Construction of RNA Methylation Modification-immune-related lncRNA Molecular Subtypes and Prognostic Scoring System in Lung Adenocarcinoma

Page: [1539 - 1560] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Background: RNA methylation modification is not only intimately interrelated with cancer development and progression but also actively influences immune cell infiltration in the tumor microenvironment (TME). RNA methylation modification genes influence the therapeutic progression of lung adenocarcinoma (LUAD), and mining RNA methylation modification prognosis-related markers in LUAD is crucial for its precise prognosis.

Methods: RNA-Seq data and Gene sets were collected from online databases or published literature. Genomic variation analysis was conducted by the Maftools package. RNA methylation-immune-related lncRNAs were obtained by Pearson correlation analysis. Then, Consistent clustering analysis was performed to obtain RNA methylation modification- immune molecular subtypes (RMM-I Molecular subtypes) in LUAD based on selected lncRNAs. COX and random survival forest analysis were carried out to construct the RMM-I Score. The receiver operating characteristic (ROC) curve and Kaplan Meier survival analysis were used to assess survival differences. Tumor immune microenvironment was assessed through related gene signatures and CIBERSORT algorithm. In addition, drug sensitivity analysis was executed by the pRRophetic package.

Results: Four RNA methylation modified-immune molecular subtypes (RMM-I1, RMM- I2, RMM-I3, RMM-I4) were presented in LUAD. Patients in RMM-I4 exhibited excellent survival advantages and immune activity. HAVCR2, CD274, and CTLA-4 expression were activated in RMM-I4, which might be heat tumors and a potential beneficial group for immunotherapy. OGFRP1, LINC01116, DLGAP1-AS2, CRNDE, LINC01137, MIR210HG, and CYP1B1-AS1 comprised the RMM-I Score. The RMM-I Score exhibited excellent accuracy in the prognostic assessment of LUAD, as patients with a low RMM- I Score exhibited remarkable survival advantage. Patients with a low RMM-I score might be more sensitive to treatment with Docetaxel, Vinorelbine, Paclitaxel, Cisplatin, and immunotherapy.

Conclusion: The RMM-I molecular subtype constituted the novel molecular characteristic subtype of LUAD, which complemented the existing pathological typing. More refined and accurate molecular subtypes provide help to reveal the mechanism of LUAD development. In addition, the RMM-I score offers a reliable tool for accurate prognosis of LUAD.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Wu, F.; Wang, L.; Zhou, C. Lung cancer in China: Current and prospect. Curr. Opin. Oncol., 2021, 33(1), 40-46.
[http://dx.doi.org/10.1097/CCO.0000000000000703] [PMID: 33165004]
[3]
Dan, AK; Manna, A; Ghosh, S; Sikdar, S; Sahu, R; Parhi, PK Molecular mechanisms of the lipopeptides from Bacillus subtilis in the apoptosis of cancer cells - A review on its current status in different cancer cell lines. Advances in Cancer Biology - Metastasis, 2021, 3, 100019.
[4]
Wang, M.; Herbst, R.S.; Boshoff, C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat. Med., 2021, 27(8), 1345-1356.
[http://dx.doi.org/10.1038/s41591-021-01450-2] [PMID: 34385702]
[5]
Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell, 2007, 128(4), 683-692.
[http://dx.doi.org/10.1016/j.cell.2007.01.029] [PMID: 17320506]
[6]
Flavahan, W.A.; Gaskell, E.; Bernstein, B.E. Epigenetic plasticity and the hallmarks of cancer. Science, 2017, 357(6348), eaal2380.
[http://dx.doi.org/10.1126/science.aal2380] [PMID: 28729483]
[7]
Aamna, B.; Kumar Dan, A.; Sahu, R.; Behera, S.K.; Parida, S. Deciphering the signaling mechanisms of β-arrestin1 and β-arrestin2 in regulation of cancer cell cycle and metastasis. J. Cell. Physiol., 2022, 237(10), 3717-3733.
[http://dx.doi.org/10.1002/jcp.30847] [PMID: 35908197]
[8]
Gaudet, F.; Hodgson, J.G.; Eden, A.; Jackson-Grusby, L.; Dausman, J.; Gray, J.W.; Leonhardt, H.; Jaenisch, R. Induction of tumors in mice by genomic hypomethylation. Science, 2003, 300(5618), 489-492.
[http://dx.doi.org/10.1126/science.1083558] [PMID: 12702876]
[9]
Jun, H.J.; Woolfenden, S.; Coven, S.; Lane, K.; Bronson, R.; Housman, D.; Charest, A. Epigenetic regulation of c-ROS receptor tyrosine kinase expression in malignant gliomas. Cancer Res., 2009, 69(6), 2180-2184.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3351] [PMID: 19276365]
[10]
Kakaradov, B.; Arsenio, J.; Widjaja, C.E.; He, Z.; Aigner, S.; Metz, P.J.; Yu, B.; Wehrens, E.J.; Lopez, J.; Kim, S.H.; Zuniga, E.I.; Goldrath, A.W.; Chang, J.T.; Yeo, G.W. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA sequencing. Nat. Immunol., 2017, 18(4), 422-432.
[http://dx.doi.org/10.1038/ni.3688] [PMID: 28218746]
[11]
Xie, S.; Chen, W.; Chen, K.; Chang, Y.; Yang, F.; Lin, A.; Shu, Q.; Zhou, T.; Yan, X. Emerging roles of RNA methylation in gastrointestinal cancers. Cancer Cell Int., 2020, 20(1), 585.
[http://dx.doi.org/10.1186/s12935-020-01679-w] [PMID: 33372610]
[12]
Ma, L.; Xue, X.; Zhang, X.; Yu, K.; Xu, X.; Tian, X.; Miao, Y.; Meng, F.; Liu, X.; Guo, S.; Qiu, S.; Wang, Y.; Cui, J.; Guo, W.; Li, Y.; Xia, J.; Yu, Y.; Wang, J. The essential roles of m6A RNA modification to stimulate ENO1-dependent glycolysis and tumorigenesis in lung adenocarcinoma. J. Exp. Clin. Cancer Res., 2022, 41(1), 36.
[http://dx.doi.org/10.1186/s13046-021-02200-5] [PMID: 35078505]
[13]
Yu, W.; Zhang, C.; Wang, Y.; Tian, X.; Miao, Y.; Meng, F.; Ma, L.; Zhang, X.; Xia, J. YAP 5-methylcytosine modification increases its mRNA stability and promotes the transcription of exosome secretion-related genes in lung adenocarcinoma. Cancer Gene Ther., 2023, 30(1), 149-162.
[http://dx.doi.org/10.1038/s41417-022-00533-7] [PMID: 36123390]
[14]
Ma, S.; Zhu, J.; Wang, M.; Zhu, J.; Wang, W.; Xiong, Y.; Jiang, R.; Liu, L.; Jiang, T. Comprehensive analysis of m7G modification patterns based on potential m7G regulators and tumor microenvironment infiltration characterization in lung adenocarcinoma. Front. Genet., 2022, 13, 996950.
[http://dx.doi.org/10.3389/fgene.2022.996950] [PMID: 36246663]
[15]
Ouyang, W.; Jiang, Y.; Bu, S.; Tang, T.; Huang, L.; Chen, M.; Tan, Y.; Ou, Q.; Mao, L.; Mai, Y.; Yao, H.; Yu, Y.; Lin, X. A prognostic risk score based on hypoxia-, immunity-, and epithelialto-mesenchymal transition-related genes for the prognosis and immunotherapy response of lung adenocarcinoma. Front. Cell Dev. Biol., 2022, 9, 758777.
[http://dx.doi.org/10.3389/fcell.2021.758777] [PMID: 35141229]
[16]
Zhang, M.; Song, J.; Yuan, W.; Zhang, W.; Sun, Z. Roles of RNA methylation on tumor immunity and clinical implications. Front. Immunol., 2021, 12, 641507.
[http://dx.doi.org/10.3389/fimmu.2021.641507] [PMID: 33777035]
[17]
Okayama, H.; Kohno, T.; Ishii, Y.; Shimada, Y.; Shiraishi, K.; Iwakawa, R.; Furuta, K.; Tsuta, K.; Shibata, T.; Yamamoto, S.; Watanabe, S.; Sakamoto, H.; Kumamoto, K.; Takenoshita, S.; Gotoh, N.; Mizuno, H.; Sarai, A.; Kawano, S.; Yamaguchi, R.; Miyano, S.; Yokota, J. Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res., 2012, 72(1), 100-111.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1403] [PMID: 22080568]
[18]
Schabath, M.B.; Welsh, E.A.; Fulp, W.J.; Chen, L.; Teer, J.K.; Thompson, Z.J.; Engel, B.E.; Xie, M.; Berglund, A.E.; Creelan, B.C.; Antonia, S.J.; Gray, J.E.; Eschrich, S.A.; Chen, D-T.; Cress, W.D.; Haura, E.B.; Beg, A.A. Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene, 2016, 35(24), 3209-3216.
[http://dx.doi.org/10.1038/onc.2015.375] [PMID: 26477306]
[19]
Shen, W.; Song, Z.; Zhong, X.; Huang, M.; Shen, D.; Gao, P.; Qian, X.; Wang, M.; He, X.; Wang, T.; Li, S.; Song, X. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta, 2022, 1(3), e36.
[http://dx.doi.org/10.1002/imt2.36]
[20]
Frankish, A.; Carbonell-Sala, S.; Diekhans, M.; Jungreis, I.; Loveland, J.E.; Mudge, J.M.; Sisu, C.; Wright, J.C.; Arnan, C.; Barnes, I.; Banerjee, A.; Bennett, R.; Berry, A.; Bignell, A.; Boix, C.; Calvet, F.; Cerdán-Vélez, D.; Cunningham, F.; Davidson, C.; Donaldson, S.; Dursun, C.; Fatima, R.; Giorgetti, S.; Giron, C.G.; Gonzalez, J.M.; Hardy, M.; Harrison, P.W.; Hourlier, T.; Hollis, Z.; Hunt, T.; James, B.; Jiang, Y.; Johnson, R.; Kay, M.; Lagarde, J.; Martin, F.J.; Gómez, L.M.; Nair, S.; Ni, P.; Pozo, F.; Ramalingam, V.; Ruffier, M.; Schmitt, B.M.; Schreiber, J.M.; Steed, E.; Suner, M.M.; Sumathipala, D.; Sycheva, I.; Uszczynska-Ratajczak, B.; Wass, E.; Yang, Y.T.; Yates, A.; Zafrulla, Z.; Choudhary, J.S.; Gerstein, M.; Guigo, R.; Hubbard, T.J.P.; Kellis, M.; Kundaje, A.; Paten, B.; Tress, M.L.; Flicek, P. GENCODE: Reference annotation for the human and mouse genomes in 2023. Nucleic Acids Res., 2023, 51(D1), D942-D949.
[http://dx.doi.org/10.1093/nar/gkac1071] [PMID: 36420896]
[21]
Zhang, M.; Zhu, K.; Pu, H.; Wang, Z.; Zhao, H.; Zhang, J.; Wang, Y. An immune-related signature predicts survival in patients with lung adenocarcinoma. Front. Oncol., 2019, 9, 1314.
[http://dx.doi.org/10.3389/fonc.2019.01314] [PMID: 31921619]
[22]
He, R.; Man, C.; Huang, J.; He, L.; Wang, X.; Lang, Y.; Fan, Y. Identification of RNA methylation-related lncrnas signature for predicting hot and cold tumors and prognosis in colon cancer. Front. Genet., 2022, 13, 870945.
[http://dx.doi.org/10.3389/fgene.2022.870945] [PMID: 35464855]
[23]
Bagaev, A.; Kotlov, N.; Nomie, K.; Svekolkin, V.; Gafurov, A.; Isaeva, O.; Osokin, N.; Kozlov, I.; Frenkel, F.; Gancharova, O.; Almog, N.; Tsiper, M.; Ataullakhanov, R.; Fowler, N. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell, 2021, 39(6), 845-865.e7.
[http://dx.doi.org/10.1016/j.ccell.2021.04.014] [PMID: 34019806]
[24]
Mayakonda, A.; Lin, D.C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res., 2018, 28(11), 1747-1756.
[http://dx.doi.org/10.1101/gr.239244.118] [PMID: 30341162]
[25]
Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics, 2010, 26(12), 1572-1573.
[http://dx.doi.org/10.1093/bioinformatics/btq170] [PMID: 20427518]
[26]
Beroukhim, R.; Mermel, C.H.; Porter, D.; Wei, G.; Raychaudhuri, S.; Donovan, J.; Barretina, J.; Boehm, J.S.; Dobson, J.; Urashima, M.; Mc Henry, K.T.; Pinchback, R.M.; Ligon, A.H.; Cho, Y.J.; Haery, L.; Greulich, H.; Reich, M.; Winckler, W.; Lawrence, M.S.; Weir, B.A.; Tanaka, K.E.; Chiang, D.Y.; Bass, A.J.; Loo, A.; Hoffman, C.; Prensner, J.; Liefeld, T.; Gao, Q.; Yecies, D.; Signoretti, S.; Maher, E.; Kaye, F.J.; Sasaki, H.; Tepper, J.E.; Fletcher, J.A.; Tabernero, J.; Baselga, J.; Tsao, M.S.; Demichelis, F.; Rubin, M.A.; Janne, P.A.; Daly, M.J.; Nucera, C.; Levine, R.L.; Ebert, B.L.; Gabriel, S.; Rustgi, A.K.; Antonescu, C.R.; Ladanyi, M.; Letai, A.; Garraway, L.A.; Loda, M.; Beer, D.G.; True, L.D.; Okamoto, A.; Pomeroy, S.L.; Singer, S.; Golub, T.R.; Lander, E.S.; Getz, G.; Sellers, W.R.; Meyerson, M. The landscape of somatic copy-number alteration across human cancers. Nature, 2010, 463(7283), 899-905.
[http://dx.doi.org/10.1038/nature08822] [PMID: 20164920]
[27]
Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; Ziv, E.; Culhane, A.C.; Paull, E.O.; Sivakumar, I.K.A.; Gentles, A.J.; Malhotra, R.; Farshidfar, F.; Colaprico, A.; Parker, J.S.; Mose, L.E.; Vo, N.S.; Liu, J.; Liu, Y.; Rader, J.; Dhankani, V.; Reynolds, S.M.; Bowlby, R.; Califano, A.; Cherniack, A.D.; Anastassiou, D.; Bedognetti, D.; Mokrab, Y.; Newman, A.M.; Rao, A.; Chen, K.; Krasnitz, A.; Hu, H.; Malta, T.M.; Noushmehr, H.; Pedamallu, C.S.; Bullman, S.; Ojesina, A.I.; Lamb, A.; Zhou, W.; Shen, H.; Choueiri, T.K.; Weinstein, J.N.; Guinney, J.; Saltz, J.; Holt, R.A.; Rabkin, C.S.; Lazar, A.J.; Serody, J.S.; Demicco, E.G.; Disis, M.L.; Vincent, B.G.; Shmulevich, I.; Caesar-Johnson, S.J.; Demchok, J.A.; Felau, I.; Kasapi, M.; Ferguson, M.L.; Hutter, C.M.; Sofia, H.J.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J.C.; Zhang, J.J.; Chudamani, S.; Liu, J.; Lolla, L.; Naresh, R.; Pihl, T.; Sun, Q.; Wan, Y.; Wu, Y.; Cho, J.; DeFreitas, T.; Frazer, S.; Gehlenborg, N.; Getz, G.; Heiman, D.I.; Kim, J.; Lawrence, M.S.; Lin, P.; Meier, S.; Noble, M.S.; Saksena, G.; Voet, D.; Zhang, H.; Bernard, B.; Chambwe, N.; Dhankani, V.; Knijnenburg, T.; Kramer, R.; Leinonen, K.; Liu, Y.; Miller, M.; Reynolds, S.; Shmulevich, I.; Thorsson, V.; Zhang, W.; Akbani, R.; Broom, B.M.; Hegde, A.M.; Ju, Z.; Kanchi, R.S.; Korkut, A.; Li, J.; Liang, H.; Ling, S.; Liu, W.; Lu, Y.; Mills, G.B.; Ng, K-S.; Rao, A.; Ryan, M.; Wang, J.; Weinstein, J.N.; Zhang, J.; Abeshouse, A.; Armenia, J.; Chakravarty, D.; Chatila, W.K.; de Bruijn, I.; Gao, J.; Gross, B.E.; Heins, Z.J.; Kundra, R.; La, K.; Ladanyi, M.; Luna, A.; Nissan, M.G.; Ochoa, A.; Phillips, S.M.; Reznik, E.; Sanchez-Vega, F.; Sander, C.; Schultz, N.; Sheridan, R.; Sumer, S.O.; Sun, Y.; Taylor, B.S.; Wang, J.; Zhang, H.; Anur, P.; Peto, M.; Spellman, P.; Benz, C.; Stuart, J.M.; Wong, C.K.; Yau, C.; Hayes, D.N.; Parker, J.S.; Wilkerson, M.D.; Ally, A.; Balasundaram, M.; Bowlby, R.; Brooks, D.; Carlsen, R.; Chuah, E.; Dhalla, N.; Holt, R.; Jones, S.J.M.; Kasaian, K.; Lee, D.; Ma, Y.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Mungall, K.; Robertson, A.G.; Sadeghi, S.; Schein, J.E.; Sipahimalani, P.; Tam, A.; Thiessen, N.; Tse, K.; Wong, T.; Berger, A.C.; Beroukhim, R.; Cherniack, A.D.; Cibulskis, C.; Gabriel, S.B.; Gao, G.F.; Ha, G.; Meyerson, M.; Schumacher, S.E.; Shih, J.; Kucherlapati, M.H.; Kucherlapati, R.S.; Baylin, S.; Cope, L.; Danilova, L.; Bootwalla, M.S.; Lai, P.H.; Maglinte, D.T.; Van Den Berg, D.J.; Weisenberger, D.J.; Auman, J.T.; Balu, S.; Bodenheimer, T.; Fan, C.; Hoadley, K.A.; Hoyle, A.P.; Jefferys, S.R.; Jones, C.D.; Meng, S.; Mieczkowski, P.A.; Mose, L.E.; Perou, A.H.; Perou, C.M.; Roach, J.; Shi, Y.; Simons, J.V.; Skelly, T.; Soloway, M.G.; Tan, D.; Veluvolu, U.; Fan, H.; Hinoue, T.; Laird, P.W.; Shen, H.; Zhou, W.; Bellair, M.; Chang, K.; Covington, K.; Creighton, C.J.; Dinh, H.; Doddapaneni, H.V.; Donehower, L.A.; Drummond, J.; Gibbs, R.A.; Glenn, R.; Hale, W.; Han, Y.; Hu, J.; Korchina, V.; Lee, S.; Lewis, L.; Li, W.; Liu, X.; Morgan, M.; Morton, D.; Muzny, D.; Santibanez, J.; Sheth, M.; Shinbrot, E.; Wang, L.; Wang, M.; Wheeler, D.A.; Xi, L.; Zhao, F.; Hess, J.; Appelbaum, E.L.; Bailey, M.; Cordes, M.G.; Ding, L.; Fronick, C.C.; Fulton, L.A.; Fulton, R.S.; Kandoth, C.; Mardis, E.R.; McLellan, M.D.; Miller, C.A.; Schmidt, H.K.; Wilson, R.K.; Crain, D.; Curley, E.; Gardner, J.; Lau, K.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, C.; Shelton, T.; Sherman, M.; Thompson, E.; Yena, P.; Bowen, J.; Gastier-Foster, J.M.; Gerken, M.; Leraas, K.M.; Lichtenberg, T.M.; Ramirez, N.C.; Wise, L.; Zmuda, E.; Corcoran, N.; Costello, T.; Hovens, C.; Carvalho, A.L.; de Carvalho, A.C.; Fregnani, J.H.; Longatto-Filho, A.; Reis, R.M.; Scapulatempo-Neto, C.; Silveira, H.C.S.; Vidal, D.O.; Burnette, A.; Eschbacher, J.; Hermes, B.; Noss, A.; Singh, R.; Anderson, M.L.; Castro, P.D.; Ittmann, M.; Huntsman, D.; Kohl, B.; Le, X.; Thorp, R.; Andry, C.; Duffy, E.R.; Lyadov, V.; Paklina, O.; Setdikova, G.; Shabunin, A.; Tavobilov, M.; McPherson, C.; Warnick, R.; Berkowitz, R.; Cramer, D.; Feltmate, C.; Horowitz, N.; Kibel, A.; Muto, M.; Raut, C.P.; Malykh, A.; Barnholtz-Sloan, J.S.; Barrett, W.; Devine, K.; Fulop, J.; Ostrom, Q.T.; Shimmel, K.; Wolinsky, Y.; Sloan, A.E.; De Rose, A.; Giuliante, F.; Goodman, M.; Karlan, B.Y.; Hagedorn, C.H.; Eckman, J.; Harr, J.; Myers, J.; Tucker, K.; Zach, L.A.; Deyarmin, B.; Hu, H.; Kvecher, L.; Larson, C.; Mural, R.J.; Somiari, S.; Vicha, A.; Zelinka, T.; Bennett, J.; Iacocca, M.; Rabeno, B.; Swanson, P.; Latour, M.; Lacombe, L.; Têtu, B.; Bergeron, A.; McGraw, M.; Staugaitis, S.M.; Chabot, J.; Hibshoosh, H.; Sepulveda, A.; Su, T.; Wang, T.; Potapova, O.; Voronina, O.; Desjardins, L.; Mariani, O.; Roman-Roman, S.; Sastre, X.; Stern, M-H.; Cheng, F.; Signoretti, S.; Berchuck, A.; Bigner, D.; Lipp, E.; Marks, J.; McCall, S.; McLendon, R.; Secord, A.; Sharp, A.; Behera, M.; Brat, D.J.; Chen, A.; Delman, K.; Force, S.; Khuri, F.; Magliocca, K.; Maithel, S.; Olson, J.J.; Owonikoko, T.; Pickens, A.; Ramalingam, S.; Shin, D.M.; Sica, G.; Van Meir, E.G.; Zhang, H.; Eijckenboom, W.; Gillis, A.; Korpershoek, E.; Looijenga, L.; Oosterhuis, W.; Stoop, H.; van Kessel, K.E.; Zwarthoff, E.C.; Calatozzolo, C.; Cuppini, L.; Cuzzubbo, S.; DiMeco, F.; Finocchiaro, G.; Mattei, L.; Perin, A.; Pollo, B.; Chen, C.; Houck, J.; Lohavanichbutr, P.; Hartmann, A.; Stoehr, C.; Stoehr, R.; Taubert, H.; Wach, S.; Wullich, B.; Kycler, W.; Murawa, D.; Wiznerowicz, M.; Chung, K.; Edenfield, W.J.; Martin, J.; Baudin, E.; Bubley, G.; Bueno, R.; De Rienzo, A.; Richards, W.G.; Kalkanis, S.; Mikkelsen, T.; Noushmehr, H.; Scarpace, L.; Girard, N.; Aymerich, M.; Campo, E.; Giné, E.; Guillermo, A.L.; Van Bang, N.; Hanh, P.T.; Phu, B.D.; Tang, Y.; Colman, H.; Evason, K.; Dottino, P.R.; Martignetti, J.A.; Gabra, H.; Juhl, H.; Akeredolu, T.; Stepa, S.; Hoon, D.; Ahn, K.; Kang, K.J.; Beuschlein, F.; Breggia, A.; Birrer, M.; Bell, D.; Borad, M.; Bryce, A.H.; Castle, E.; Chandan, V.; Cheville, J.; Copland, J.A.; Farnell, M.; Flotte, T.; Giama, N.; Ho, T.; Kendrick, M.; Kocher, J-P.; Kopp, K.; Moser, C.; Nagorney, D.; O’Brien, D.; O’Neill, B.P.; Patel, T.; Petersen, G.; Que, F.; Rivera, M.; Roberts, L.; Smallridge, R.; Smyrk, T.; Stanton, M.; Thompson, R.H.; Torbenson, M.; Yang, J.D.; Zhang, L.; Brimo, F.; Ajani, J.A.; Gonzalez, A.M.A.; Behrens, C.; Bondaruk, J.; Broaddus, R.; Czerniak, B.; Esmaeli, B.; Fujimoto, J.; Gershenwald, J.; Guo, C.; Lazar, A.J.; Logothetis, C.; Meric-Bernstam, F.; Moran, C.; Ramondetta, L.; Rice, D.; Sood, A.; Tamboli, P.; Thompson, T.; Troncoso, P.; Tsao, A.; Wistuba, I.; Carter, C.; Haydu, L.; Hersey, P.; Jakrot, V.; Kakavand, H.; Kefford, R.; Lee, K.; Long, G.; Mann, G.; Quinn, M.; Saw, R.; Scolyer, R.; Shannon, K.; Spillane, A.; Stretch; Synott, M.; Thompson, J.; Wilmott, J.; Al-Ahmadie, H.; Chan, T.A.; Ghossein, R.; Gopalan, A.; Levine, D.A.; Reuter, V.; Singer, S.; Singh, B.; Tien, N.V.; Broudy, T.; Mirsaidi, C.; Nair, P.; Drwiega, P.; Miller, J.; Smith, J.; Zaren, H.; Park, J-W.; Hung, N.P.; Kebebew, E.; Linehan, W.M.; Metwalli, A.R.; Pacak, K.; Pinto, P.A.; Schiffman, M.; Schmidt, L.S.; Vocke, C.D.; Wentzensen, N.; Worrell, R.; Yang, H.; Moncrieff, M.; Goparaju, C.; Melamed, J.; Pass, H.; Botnariuc, N.; Caraman, I.; Cernat, M.; Chemencedji, I.; Clipca, A.; Doruc, S.; Gorincioi, G.; Mura, S.; Pirtac, M.; Stancul, I.; Tcaciuc, D.; Albert, M.; Alexopoulou, I.; Arnaout, A.; Bartlett, J.; Engel, J.; Gilbert, S.; Parfitt, J.; Sekhon, H.; Thomas, G.; Rassl, D.M.; Rintoul, R.C.; Bifulco, C.; Tamakawa, R.; Urba, W.; Hayward, N.; Timmers, H.; Antenucci, A.; Facciolo, F.; Grazi, G.; Marino, M.; Merola, R.; de Krijger, R.; Gimenez-Roqueplo, A-P.; Piché, A.; Chevalier, S.; McKercher, G.; Birsoy, K.; Barnett, G.; Brewer, C.; Farver, C.; Naska, T.; Pennell, N.A.; Raymond, D.; Schilero, C.; Smolenski, K.; Williams, F.; Morrison, C.; Borgia, J.A.; Liptay, M.J.; Pool, M.; Seder, C.W.; Junker, K.; Omberg, L.; Dinkin, M.; Manikhas, G.; Alvaro, D.; Bragazzi, M.C.; Cardinale, V.; Carpino, G.; Gaudio, E.; Chesla, D.; Cottingham, S.; Dubina, M.; Moiseenko, F.; Dhanasekaran, R.; Becker, K-F.; Janssen, K-P.; Slotta-Huspenina, J.; Abdel-Rahman, M.H.; Aziz, D.; Bell, S.; Cebulla, C.M.; Davis, A.; Duell, R.; Elder, J.B.; Hilty, J.; Kumar, B.; Lang, J.; Lehman, N.L.; Mandt, R.; Nguyen, P.; Pilarski, R.; Rai, K.; Schoenfield, L.; Senecal, K.; Wakely, P.; Hansen, P.; Lechan, R.; Powers, J.; Tischler, A.; Grizzle, W.E.; Sexton, K.C.; Kastl, A.; Henderson, J.; Porten, S.; Waldmann, J.; Fassnacht, M.; Asa, S.L.; Schadendorf, D.; Couce, M.; Graefen, M.; Huland, H.; Sauter, G.; Schlomm, T.; Simon, R.; Tennstedt, P.; Olabode, O.; Nelson, M.; Bathe, O.; Carroll, P.R.; Chan, J.M.; Disaia, P.; Glenn, P.; Kelley, R.K.; Landen, C.N.; Phillips, J.; Prados, M.; Simko, J.; Smith-McCune, K.; VandenBerg, S.; Roggin, K.; Fehrenbach, A.; Kendler, A.; Sifri, S.; Steele, R.; Jimeno, A.; Carey, F.; Forgie, I.; Mannelli, M.; Carney, M.; Hernandez, B.; Campos, B.; Herold-Mende, C.; Jungk, C.; Unterberg, A.; von Deimling, A.; Bossler, A.; Galbraith, J.; Jacobus, L.; Knudson, M.; Knutson, T.; Ma, D.; Milhem, M.; Sigmund, R.; Godwin, A.K.; Madan, R.; Rosenthal, H.G.; Adebamowo, C.; Adebamowo, S.N.; Boussioutas, A.; Beer, D.; Giordano, T.; Mes-Masson, A-M.; Saad, F.; Bocklage, T.; Landrum, L.; Mannel, R.; Moore, K.; Moxley, K.; Postier, R.; Walker, J.; Zuna, R.; Feldman, M.; Valdivieso, F.; Dhir, R.; Luketich, J.; Pinero, E.M.M.; Quintero-Aguilo, M.; Carlotti, C.G., Jr; Dos Santos, J.S.; Kemp, R.; Sankarankuty, A.; Tirapelli, D.; Catto, J.; Agnew, K.; Swisher, E.; Creaney, J.; Robinson, B.; Shelley, C.S.; Godwin, E.M.; Kendall, S.; Shipman, C.; Bradford, C.; Carey, T.; Haddad, A.; Moyer, J.; Peterson, L.; Prince, M.; Rozek, L.; Wolf, G.; Bowman, R.; Fong, K.M.; Yang, I.; Korst, R.; Rathmell, W.K.; Fantacone-Campbell, J.L.; Hooke, J.A.; Kovatich, A.J.; Shriver, C.D.; DiPersio, J.; Drake, B.; Govindan, R.; Heath, S.; Ley, T.; Van Tine, B.; Westervelt, P.; Rubin, M.A.; Lee, J.I.; Aredes, N.D.; Mariamidze, A. The immune landscape of cancer. Immunity, 2018, 48(4), 812-830.e14.
[http://dx.doi.org/10.1016/j.immuni.2018.03.023] [PMID: 29628290]
[28]
Ishwaran, H.; Lu, M.; Kogalur, U.B. Random Forest SRC: Variable importance (VIMP) with subsampling inference vignette. 2021. Available from:
[http://dx.doi.org/10.13140/RG.2.2.23799.75680]
[29]
Blanche, P.; Dartigues, J.F.; Jacqmin-Gadda, H. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat. Med., 2013, 32(30), 5381-5397.
[http://dx.doi.org/10.1002/sim.5958] [PMID: 24027076]
[30]
Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4(1), 2612.
[http://dx.doi.org/10.1038/ncomms3612] [PMID: 24113773]
[31]
Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol., 2018, 1711, 243-259.
[http://dx.doi.org/10.1007/978-1-4939-7493-1_12] [PMID: 29344893]
[32]
Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 2013, 14(1), 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[33]
Barbie, D.A.; Tamayo, P.; Boehm, J.S.; Kim, S.Y.; Moody, S.E.; Dunn, I.F.; Schinzel, A.C.; Sandy, P.; Meylan, E.; Scholl, C.; Fröhling, S.; Chan, E.M.; Sos, M.L.; Michel, K.; Mermel, C.; Silver, S.J.; Weir, B.A.; Reiling, J.H.; Sheng, Q.; Gupta, P.B.; Wadlow, R.C.; Le, H.; Hoersch, S.; Wittner, B.S.; Ramaswamy, S.; Livingston, D.M.; Sabatini, D.M.; Meyerson, M.; Thomas, R.K.; Lander, E.S.; Mesirov, J.P.; Root, D.E.; Gilliland, D.G.; Jacks, T.; Hahn, W.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009, 462(7269), 108-112.
[http://dx.doi.org/10.1038/nature08460] [PMID: 19847166]
[34]
Xu, L.; Deng, C.; Pang, B.; Zhang, X.; Liu, W.; Liao, G.; Yuan, H.; Cheng, P.; Li, F.; Long, Z.; Yan, M.; Zhao, T.; Xiao, Y.; Li, X. TIP: A web server for resolving tumor immunophenotype profiling. Cancer Res., 2018, 78(23), 6575-6580.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0689] [PMID: 30154154]
[35]
Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V.; Piha-Paul, S.A.; Yearley, J.; Seiwert, T.Y.; Ribas, A.; McClanahan, T.K. IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest., 2017, 127(8), 2930-2940.
[http://dx.doi.org/10.1172/JCI91190] [PMID: 28650338]
[36]
Danilova, L.; Ho, W.J.; Zhu, Q.; Vithayathil, T.; De Jesus-Acosta, A.; Azad, N.S.; Laheru, D.A.; Fertig, E.J.; Anders, R.; Jaffee, E.M.; Yarchoan, M. Programmed cell death ligand-1 (PD-L1) and CD8 expression profiling identify an immunologic subtype of pancreatic ductal adenocarcinomas with favorable survival. Cancer Immunol. Res., 2019, 7(6), 886-895.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0822] [PMID: 31043417]
[37]
Rooney, M.S.; Shukla, S.A.; Wu, C.J.; Getz, G.; Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell, 2015, 160(1-2), 48-61.
[http://dx.doi.org/10.1016/j.cell.2014.12.033] [PMID: 25594174]
[38]
Auslander, N.; Zhang, G.; Lee, J.S.; Frederick, D.T.; Miao, B.; Moll, T.; Tian, T.; Wei, Z.; Madan, S.; Sullivan, R.J.; Boland, G.; Flaherty, K.; Herlyn, M.; Ruppin, E. Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat. Med., 2018, 24(10), 1545-1549.
[http://dx.doi.org/10.1038/s41591-018-0157-9] [PMID: 30127394]
[39]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[40]
Zhan, L.; Zhang, J.; Zhu, S.; Liu, X.; Zhang, J.; Wang, W.; Fan, Y.; Sun, S.; Wei, B.; Cao, Y. N6-Methyladenosine RNA Modification: An emerging immunotherapeutic approach to turning up cold tumors. Front. Cell Dev. Biol., 2021, 9, 736298.
[http://dx.doi.org/10.3389/fcell.2021.736298] [PMID: 34616742]
[41]
Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov., 2019, 18(3), 197-218.
[http://dx.doi.org/10.1038/s41573-018-0007-y] [PMID: 30610226]
[42]
Xu, Y.; Zhang, M.; Zhang, Q.; Yu, X.; Sun, Z.; He, Y.; Guo, W. Role of Main RNA Methylation in hepatocellular carcinoma: N6-Methyladenosine, 5-Methylcytosine, and N1-Methyladenosine. Front. Cell Dev. Biol., 2021, 9, 767668.
[http://dx.doi.org/10.3389/fcell.2021.767668] [PMID: 34917614]
[43]
Sun, Z.; Xue, S.; Zhang, M.; Xu, H.; Hu, X.; Chen, S.; Liu, Y.; Guo, M.; Cui, H. Aberrant NSUN2-mediated m5C modification of H19 lncRNA is associated with poor differentiation of hepatocellular carcinoma. Oncogene, 2020, 39(45), 6906-6919.
[http://dx.doi.org/10.1038/s41388-020-01475-w] [PMID: 32978516]
[44]
Li, H.B.; Tong, J.; Zhu, S.; Batista, P.J.; Duffy, E.E.; Zhao, J.; Bailis, W.; Cao, G.; Kroehling, L.; Chen, Y.; Wang, G.; Broughton, J.P.; Chen, Y.G.; Kluger, Y.; Simon, M.D.; Chang, H.Y.; Yin, Z.; Flavell, R.A. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature, 2017, 548(7667), 338-342.
[http://dx.doi.org/10.1038/nature23450] [PMID: 28792938]
[45]
Wu, M.; Fu, P.; Qu, L.; Liu, J.; Lin, A. Long noncoding RNAs, New critical regulators in cancer immunity. Front. Oncol., 2020, 10, 550987.
[http://dx.doi.org/10.3389/fonc.2020.550987] [PMID: 33194608]
[46]
Eptaminitaki, G.C.; Wolff, N.; Stellas, D.; Sifakis, K.; Baritaki, S. Long non-coding RNAs (lncRNAs) in response and resistance to cancer immunosurveillance and immunotherapy. Cells, 2021, 10(12), 3313.
[http://dx.doi.org/10.3390/cells10123313] [PMID: 34943820]
[47]
Yadav, V.K.; De, S. An assessment of computational methods for estimating purity and clonality using genomic data derived from heterogeneous tumor tissue samples. Brief. Bioinform., 2015, 16(2), 232-241.
[http://dx.doi.org/10.1093/bib/bbu002] [PMID: 24562872]
[48]
Ren, N.; Liang, B.; Li, Y. Identification of prognosis-related genes in the tumor microenvironment of stomach adenocarcinoma by TCGA and GEO datasets. Biosci. Rep., 2020, 40(10), BSR20200980.
[http://dx.doi.org/10.1042/BSR20200980] [PMID: 33015704]
[49]
Gong, Z.; Zhang, J.; Guo, W. Tumor purity as a prognosis and immunotherapy relevant feature in gastric cancer. Cancer Med., 2020, 9(23), 9052-9063.
[http://dx.doi.org/10.1002/cam4.3505] [PMID: 33030278]
[50]
Feng, H.; Zhao, Y.; Yan, W.; Wei, X.; Lin, J.; Jiang, P.; Wang, C.; Li, B. Identification of signature genes and characterizations of tumor immune microenvironment and tumor purity in lung adenocarcinoma based on machine learning. Front. Med., 2022, 9, 843749.
[http://dx.doi.org/10.3389/fmed.2022.843749] [PMID: 35280857]
[51]
Wei, W.; Ji, S. Cellular senescence: Molecular mechanisms and pathogenicity. J. Cell. Physiol., 2018, 233(12), 9121-9135.
[http://dx.doi.org/10.1002/jcp.26956] [PMID: 30078211]
[52]
Witt, D.A.; Donson, A.M.; Amani, V.; Moreira, D.C.; Sanford, B.; Hoffman, L.M.; Handler, M.H.; Levy, J.M.M.; Jones, K.L.; Nellan, A.; Foreman, N.K.; Griesinger, A.M. Specific expression of PD-L1 in RELA-fusion supratentorial ependymoma: Implications for PD-1-targeted therapy. Pediatr. Blood Cancer, 2018, 65(5), e26960.
[http://dx.doi.org/10.1002/pbc.26960] [PMID: 29350470]
[53]
Kythreotou, A.; Siddique, A.; Mauri, F.A.; Bower, M.; Pinato, D.J. Pd-L1. J. Clin. Pathol., 2018, 71(3), 189-194.
[http://dx.doi.org/10.1136/jclinpath-2017-204853] [PMID: 29097600]
[54]
Lu, J.; Zhu, D.; Zhang, X.; Wang, J.; Cao, H.; Li, L. The crucial role of LncRNA MIR210HG involved in the regulation of human cancer and other disease. Clin. Transl. Oncol., 2022, 25(1), 137-150.
[http://dx.doi.org/10.1007/s12094-022-02943-3] [PMID: 36088513]
[55]
Shang, B.; Li, Z.; Li, M.; Jiang, S.; Feng, Z.; Cao, Z.; Wang, H. Silencing LINC01116 suppresses the development of lung adenocarcinoma via the AKT signaling pathway. Thorac. Cancer, 2021, 12(14), 2093-2103.
[http://dx.doi.org/10.1111/1759-7714.14042] [PMID: 34061456]
[56]
Ding, Y.; Liu, J.H. The signature lncRNAs associated with the lung adenocarcinoma patients prognosis. Math. Biosci. Eng., 2020, 17(2), 1593-1603.
[http://dx.doi.org/10.3934/mbe.2020083] [PMID: 32233597]
[57]
Zheng, J.; Zhao, Z.; Wan, J.; Guo, M.; Wang, Y.; Yang, Z.; Li, Z.; Ming, L.; Qin, Z. N-6 methylation-related lncRNA is potential signature in lung adenocarcinoma and influences tumor microenvironment. J. Clin. Lab. Anal., 2021, 35(11), e23951.
[http://dx.doi.org/10.1002/jcla.23951] [PMID: 34558724]
[58]
Ren, J.; Wang, A.; Liu, J.; Yuan, Q. Identification and validation of a novel redox-related lncRNA prognostic signature in lung adenocarcinoma. Bioengineered, 2021, 12(1), 4331-4348.
[http://dx.doi.org/10.1080/21655979.2021.1951522] [PMID: 34338158]