Current Materials Science

Author(s): Zizhan Sun, Xiaoyu Wang, Qianmin Cong, Chenxu Feng, Xu Zhang, Zhengyu Cai, Yong Zhang* and Lizhai Pei*

DOI: 10.2174/2666145417666230831114021

DownloadDownload PDF Flyer Cite As
Facile Synthesis of Dysprosium Oxide/Bismuth Oxide Nanocomposite Electrode Materials with Good Electrocatalytic Performance

Page: [110 - 120] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Benzoic acid is widely applied in the food field, including beverages as the antimicrobial preservative due to its strong inhabitation role to bacteria and yeasts. However, excessive intake of benzoic acid can easily cause abdominal pain and diarrhea and can even result in metabolic diseases. Hence, it is important to seek simple, accurate and sensitive strategies to detect low-trace benzoic acid.

Objective: The aim of this study is to synthesize dysprosium oxide/bismuth oxide nanocomposites using dysprosium sulphate and sodium bismuthate as the raw materials and research the electrochemical sensing properties for the detection of benzoic acid.

Methods: Dysprosium oxide/bismuth oxide nanocomposites were synthesized by a facile hydrothermal route. The dysprosium oxide/bismuth oxide nanocomposites were characterized by X-ray diffraction, electron microscopy, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy.

Results: The dysprosium oxide/bismuth oxide nanocomposites are composed of nearly circular-shaped particles with polycrystalline cubic Dy2O3 and triclinic Bi2O3 phases. The size of the nearly circular-shaped particles is about 50 to 200 nm. The electrons are easier to transfer by the dysprosium oxide/bismuth oxide nanocomposite-modified electrode than the bare electrode. A pair of quasi-reversible cyclic voltammetry (CV) peaks located at -0.155 V and -0.582 V exist in the CV curve of 0.1 M KCl buffer solution containing 2 mM benzoic acid. The nanocomposite-modified electrode shows a linear detection range and detection limit of 0.001-2 mM and 0.18 μM, respectively, for benzoic acid detection.

Conclusion: The dysprosium oxide/bismuth oxide nanocomposite-modified electrode reveals superior electro-catalytic activity towards benzoic acid.

Keywords: Dysprosium oxide/bismuth oxide nanocomposites, electrode materials, electrocatalytic performance, benzoic acid, electron microscopy, L-cysteine.

Graphical Abstract

[1]
qi P, Hong H, Liang X, Liu D. Assessment of benzoic acid levels in milk in China. Food Control, 2009, 20(4), 414-418.
[http://dx.doi.org/10.1016/j.foodcont.2008.07.013]
[2]
Suhr, K.I.; Nielsen, P.V. Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values. Int. J. Food Microbiol., 2004, 95(1), 67-78.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.02.004] [PMID: 15240076]
[3]
Ohtsuki, T.; Sato, K.; Sugimoto, N.; Akiyama, H.; Kawamura, Y. Absolute quantification for benzoic acid in processed foods using quantitative proton nuclear magnetic resonance spectroscopy. Talanta, 2012, 99, 342-348.
[http://dx.doi.org/10.1016/j.talanta.2012.05.062] [PMID: 22967562]
[4]
Shan, D.; Shi, Q.; Zhu, D.; Xue, H. Inhibitive detection of benzoic acid using a novel phenols biosensor based on polyaniline–polyacrylonitrile composite matrix. Talanta, 2007, 72(5), 1767-1772.
[http://dx.doi.org/10.1016/j.talanta.2007.02.007] [PMID: 19071830]
[5]
Woidich, H.; Gnauer, H.; Galinovsky, E. Thin-layer-chromatographic separation of some food preservatives. Z Lebensm Unters F A, 1967, 133, 317-322.
[http://dx.doi.org/10.1007/BF01074570]
[6]
Lin, J.Y.; Huang, W. Simultaneous determination of benzoyl peroxide and benzoic acid content in flour by ultraviolet spectrophotometry. Guangdong Trace Elem Sci, 2008, 15, 52-55.
[http://dx.doi.org/10.1016/B978-012374173-8.50015-6]
[7]
Hamzah, H.H.; Yusof, N.A.; Salleh, A.B.; Bakar, F.A. An optical test strip for the detection of benzoic acid in food. Sensors, 2011, 11(8), 7302-7313.
[http://dx.doi.org/10.3390/s110807302] [PMID: 22164018]
[8]
González, M.; Gallego, M.; Valcárcel, M. Simultaneous gas chromatographic determination of food preservatives following solid-phase extraction. J. Chromatogr. A, 1998, 823(1-2), 321-329.
[http://dx.doi.org/10.1016/S0021-9673(98)00182-4]
[9]
Chen, Y.C.; Jia, C.F.; Wang, J.Y.; Gao, H.L. Detection and resource analysis of benzoic acids in milk by HPLC. Sci Technol Food Ind, 2010, 31, 94-95.
[http://dx.doi.org/10.3724/SP.J.1011.2010.01351]
[10]
Wang, Z.H.; Xia, J.F.; Zhao, F.Y. Determination of benzoic acid in milk by solid-phase extraction and ion chromatography with conductivity detection. Chin. Chem. Lett., 2013, 24(3), 243-245.
[http://dx.doi.org/10.1016/j.cclet.2013.01.048]
[11]
Yang, Y.; Xu, W.; Wu, M.; Mao, J.; Sha, R. Application of E-nose combined with ANN modelling for qualitative and quantitative analysis of benzoic acid in cola-type beverages. J. Food Meas. Charact., 2021, 15(6), 5131-5138.
[http://dx.doi.org/10.1007/s11694-021-01083-6]
[12]
Cai, L.; Dong, J.; Wang, Y.; Chen, X. Thin-film microextraction coupled to surface enhanced Raman scattering for the rapid detection of benzoic acid in carbonated beverages. Talanta, 2018, 178, 268-273.
[http://dx.doi.org/10.1016/j.talanta.2017.09.040] [PMID: 29136821]
[13]
Prapainop, K.; Mekseriwattana, W.; Siangproh, W.; Chailapakul, O.; Songsrirote, K. Successive detection of benzoic acid and total parabens in foodstuffs using mercaptosuccinic acid capped cadmium telluride quantum dots. Food Control, 2019, 96, 508-516.
[http://dx.doi.org/10.1016/j.foodcont.2018.10.009]
[14]
Hassan, M.H.; Khan, R.; Andreescu, S. Advances in electrochemical detection methods for measuring contaminants of emerging concerns. Electrochem. Sci. Adv., 2022, 2(6), e2100184.
[http://dx.doi.org/10.1002/elsa.202100184]
[15]
Hong, S.P.; Mohd-Naim, N.F.; Keasberry, N.A.; Ahmed, M.U. Electrochemical detection of β-lactoglobulin allergen using titanium dioxide/carbon nanochips/gold nanocomposite-based biosensor. Electroanalysis, 2022, 34(4), 684-691.
[http://dx.doi.org/10.1002/elan.202100207]
[16]
Pei, L.; Lin, N.; Wei, T.; Liu, H.; Yu, H. Formation of copper vanadate nanobelts and their electrochemical behaviors for the determination of ascorbic acid. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(6), 2690-2700.
[http://dx.doi.org/10.1039/C4TA05946H]
[17]
Huang, J.; Tao, F.; Sun, Z. A facile synthesis route to BiPr composite nanosheets and sensitive electrochemical detection of l-cysteine. Microchem. J., 2022, 182, 107915.
[http://dx.doi.org/10.1016/j.microc.2022.107915]
[18]
Yanik, S.; Kurt, S.B.; Ari, B.; Demirci, S.; Yilmaz, S. Development of electrochemical sensors for quantitative analysis of methyldopa at modified-GCE and PGE electrodes by voltammetry. J Sci Perspect, 2020, 4, 223-236.
[http://dx.doi.org/10.26900/jsp.4.019]
[19]
López, M.S-P.; López-Ruiz, B. Inhibition biosensor based on calcium phosphate materials for detection of benzoic acid in aqueous and organic media. Electroanalysis, 2011, 23(1), 264-271.
[http://dx.doi.org/10.1002/elan.201000488]
[20]
Lin, N.; Pei, L.; Wei, T.; Liu, H.; Cai, Z. Electrochemical sensor based on glassy carbon electrode modified with copper vanadate nanobelts for detection of benzoic acid. IET Sci. Measur. Technol., 2016, 10(4), 247-252.
[http://dx.doi.org/10.1049/iet-smt.2015.0089]
[21]
Cai, Z.Y.; Pei, L.Z.; Xie, Y.K.; Fan, C.G.; Fu, D.G. Electrochemical determination of benzoic acid using CuGeO 3 nanowire modified glassy carbon electrode. Meas. Sci. Technol., 2013, 24(9), 095701.
[http://dx.doi.org/10.1088/0957-0233/24/9/095701]
[22]
Mangalasseri, A.S.; Mahesh, V.; Mukunda, S. Vibration based energy harvesting performance of magneto-electro-elastic beams reinforced with carbon nanotubes. Adv. Nano Res., 2023, 14, 27-43.
[http://dx.doi.org/10.12989/anr.2023.14.1.027]
[23]
Arshid, E.; Khorasani, M.; Soleimani-Javid, Z.; Amir, S.; Tounsi, A. Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory. Eng. Comput., 2022, 38(S5), 4051-4072.
[http://dx.doi.org/10.1007/s00366-021-01382-y]
[24]
Garg, A.; Aggarwal, P.; Aggarwal, Y. Machine learning models for predicting the compressive strength of concrete containing nano silica. Comput. Concr., 2022, 30, 33-42.
[http://dx.doi.org/10.12989/cac.2022.30.1.033]
[25]
Djilali, N.; Bousahla, A.A.; Kaci, A. Large cylindrical deflection analysis of FG carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT. Steel Compos. Struct., 2022, 42, 779-789.
[http://dx.doi.org/10.12989/scs.2022.42.6.779]
[26]
Huang, Y.; Karami, B.; Shahsavari, D.; Tounsi, A. Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Arch. Civ. Mech. Eng., 2021, 21(4), 139.
[http://dx.doi.org/10.1007/s43452-021-00291-7]
[27]
Zerrouki, R.; Karas, A.; Zidour, M. Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam. Struct. Eng. Mech., 2021, 78, 117-124.
[http://dx.doi.org/10.12989/SEM.2021.78.2.117]
[28]
Heidari, F.; Taheri, K.; Sheybani, M.; Janghorban, M.; Tounsi, A. On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes. Steel Compos. Struct., 2021, 38, 533-545.
[http://dx.doi.org/10.12989/scs.2021.38.5.533]
[29]
Bendenia, N.; Zidour, M.; Bousahla, A.A. Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation. Comput. Concr., 2020, 26, 213-226.
[http://dx.doi.org/10.12989/cac.2020.26.3.213]
[30]
Bourada, F.; Bousahla, A.A.; Tounsi, A. Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation. Comput. Concr., 2020, 25, 485-495.
[http://dx.doi.org/10.12989/CAC.2020.25.6.485]
[31]
Xia, L.Q.; Wang, R.Q.; Chen, G.; Asemi, K.; Tounsi, A. The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity. Adv. Nano Res., 2023, 14, 375-389.
[http://dx.doi.org/10.12989/.2023.14.4.375]
[32]
Kokulnathan, T.; Vishnuraj, R.; Wang, T.J.; Kumar, E.A.; Pullithadathil, B. Heterostructured bismuth oxide/hexagonal-boron nitride nanocomposite: A disposable electrochemical sensor for detection of flutamide. Ecotoxicol. Environ. Saf., 2021, 207, 111276.
[http://dx.doi.org/10.1016/j.ecoenv.2020.111276] [PMID: 32931965]
[33]
Farsi, H.; Moghiminia, S.; Roohi, A.; Hosseini, S.A. Preparation, characterization and electrochemical behaviors of Bi 2 O 3 nanoparticles dispersed in silica matrix. Electrochim. Acta, 2014, 148, 93-103.
[http://dx.doi.org/10.1016/j.electacta.2014.10.040]
[34]
Hu, Q.; Cheng, X.; Zhang, X. One–step solvothermal synthesis of 3D tube–globular Dy2O3 nanostructure for ultra–fast response to humidity. Sens. Actuators B Chem., 2020, 305, 127434.
[http://dx.doi.org/10.1016/j.snb.2019.127434]
[35]
Rajendran, V.; Mekala, R. Effect of pure and REM: (Nd, Ce)-doped Dy2O3 NPs via hydrothermal method and their magnetic, optical, electrochemical, antibacterial and photocatalytic activities. J. Alloys Compd., 2018, 741, 1055-1069.
[http://dx.doi.org/10.1016/j.jallcom.2018.01.086]
[36]
Gopinath, K.; Chinnadurai, M.; Devi, N.P. One-pot synthesis of dysprosium oxide nano-sheets: Antimicrobial potential and cyotoxicity on A549 lung cancer cells. J. Cluster Sci., 2017, 28(1), 621-635.
[http://dx.doi.org/10.1007/s10876-016-1150-4]
[37]
Krishna Chandar, N.; Jayavel, R. Wet chemical synthesis and characterization of pure and cerium doped Dy2O3 nanoparticles. J. Phys. Chem. Solids, 2012, 73(9), 1164-1169.
[http://dx.doi.org/10.1016/j.jpcs.2012.05.009]
[38]
Huang, J.; Cai, Z.; Zhang, Y.; Pei, L. A simple route to synthesize mixed BiPr oxide nanoparticles and polyaniline composites with enhanced L-cysteine sensing properties. J. Electron. Mater., 2023, 52(1), 613-627.
[http://dx.doi.org/10.1007/s11664-022-10033-x]
[39]
Huang, J.; Tao, F.; Li, F. Controllable synthesis of BiPr composite oxide nanowires electrocatalyst for sensitive L-cysteine sensing properties. Nanotechnology, 2022, 33(34), 345704.
[http://dx.doi.org/10.1088/1361-6528/ac7244] [PMID: 35605596]
[40]
Tao, F.; Yu, C.; Huang, J. Synthesis and properties of BiDy composite electrode materials in electrochemical sensors. Mater. Chem. Front., 2022, 6(19), 2880-2893.
[http://dx.doi.org/10.1039/D2QM00298A]
[41]
Wang, X.Y.; Huang, J.F.; Yu, C.H. A facile route to synthesize DyF3/Bi2O3 nanowires and sensitive L-cysteine sensing properties. J. Electrochem. Soc., 2022, 169(7), 076504.
[http://dx.doi.org/10.1149/1945-7111/ac7c3e]
[42]
Lee, J.H.; Cho, E.B. High hydrothermal stability of mesoporous Ni-phyllosilicate spherical particles. Appl. Surf. Sci., 2022, 590, 153114.
[http://dx.doi.org/10.1016/j.apsusc.2022.153114]
[43]
Mikhlin, Y.L.; Borisov, R.V.; Vorobyev, S.A. Synthesis and characterization of nanoscale composite particles formed by 2D layers of Cu–Fe sulfide and Mg-based hydroxide. J. Mater. Chem. A Mater. Energy Sustain., 2022, 10(17), 9621-9634.
[http://dx.doi.org/10.1039/D2TA00877G]
[44]
Monsef, R.; Salavati-Niasari, M.; Masjedi-Arani, M. Hydrothermal synthesis of spinel-perovskite Li–Mn–Fe–Si nanocomposites for electrochemical hydrogen storage. Inorg. Chem., 2022, 61(18), 6750-6763.
[http://dx.doi.org/10.1021/acs.inorgchem.1c03605] [PMID: 35465668]
[45]
Zheng, J.; Zhang, L. Designing 3D magnetic peony flower-like cobalt oxides/g-C3N4 dual Z-scheme photocatalyst for remarkably enhanced sunlight driven photocatalytic redox activity. Chem. Eng. J., 2019, 369, 947-956.
[http://dx.doi.org/10.1016/j.cej.2019.03.131]
[46]
Kannan, V.; Arredondo, M.; Johann, F. Strain dependent microstructural modifications of BiCrO3 epitaxial thin films. Thin Solid Films, 2013, 545, 130-139.
[http://dx.doi.org/10.1016/j.tsf.2013.07.053]
[47]
Gokhale, S.; Ahmed, N.; Mahamuni, S.; Rao, V.J.; Nigavekar, A.S.; Kulkarni, S.K. XPS and XRD investigations of Dy/Si interface. Surf. Sci., 1989, 210(1-2), 85-98.
[http://dx.doi.org/10.1016/0039-6028(89)90104-0]
[48]
Rasouli, H.; Naji, L.; Hosseini, M.G. 3D structured polypyrrole/reduced graphene oxide (PPy/rGO)-based electrode ionic soft actuators with improved actuation performance. New J. Chem., 2018, 42(14), 12104-12118.
[http://dx.doi.org/10.1039/C8NJ00936H]
[49]
Pei, L.; Ma, Y.; Qiu, F.; Lin, F.; Fan, C.; Ling, X. Synthesis of polyaniline/graphene nanocomposites and electrochemical sensing performance for formaldehyde. Curr. Anal. Chem., 2020, 16(4), 493-498.
[http://dx.doi.org/10.2174/1573411014666181115125050]
[50]
Unmüssig, T.; Weltin, A.; Urban, S.; Daubinger, P.; Urban, G.A.; Kieninger, J. Non-enzymatic glucose sensing based on hierarchical platinum micro-/nanostructures. J. Electroanal. Chem. , 2018, 816, 215-222.
[http://dx.doi.org/10.1016/j.jelechem.2018.03.061]
[51]
Ziyatdinova, G.; Kozlova, E.; Budnikov, H. Selective electrochemical sensor based on the electropolymerized p-coumaric acid for the direct determination of l-cysteine. Electrochim. Acta, 2018, 270, 369-377.
[http://dx.doi.org/10.1016/j.electacta.2018.03.102]
[52]
Louhichi, B.; Bensalash, N.; Gadri, A. Electrochemical oxidation of benzoic acid derivatives on boron doped diamond: voltammetric study and galvanostatic electrolyses. Chem. Eng. Technol., 2006, 29(8), 944-950.
[http://dx.doi.org/10.1002/ceat.200500342]
[53]
Montilla, F.; Michaud, P.A.; Morallón, E.; Vázquez, J.L.; Comninellis, C. Electrochemical oxidation of benzoic acid at boron-doped diamond electrodes. Electrochim. Acta, 2002, 47(21), 3509-3513.
[http://dx.doi.org/10.1016/S0013-4686(02)00318-3]
[54]
Souto, R.M.; Rodríguez, J.L.; Fernández-Mérida, L.; Pastor, E. Electrochemical reactions of benzoic acid on platinum and palladium studied by DEMS. Comparison with benzyl alcohol. J. Electroanal. Chem., 2000, 494(2), 127-135.
[http://dx.doi.org/10.1016/S0022-0728(00)00354-5]
[55]
Pei, L.Z.; Ma, Y.; Qiu, F.L.; Lin, F.F.; Fan, C.G.; Ling, X.Z. In-situ synthesis of polynaphthylamine/graphene composites for the electrochemical sensing of benzoic acid. Mater. Res. Express, 2018, 6(1), 015053.
[http://dx.doi.org/10.1088/2053-1591/aae96e]
[56]
Nosal-Wiercińska, A. Electrochemical and thermodynamic study of the electroreduction of Bi(III) ions in the presence of cysteine in solutions of different water activity. J. Electroanal. Chem., 2012, 681, 103-108.
[http://dx.doi.org/10.1016/j.jelechem.2012.06.005]
[57]
Bai, Y.H.; Xu, J.J.; Chen, H.Y. Selective sensing of cysteine on manganese dioxide nanowires and chitosan modified glassy carbon electrodes. Biosens. Bioelectron., 2009, 24(10), 2985-2990.
[http://dx.doi.org/10.1016/j.bios.2009.03.008] [PMID: 19345085]
[58]
Pei, L.; Pei, Y.; Xie, Y.; Fan, C.; Li, D.; Zhang, Q. Formation process of calcium vanadate nanorods and their electrochemical sensing properties. J. Mater. Res., 2012, 27(18), 2391-2400.
[http://dx.doi.org/10.1557/jmr.2012.254]