituted indoledihydro-pyrimidine derivatives. Curr. Pharm. Res., 2019, 9(4), 3237-3246.
[PMID: 29513956]
[97]
EL-Gammal. O.A.; Alshater, H.; El-Boraey, H.A. Schiff base metal complexes of 4-methyl-1H-indol-3-carbaldehyde derivative as a series of potential antioxidants and antimicrobial: Synthesis, spectroscopic characterization and 3D molecular modeling. J. Mol. Struct., 2019, 1195, 220-230.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.101]
[98]
Song, M.; Wang, S.; Wang, Z.; Fu, Z.; Zhou, S.; Cheng, H.; Liang, Z.; Deng, X. Synthesis, antimicrobial and cytotoxic activities, and molecular docking studies of N-arylsulfonylindoles containing an aminoguanidine, a semicarbazide, and a thiosemicarbazide moiety. Eur. J. Med. Chem., 2019, 166, 108-118.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.038] [PMID: 30685534]
[99]
Rajeswari, B.; Santhi, R. Antibacterial and antifungal activities of some novel imines of tryptamine. Mater. Today Proc., 2019, 14, 323-331.
[http://dx.doi.org/10.1016/j.matpr.2019.04.154]
[100]
Alsalihi, E.I.; Al-Fahdawi, A.S. Synthesis and antibacterial activity of isatin Schiff base derivative with 3-aminoacetophenone and its Ni (II), Co (II) transition metals complexes. ARO Sci. J. Koya Univ., 2018, 6(1), 38-45.
[http://dx.doi.org/10.14500/aro.10245]
[101]
Hassan, M.A.; Omer, A.M.; Abbas, E.; Baset, W.M.A.; Tamer, T.M. Preparation, physicochemical characterization and antimicrobial activities of novel two phenolic chitosan Schiff base derivatives. Sci. Rep., 2018, 8(1), 11416.
[http://dx.doi.org/10.1038/s41598-018-29650-w] [PMID: 30061725]
[102]
Singh, G.; Kalra, P.; Arora, A.; Singh, A.; Sharma, G. Sanchita; Maurya, I.K.; Dutta, S.; Munshi, P.; Verma, V. Acetylenic indole-encapsulated Schiff bases: Synthesis, In Silico Studies as Potent antimicrobial agents, cytotoxic evaluation and synergistic effects. ChemistrySelect, 2018, 3(8), 2366-2375.
[http://dx.doi.org/10.1002/slct.201703018]
[103]
Yahya, W.F.; Kareem, K.E.; Hussain, A.S. Synthesis, spectral characterization and antimicrobial activity of some transition metal complexes with new Schiff base ligand (BDABI). Orient. J. Chem., 2018, 34(1), 434-443.
[http://dx.doi.org/10.13005/ojc/340147]
[104]
Al Osaimi, A.G.; Ali, R.S.; Saad, H.A.; El-Sayad Ay, M.R. Synthesis and antimicrobial activity of novel fused (1,2,4) triazino(5,6-b) indole derivatives. Russ. J. Gen. Chem., 2017, 87(6), 1246-1255.
[http://dx.doi.org/10.1134/S1070363217060202]
[105]
Al-Shareef, H.F.; Elhady, H.A.; Aboellil, A.H.; Hussein, E.M. Ammonium chloride catalyzed synthesis of novel Schiff bases from spiro[indoline-3,4′-pyran]-3′-carbonitriles and evaluation of their antimicrobial and anti-breast cancer activities. Springerplus, 2016, 5(1), 887.
[http://dx.doi.org/10.1186/s40064-016-2458-0] [PMID: 27386335]
[106]
Sharma, S.; Meena, R.; Singh, R.V.; Fahmi, N. Synthesis, characterization, antimicrobial, and DNA cleavage evaluation of some organotin(IV) complexes derived from ligands containing the 1H-indole-2,3-dione moiety. Main Group Met. Chem., 2016, 39(1-2), 31-40.
[http://dx.doi.org/10.1515/mgmc-2015-0030]
[107]
Udayagiri, M.B.; Yernale, N.G.; Mruthyunjayaswamy, B.H.M. Synthesis, characterization, DNA cleavage and antimicrobial activities of Schiff bases ligand derived from 5-chloro-3-phenyl-1H-indole-2-carboxyhydrazide and o-Vanillin and its metal (II) complexes. Int. J. Pharm. Pharm. Sci., 2016, 8(3), 344-351.