Thin Ga-doped ZnO Film with Enhanced Dual Visible Lines Emission

Page: [279 - 285] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Introduction: In this study, a simple and facile route was employed to prepare a highly transparent and luminescent ultra-thin gallium doped ZnO film (GZO).

Methods: The thin GZO film has been deposited using the simultaneously ultrasonic vibration and sol-gel spin-spray coating technique. The structural and optical properties of pure and doped thin films were investigated by various methods, such as X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), UV-Vis, and PL spectroscopy.

Results: XRD results indicated that both pure and doped ZnO films had a hexagonal wurtzite structure with (101) preferred orientation. XPS and EDX studies confirmed the incorporation and presence of Ga ions into the ZnO lattice structure. The doped sample showed nearly 90% of transparency, and a strong blue-green emission in the visible region.

Conclusion: The obtained results proved that the prepared thin film could be a novel candidate for optoelectronic applications.

Graphical Abstract

[1]
Miao J, Fan T. Flexible and stretchable transparent conductive graphene-based electrodes for emerging wearable electronics. Carbon 2023; 202: 495-527.
[http://dx.doi.org/10.1016/j.carbon.2022.11.018]
[2]
Ahn K, Kim GH, Kim SJ, et al. Highly conductive p-type transparent conducting electrode with sulfur-doped copper iodide. Chem Mater 2022; 34(23): 10517-27.
[http://dx.doi.org/10.1021/acs.chemmater.2c02603]
[3]
Suthar D, Chuhadiya S, Sharma R. Himanshu, Dhaka MS. An overview on the role of ZnTe as an efficient interface in CdTe thin film solar cells: A review. Mater Adv 2022; 3(22): 8081-107.
[http://dx.doi.org/10.1039/D2MA00817C]
[4]
Ghamsari MS, Alamdari S, Razzaghi D, Arshadi Pirlar M. ZnO nanocrystals with narrow-band blue emission. J Lumin 2019; 205: 508-18.
[http://dx.doi.org/10.1016/j.jlumin.2018.09.064]
[5]
Vafaee M, Sasani Ghamsari M, Radiman S. Highly concentrated zinc oxide nanocrystals sol with strong blueemission. J Lumin 2011; 131(1): 155-8.
[http://dx.doi.org/10.1016/j.jlumin.2010.09.042]
[6]
Alamdari S, Jafar Tafreshi M, Sasani Ghamsari M. Highly stable Ga-doped ZnO/polystyrene nanocomposite film with narrow- band Cyan emission. J Semicond 2022; 43(12): 122301.
[7]
Das HS, Das R, Nandi PK, Biring S, Maity SK. Influence of Ga-doped transparent conducting ZnO thin film for efficiency enhancement in organic light-emitting diode applications. Appl Phys, A Mater Sci Process 2021; 127(4): 225.
[http://dx.doi.org/10.1007/s00339-021-04339-6]
[8]
Efafi B, Sasani Ghamsari M, Majles Ara MH. Sol–gel derived AZO thin film with unusual narrow dual emission. J Lumin 2014; 154: 32-5.
[http://dx.doi.org/10.1016/j.jlumin.2014.03.062]
[9]
Alamdari S, Tafreshi MJ, Ghamsari MS. The effects of indium precursors on the structural, optical and electrical properties of nanostructured thin ZnO films. Mater Lett 2017; 197: 94-7.
[http://dx.doi.org/10.1016/j.matlet.2017.03.113]
[10]
Sasani Ghamsari M, Vafaee M. Sol–gel derived zinc oxide buffer layer for use in random laser media. Mater Lett 2008; 62(12-13): 1754-6.
[http://dx.doi.org/10.1016/j.matlet.2007.09.081]
[11]
Alamdari S, Karkhaneh A, Jafar Tafreshi M, Sasani Ghamsari M. Ultra-thin Hafnium doped ZnO films with enhanced optical transparency and electrical conductivity. Mater Res Express 2019; 6(5): 055020.
[http://dx.doi.org/10.1088/2053-1591/ab0224]
[12]
Alamdari S, Tafreshi MJ, Ghamsari MS. Strong yellow-orange emission from aluminum and Indium co-doped ZnO nanostructures with potential for increasing the color gamut of displays. Appl Phys, A Mater Sci Process 2019; 125(3): 165.
[http://dx.doi.org/10.1007/s00339-019-2451-x]
[13]
Sha R, Basak A, Maity PC, Badhulika S. ZnO nano-structured based devices for chemical and optical sensing applications. Sensors and Actuators Reports 2022; 4: 100098.
[http://dx.doi.org/10.1016/j.snr.2022.100098]
[14]
Raha S, Ahmaruzzaman M. ZnO nanostructured materials and their potential applications: Progress, challenges and perspectives. Nanoscale Adv 2022; 4(8): 1868-925.
[http://dx.doi.org/10.1039/D1NA00880C] [PMID: 36133407]
[15]
Rodriguez-Davila RA, Chapman RA, Shamsi ZH, Castillo SJ, Young CD, Quevedo-Lopez MA. Low temperature, highly stable ZnO thin-film transistors. Microelectron Eng 2023; 279: 112063.
[http://dx.doi.org/10.1016/j.mee.2023.112063]
[16]
Badgujar AC, Yadav BS, Jha GK, Dhage SR. Room temperature sputtered aluminum-doped ZnO thin film transparent electrode for application in solar cells and for low- band-gap optoelectronic devices. ACS Omega 2022; 7(16): 14203-10.
[http://dx.doi.org/10.1021/acsomega.2c00830] [PMID: 35559177]
[17]
Koralli P, Fiat Varol S, Mousdis G, Mouzakis DE, Merdan Z, Kompitsas M. Comparative studies of undoped/Al-doped/In-doped ZnO transparent conducting oxide thin films in optoelectronic applications. Chemosensors (Basel) 2022; 10(5): 162.
[http://dx.doi.org/10.3390/chemosensors10050162]
[18]
Caballero-Güereca CE, Cruz MRA, Luévano-Hipólito E, Torres-Martínez LM. Transparent ZnO thin films deposited by dip-coating technique: Analyses of their hydrophobic properties. Surf Interfaces 2023; 37: 102705.
[http://dx.doi.org/10.1016/j.surfin.2023.102705]
[19]
González S, Vescio G, Frieiro JL, et al. Inkjet-printed p-NiO/n-ZnO heterojunction diodes for photodetection applications. Adv Mater Interfaces 2023; 10(15): 2300035.
[http://dx.doi.org/10.1002/admi.202300035]
[20]
Alamdari S, Ghamsari MS, Tafreshi MJ. Optimization of Gallium concentration to improve the performance of ZnO nanopowders for nanophotonic applications. Ceram Int 2020; 46(4): 4484-92.
[http://dx.doi.org/10.1016/j.ceramint.2019.10.175]
[21]
Alamdari S, Sasani Ghamsari M, Majles Ara MH, Efafi B. Highly concentrated IZO colloidal nanocrystals with blue/orange/red three-colors emission. Mater Lett 2017; 8: 202-4.
[22]
Jo G, Koh JH. Laser annealing effects on Ga dopants for ZnO thin films for transparent conducting oxide applications. Ceram Int 2019; 45(5): 6190-7.
[http://dx.doi.org/10.1016/j.ceramint.2018.12.096]
[23]
Alanazi TI. Current spray-coating approaches to manufacture perovskite solar cells. Results Phys 2023; 44: 106144.
[http://dx.doi.org/10.1016/j.rinp.2022.106144]
[24]
Soltani-kordshuli F, Zabihi F, Eslamian M. Graphene-doped PEDOT:PSS nanocomposite thin films fabricated by conventional and substrate vibration-assisted spray coating (SVASC). Eng Sci Tech Int J 2016; 19(3): 1216-23.
[http://dx.doi.org/10.1016/j.jestch.2016.02.003]
[25]
Rahimzadeh A, Eslamian M. Stability of thin liquid films subjected to ultrasonic vibration and characteristics of the resulting thin solid films. Chem Eng Sci 2017; 158: 587-98.
[http://dx.doi.org/10.1016/j.ces.2016.11.006]
[26]
Zabihi F, Eslamian M. Substrate vibration-assisted spray coating (SVASC): Significant improvement in nano-structure, uniformity, and conductivity of PEDOT:PSS thin films for organic solar cells. J Coat Technol Res 2015; 12(4): 711-9.
[http://dx.doi.org/10.1007/s11998-015-9682-3]
[27]
Mi H, Chen T, Deng Z, Li S, Liu J, Liu D. Microstructure and mechanical properties of TiC/TiB composite ceramic coatings in-situ synthesized by ultrasonic vibration-assisted laser cladding. Coatings 2022; 12(1): 99.
[http://dx.doi.org/10.3390/coatings12010099]
[28]
Zabihi F, Ahmadian-Yazdi MR, Eslamian M. Photocatalytic graphene-TiO2 thin films fabricated by low-temperature ultrasonic vibration-assisted spin and spray coating in a sol-gel process. Catalysts 2017; 7(5): 136.
[http://dx.doi.org/10.3390/catal7050136]
[29]
Ponja SD, Sathasivam S, Parkin IP, Carmalt CJ. Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition. Sci Rep 2020; 10(1): 638.
[http://dx.doi.org/10.1038/s41598-020-57532-7] [PMID: 31959884]
[30]
Kuo SY, Chen WC, Lai FI, et al. Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films. J Cryst Growth 2006; 287(1): 78-84.
[http://dx.doi.org/10.1016/j.jcrysgro.2005.10.047]
[31]
Rodrigues J, Ben Sedrine N, Correia MR, Monteiro T. Photoluminescence investigations of ZnO micro/nanostructures. Mater Today Chem 2020; 16: 100243.
[http://dx.doi.org/10.1016/j.mtchem.2020.100243]
[32]
Musavi E, Khanlary M, Khakpour Z. Red-orange photoluminescence emission of sol-gel dip-coated prepared ZnO and ZnO:Al nano-crystalline films. J Lumin 2019; 216: 116696.
[http://dx.doi.org/10.1016/j.jlumin.2019.116696]
[33]
Kabir A, Bouanane I, Boulainine D, Zerkout S, Schmerber G, Boudjema B. Photoluminescence study of deep level defects in ZnO thin films. Silicon 2019; 11(2): 837-42.
[http://dx.doi.org/10.1007/s12633-018-9876-2]
[34]
Mondal P. Effect of Oxygen vacancy induced defect on the optical emission and excitonic lifetime of intrinsic ZnO. Opt Mater 2019; 98: 109476.
[http://dx.doi.org/10.1016/j.optmat.2019.109476]
[35]
Zhang M, Averseng F, Krafft JM, Borghetti P, Costentin G, Stankic S. Controlled formation of native defects in ultrapure ZnO for the assignment of green emissions to oxygen vacancies. J Phys Chem C 2020; 124(23): 12696-704.
[http://dx.doi.org/10.1021/acs.jpcc.0c01078]