Research Progress of Tamarixetin and its Glycosides

Page: [689 - 703] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Tamarixetin and its glycosides are widely distributed in natural plants, and they are also natural flavonoid derivatives of quercetin. Its main pharmacological effects include antioxidant, antiinflammatory, antiviral, anticancer, cardiovascular effects, etc. The pharmacokinetics showed that the distribution of direct absorption differed from that of biosynthesis. At the same time, research shows that tamarixetin is safe to use because it has little self-toxicity. In this paper, 181 articles on tamarixetin published from 1976 to 2023 are obtained from PubMed, China Knowledge Base Database, Wanfang Data, and other electronic databases. Tamarixetin is searched based on keywords, and 121 articles remain. Transformation synthesis, pharmacokinetics, pharmacological action, and structureactivity relationship of tamarixetin were reviewed.

Graphical Abstract

[1]
Bors, W.; Saran, M. Radical scavenging by flavonoid antioxidants. Free Radic. Res. Commun., 1987, 2(4-6), 289-294.
[http://dx.doi.org/10.3109/10715768709065294] [PMID: 3504810]
[2]
Ge, L.; Hao, W.; Ting, W.; Cai-wen, Y.; Shou-xun, Z. Chemical constituents of the auricles of Ainsliaea fragrans Champ. Chin. J. Nat. Med., 2007, (04), 266-268.
[3]
Guang-yong, C.; Xu-bing, C.; Guang-ming, L. Study on chemical constituents of laggera pterodonta. J. Anhui Agri., 2012, 40(04), 2022-2023.
[4]
Gui-fang, X. Studies on physioligical character of adversity resistance in Lysimachia; Hunan Agricultural University, 2007.
[5]
Jiang, Z.; Chen, Y.; Bao, Y. Population genetic structure of tamarix chinensis in the yellow river delta, china. Plant Syst. Evol., 2011, 298, 147-153.
[http://dx.doi.org/10.1007/s00606-011-0532-1]
[6]
Yuan, J.Q.; Yang, J.S.; Miao, J.H. Studies on flavonoids of Eupatorium odoratum L. Zhong Yao Cai, 2007, 30(6), 657-660.
[PMID: 17918432]
[7]
KalamUrfi. M.; Mujahid, M.; Khalid, M.; Khan, M. Tamarix gallica: For traditional uses, phytochemical and pharmacological potentials. J. Chem. Pharm. Res., 2016.
[8]
Klimek, B. Hydroxycinnamoyl ester glycosides and saponins from flowers of Verbascum phlomoides. Phytochemistry, 1996, 43(6), 1281-1284.
[http://dx.doi.org/10.1016/S0031-9422(96)00446-3] [PMID: 8987909]
[9]
Liang-jie, Y.; Li-qiong, X.; Dong-liang, G.; Wen-liang, Y. Chemical constituents from the overground parts of Karelinia caspia. Chinese Trad. Plant Med., 2019, 41(06), 1303-1307.
[10]
Ruibi, W.; Yuxi, P.; Quan, Y.; Lifen, W. Advance on flavonoids in Blumea balsamifera DC. Guangdong Yaoxueyuan Xuebao, 2014, 30(01), 123-127.
[11]
Rui-tong, Y. Chemical constituents of vernonia cumingiana benth. Nat. Prod. Res. Dev., 2013, 25(B12)
[12]
Shi-hui, S.; An-jun, D.; Zhi-hong, L.; Hai-lin, Q. Studielaf. Int. Trad. Chin. Med., 2008, (02), 158-160.
[13]
Sugimoto, S.; Yamano, Y.; Khalil, H.E.; Otsuka, H.; Kamel, M.S.; Matsunami, K. Chemical structures of constituents from the leaves of Polyscias balfouriana. J. Nat. Med., 2017, 71(3), 558-563.
[http://dx.doi.org/10.1007/s11418-017-1081-x] [PMID: 28251520]
[14]
Xiao-qi, L.; Yang, Z.; Min, X.; Ying-jun, Z. Flavonoids from the twigs of thetibetian medicine myricaria germanica. Nat. Prod. Res. Dev., 2011, 23(04), 596-599.
[15]
Zong—hail, X.; Hong—xin, W.; Xiao-yi, W.; Shi—xi, F. Flavonoids from Lespedeza davurica. Acta Bot.Boreal., 2010, 30(07), 1485-1489.
[16]
Xun, T.; Xiao-qin, L.; Yong-peng, S.; Qian-ru, H.; Yang, Z. Study on the antioxidation activity of flavonoids in Myricaria germanica. Huaxi Yaoxue Zazhi, 2015, 30(01), 30-32.
[17]
Hui-qing, Y.; Chun-xun, Z. Studies on the chemical constituents of Cynanchum thesioides. Acta. Pharmaceutica. Sinica., 1992, 12, 739-741.
[18]
Jian, L.; Li, C.; Bin, L. Study on the chemical consitituents of Galium aparine L. J. Int. Pharmaceut. Res., 2010, 37(05), 387-389.
[19]
Jing—quan, Y.; Xiao—lei, Z.; Shuo, W. Chemical constituents from Illicium verum. Zhongchengyao, 2010, 32(12), 2123-2126.
[20]
Kapusta, I.; Janda, B.; Szajwaj, B.; Stochmal, A.; Piacente, S.; Pizza, C.; Franceschi, F.; Franz, C.; Oleszek, W. Flavonoids in horse chestnut (Aesculus hippocastanum) seeds and powdered waste water byproducts. J. Agric. Food Chem., 2007, 55(21), 8485-8490.
[http://dx.doi.org/10.1021/jf071709t] [PMID: 17867637]
[21]
Lei, K. Chemical constituents from Rourea m icrophylla. Pharmaceut. Clin. Res., 2008, (05), 345-347.
[22]
Lin, M.; Rongfei, Z.; Shule, Y.; Zhengfeng, W.; Shouxun, Z.; Lei, W.; Wencai, Y.; Jian, Z.; Zhiqi, Y. Chemicai constituents of fructus gleditsiae abnormalis. Zhongguo Yaoke Daxue Xuebao, 2015, 46(02), 188-193.
[23]
Liu-sheng, C.; Xiao-xin, L.; Zi-you, C.; Li-hua, L. Chemical constituents from Tamarix chinensis. Chin. Tradit. Herbal Drugs, 2014, 45(13), 1829-1833.
[24]
Tomás-Barberán, F.A.; Iniesta-Sanmartín, E.; Ferreres, F.; Tomas-Lorente, F.; Trowitzsch-Kienastt, W.; Wray, V. Trans-coniferyl alcohol 4-o-sulphate and flavonoid sulphates from some Tamarix species. Phytochemistry, 1990, 29(9), 3050-3051.
[http://dx.doi.org/10.1016/0031-9422(90)87140-P]
[25]
Yi-bo, P.; Yang, L.; Na, L.; Yu-qing, L.; Yi, X. Separation and determination of tamarix prime -3 -O -rutinoside and rutin in Pittosporum. Illicioides Mak. J. TCM Univ. Hunan; , 2012, 32, pp. (07)45-49.
[26]
Manach, C.; Morand, C.; Demigné, C.; Texier, O.; Régérat, F.; Rémésy, C. Bioavailability of rutin and quercetin in rats. FEBS Lett., 1997, 409(1), 12-16.
[http://dx.doi.org/10.1016/S0014-5793(97)00467-5] [PMID: 9199494]
[27]
Prakash, P.; Ramesh, P.P.; Jae, K.S. Regiospecific biosynthesis of tamarixetin derivatives in Escherichia coli. Biochem. Eng. J., 1997, 133, 113-121.
[28]
Parajuli, P.; Pandey, R.P.; Trang, N.T.H.; Chaudhary, A.K.; Sohng, J.K. Synthetic sugar cassettes for the efficient production of flavonol glycosides in Escherichia coli. Microb. Cell Fact., 2015, 14(1), 76.
[http://dx.doi.org/10.1186/s12934-015-0261-1] [PMID: 26051114]
[29]
Park, H.J.; Lee, S.J.; Cho, J.; Gharbi, A.; Han, H.D.; Kang, T.H.; Kim, Y.; Lee, Y.; Park, W.S.; Jung, I.D.; Park, Y.M. Tamarixetin exhibits anti-inflammatory activity and prevents bacterial sepsis by increasing IL-10 production. J. Nat. Prod., 2018, 81(6), 1435-1443.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00155] [PMID: 29851490]
[30]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[31]
Liu, X.; Raghuvanshi, R.; Ceylan, F.D.; Bolling, B.W. Quercetin and its metabolites inhibit recombinant human angiotensin-converting enzyme 2 (ACE2) activity. J. Agric. Food Chem., 2020, 68(47), 13982-13989.
[http://dx.doi.org/10.1021/acs.jafc.0c05064] [PMID: 33179911]
[32]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[33]
Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, 367(6485), 1444-1448.
[http://dx.doi.org/10.1126/science.abb2762] [PMID: 32132184]
[34]
Che Abd Aziz, F.I.; Ahmad Fuad, F.A.; Tanbin, S. Virtual screening and in silico interactions studies for potential antivirals and diagnostics against the spike protein from the novel coronavirus SARS-Cov-2. IOP Conf. Series Mater. Sci. Eng., 2021, 1192(1), 012025.
[http://dx.doi.org/10.1088/1757-899X/1192/1/012025]
[35]
Blasa, M.; Angelino, D.; Gennari, L.; Ninfali, P. The cellular antioxidant activity in red blood cells (CAA-RBC): A new approach to bioavailability and synergy of phytochemicals and botanical extracts. Food Chem., 2011, 125(2), 685-691.
[http://dx.doi.org/10.1016/j.foodchem.2010.09.065]
[36]
Das, S.; Majumder, T.; Sarkar, A.; Mukherjee, P.; Basu, S. Flavonoids as BACE1 inhibitors: QSAR modelling, screening and in vitro evaluation. Int. J. Biol. Macromol., 2020, 165(Pt A), 1323-1330.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.232] [PMID: 33010267]
[37]
Fazilatun, N.; Nornisah, M.; Zhari, I. Superoxide radical scavenging properties of extracts and flavonoids isolated from the leaves of blumea balsamifera. Pharm. Biol., 2005, 43(1), 15-20.
[http://dx.doi.org/10.1080/13880200590903264]
[38]
Fiorani, M.; Accorsi, A. Dietary flavonoids as intracellular substrates for an erythrocyte trans-plasma membrane oxidoreductase activity. Br. J. Nutr., 2005, 94(3), 338-345.
[http://dx.doi.org/10.1079/BJN20051504] [PMID: 16176603]
[39]
Harborne, J.B. Topics in flavonoid chemistry and biochemistry: Edited by L. Farkas, M. Gabor and F. Kallay; Elsevier, Amsterdam, 1975, 286, p. $29.95. Phytochemistry 1976, 15, 1571
[40]
McPhail, D.B.; Hartley, R.C.; Gardner, P.T.; Duthie, G.G. Kinetic and stoichiometric assessment of the antioxidant activity of flavonoids by electron spin resonance spectroscopy. J. Agric. Food Chem., 2003, 51(6), 1684-1690.
[http://dx.doi.org/10.1021/jf025922v] [PMID: 12617605]
[41]
von Moltke, L.L.; Weemhoff, J.L.; Bedir, E.; Khan, I.A.; Harmatz, J.S.; Goldman, P.; Greenblatt, D.J. Inhibition of human cytochromes P450 by components of Ginkgo biloba. J. Pharm. Pharmacol., 2010, 56(8), 1039-1044.
[http://dx.doi.org/10.1211/0022357044021] [PMID: 15285849]
[42]
Nessa, F.; Ismail, Z.; Mohamed, N.; Haris, M.R.H.M. Free radical-scavenging activity of organic extracts and of pure flavonoids of Blu-mea balsamifera DC leaves. Food Chem., 2004, 88(2), 243-252.
[http://dx.doi.org/10.1016/j.foodchem.2004.01.041]
[43]
Sultanova, N.; Makhmoor, T.; Abilov, Z.A.; Parween, Z.; Omurkamzinova, V.B. ur-Rahman, A.; Choudhary, M.I. Antioxidant and antimicrobial activities of Tamarix ramosissima. J. Ethnopharmacol., 2001, 78(2-3), 201-205.
[http://dx.doi.org/10.1016/S0378-8741(01)00354-3] [PMID: 11694365]
[44]
Wolfe, K.L.; Liu, R.H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem., 2007, 55(22), 8896-8907.
[http://dx.doi.org/10.1021/jf0715166] [PMID: 17902627]
[45]
Yagi, A.; Uemura, T.; Okamura, N.; Haraguchi, H.; Imoto, T.; Hashimoto, K. Antioxidative sulphated flavonoids in leaves of Polygonum hydropiper. Phytochemistry, 1994, 35(4), 885-887.
[http://dx.doi.org/10.1016/S0031-9422(00)90632-0]
[46]
Yong, H.; Ya-nan, L.; Xia, L.; Xiao-jiang, H.; Wan-xia, Y.; Wei, G. Study on the flavonoids in blumea balsamifera DC. and their antioxidant activity as well as α-glucosidase inhibitory activity. Natural Prod. Res. Develop., 2018, 30(11), 1898-1903.
[47]
Zhang, C-X.; Lin, C-Z.; Wu, A-Z.; Zhong, Y.; Wang, Y-M.; Peng, G-T.; Su, X-J.; Liu, B-X.; Deng, Y.; Chen, C. Flavonoids from psychotria serpens L., a herbal medicine with anti-cancer activity. J. Cancer Res. Updates, 2015, 4, 60-64.
[48]
Gokaslan, L.; Rao, J.S.; Giri, D.K.; Kyritsis, A.P.; Ziya, B.B.; Aggarwal, S.; Majumder, S.K.; Chintala, R. Induction of matrix metalloproteinase-9 requires a polymerized actin cytoskeleton in human malignant glioma cells. J. Biol. Chem., 2018, 273(22), 13545-13551.
[49]
Adachi, S.; Kondo, S.; Sato, Y.; Yoshizawa, F.; Yagasaki, K. Anti-hyperuricemic effect of isorhamnetin in cultured hepatocytes and model mice: Structure–activity relationships of methylquercetins as inhibitors of uric acid production. Cytotechnology, 2019, 71(1), 181-192.
[http://dx.doi.org/10.1007/s10616-018-0275-8] [PMID: 30603920]
[50]
X. F. A.; Feng, Y. B.; Guo, L. A. Tissue distribution study of tamarixetin and kaempferide in rats. Chin. J. Modern Appl. Pharma., 2012, 29(9), 845-848.
[51]
Xu, F.; Guan, H.; Feng, Y.; Yan, B. Determination of tamarixetin and kaempferide in rat plasma and urine by high-performance liquid chromatography. Zhurnal Analiticheskoj Khimii, 2014, 69(6), 636-644.
[52]
Erlund, I.; Kosonen, T.; Alfthan, G.; Mäenpää, J.; Perttunen, K.; Kenraali, J.; Parantainen, J.; Aro, A. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur. J. Clin. Pharmacol., 2000, 56(8), 545-553.
[http://dx.doi.org/10.1007/s002280000197] [PMID: 11151743]
[53]
Morand, C.; Manach, C.; Crespy, V.; Remesy, C. Respective bioavailability of quercetin aglycone and its glycosides in a rat model. Biofactors, 2000, 12(1-4), 169-174.
[http://dx.doi.org/10.1002/biof.5520120127] [PMID: 11216481]
[54]
Cermak, R.; Vujicic, Z.; Scharrer, E.; Wolfram, S. The impact of different flavonoid classes on colonic CI− secretion in Rats11 abbreviations: Gt tissue conductance; and Isc short-circuit current. Biochem. Pharmacol., 2001, 62(8), 1145-1151.
[http://dx.doi.org/10.1016/S0006-2952(01)00758-4] [PMID: 11597584]
[55]
Hubbard, G.P.; Wolffram, S.; Lovegrove, J.A.; Gibbins, J.M. Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen‐stimulated platelet activation pathway in humans. J. Thromb. Haemost., 2004, 2(12), 2138-2145.
[http://dx.doi.org/10.1111/j.1538-7836.2004.01067.x] [PMID: 15613018]
[56]
Harwood, M.; Danielewska-Nikiel, B.; Borzelleca, J.F.; Flamm, G.W.; Williams, G.M.; Lines, T.C. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem. Toxicol., 2007, 45(11), 2179-2205.
[http://dx.doi.org/10.1016/j.fct.2007.05.015] [PMID: 17698276]
[57]
Wright, B.; Gibson, T.; Spencer, J.; Lovegrove, J.A.; Gibbins, J.M. Platelet-mediated metabolism of the common dietary flavonoid, quercetin. PLoS One, 2010, 5(3), e9673.
[http://dx.doi.org/10.1371/journal.pone.0009673] [PMID: 20300638]
[58]
Wein, S.; Beyer, B.; Zimmermann, B.F.; Blank, R.H.; Wolffram, S. Bioavailability of quercetin from onion extracts after intraruminal application in cows. J. Agric. Food Chem., 2018, 66(39), 10188-10192.
[http://dx.doi.org/10.1021/acs.jafc.8b03049] [PMID: 30207714]
[59]
Eric Wei Chiang, C.; Ying Ki, N.; Chia Yee, T.; Larsen, A. K.; Siu Kuin, W.; Hung Tuck, C. Diosmetin and tamarixetin (methylated flavonoids): A review on their chemistry, sources, pharmacology, and anticancer properties. J. Appl. Pharmaceut. Sci., 2021, 11(3), 022-028.
[60]
Ameho, C.K.; Chen, C.Y.O.; Smith, D.; Sánchez-Moreno, C.; Milbury, P.E.; Blumberg, J.B. Antioxidant activity and metabolite profile of quercetin in vitamin-E-depleted rats. J. Nutr. Biochem., 2008, 19(7), 467-474.
[http://dx.doi.org/10.1016/j.jnutbio.2007.06.004] [PMID: 17904346]
[61]
Dragoni, S.; Gee, J.; Bennett, R.; Valoti, M.; Sgaragli, G. Red wine alcohol promotes quercetin absorption and directs its metabolism towards isorhamnetin and tamarixetin in rat intestine in vitro. Br. J. Pharmacol., 2006, 147(7), 765-771.
[http://dx.doi.org/10.1038/sj.bjp.0706662] [PMID: 16444288]
[62]
Fu-quan, X.; Yuan-yuan, F.; Bin-lun, Y. Detection of tamarixetin and kaempferide in different tissues by high-performance liquid chromatography in tamarixetin and kaempferide treated rats. J. Med. Plants Res., 2014, 8(18), 664-668.
[http://dx.doi.org/10.5897/JMPR11.1108]
[63]
Shen, J.; Jia, Q.; Huang, X.; Yao, G.; Ma, W.; Chang, Y.; Ouyang, H.; He, J. Study on pharmacokinetic and bioavailability of tamarixetin after intravenous and oral administration to rats. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-7.
[http://dx.doi.org/10.1155/2019/6932053] [PMID: 31885660]
[64]
Berger, L.M.; Wein, S.; Blank, R.; Metges, C.C.; Wolffram, S. Bioavailability of the flavonol quercetin in cows after intraruminal application of quercetin aglycone and rutin. J. Dairy Sci., 2012, 95(9), 5047-5055.
[http://dx.doi.org/10.3168/jds.2012-5439] [PMID: 22916908]
[65]
Gohlke, A.; Ingelmann, C.J.; Nürnberg, G.; Starke, A.; Wolffram, S.; Metges, C.C. Bioavailability of quercetin from its aglycone and its glucorhamnoside rutin in lactating dairy cows after intraduodenal administration. J. Dairy Sci., 2013, 96(4), 2303-2313.
[http://dx.doi.org/10.3168/jds.2012-6234] [PMID: 23403185]
[66]
Maciej, J.; Schäff, C.T.; Kanitz, E.; Tuchscherer, A.; Bruckmaier, R.M.; Wolffram, S.; Hammon, H.M. Bioavailability of the flavonol quercetin in neonatal calves after oral administration of quercetin aglycone or rutin. J. Dairy Sci., 2015, 98(6), 3906-3917.
[http://dx.doi.org/10.3168/jds.2015-9361] [PMID: 25795488]
[67]
Claudine; Manach; Odile, Dietary quercetin is recovered in rat plasma as conjugated derivatives of isorhamnetin and quercetin. J. Nutr. Biochem., 1996.
[68]
Paulke, A.; Schubert-Zsilavecz, M.; Wurglics, M. Determination of St. John’s wort flavonoid-metabolites in rat brain through high performance liquid chromatography coupled with fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2006, 832(1), 109-113.
[http://dx.doi.org/10.1016/j.jchromb.2005.12.043] [PMID: 16434241]
[69]
Bandaruk, Y.; Mukai, R.; Kawamura, T.; Nemoto, H.; Terao, J. Evaluation of the inhibitory effects of quercetin-related flavonoids and tea catechins on the monoamine oxidase-A reaction in mouse brain mitochondria. J. Agric. Food Chem., 2012, 60(41), 10270-10277.
[http://dx.doi.org/10.1021/jf303055b] [PMID: 23009399]
[70]
Nicolini, F.; Burmistrova, O.; Marrero, M.T.; Torres, F.; Hernández, C.; Quintana, J.; Estévez, F. Induction of G 2 /M phase arrest and apoptosis by the flavonoid tamarixetin on human leukemia cells. Mol. Carcinog., 2014, 53(12), 939-950.
[http://dx.doi.org/10.1002/mc.22055] [PMID: 23765509]
[71]
Rangel-Ordóñez, L.; Nöldner, M.; Schubert-Zsilavecz, M.; Wurglics, M. Plasma levels and distribution of flavonoids in rat brain after single and repeated doses of standardized Ginkgo biloba extract EGb 761®. Planta Med., 2010, 76(15), 1683-1690.
[http://dx.doi.org/10.1055/s-0030-1249962] [PMID: 20486074]
[72]
Guo, Y.; Mah, E.; Davis, C.G.; Jalili, T.; Ferruzzi, M.G.; Chun, O.K.; Bruno, R.S. Dietary fat increases quercetin bioavailability in overweight adults. Mol. Nutr. Food Res., 2013, 57(5), 896-905.
[http://dx.doi.org/10.1002/mnfr.201200619] [PMID: 23319447]
[73]
Nishijima, T.; Takida, Y.; Saito, Y.; Ikeda, T.; Iwai, K. Simultaneous ingestion of high-methoxy pectin from apple can enhance absorption of quercetin in human subjects. Br. J. Nutr., 2015, 113(10), 1531-1538.
[http://dx.doi.org/10.1017/S0007114515000537] [PMID: 25865751]
[74]
Su-yun, L.; Zheng, L.; Jing-lai, L.; Weina, G.; Zhen-qing, Z.; Chang-jiang, G. The simultaneous determination of quercitrin,quercetin and its methylated metabolites by high performance liquid chromatography-mass spectrometry. Ying Yang Xue Bao, 2010, 32(06), 603-607.
[75]
Su-yun, L. Role of glucose transporter 1 and glucose transporter 2 in the transmembrane uptake of quercitrin and isoquercitrin. Chin. J. Pharm. Toxicol., 2018, 3203, 192-200.
[76]
Wang, L.G.; Liu, X.M.; Kreis, W.; Budman, D.R. The effect of antimicrotubule agents on signal transduction pathways of apoptosis: A review. Cancer Chemother. Pharmacol., 1999, 44(5), 355-361.
[http://dx.doi.org/10.1007/s002800050989] [PMID: 10501907]
[77]
Moalin, M.; van Strijdonck, G.P.F.; Bast, A.; Haenen, G.R.M.M. Competition between ascorbate and glutathione for the oxidized form of methylated quercetin metabolites and analogues: Tamarixetin, 4'O-methylquercetin, has the lowest thiol reactivity. J. Agric. Food Chem., 2012, 60(36), 9292-9297.
[http://dx.doi.org/10.1021/jf302068v] [PMID: 22860763]
[78]
Lemmens, K.; Vrolijk, M.; Bouwman, F.; van der Vijgh, W.; Bast, A.; Haenen, G. The minor structural difference between the antioxidants quercetin and 4'O-methylquercetin has a major impact on their selective thiol toxicity. Int. J. Mol. Sci., 2014, 15(5), 7475-7484.
[http://dx.doi.org/10.3390/ijms15057475] [PMID: 24786288]
[79]
Mohamed, S.M.; Hassanein, E.H.M.; Ross, S.A.; Mohamed, N.M. Phytoconstituents from Adenanthera pavonina L. as antioxidants and inhibitors of inducible TNF-α production in BV2 cells. Nat. Prod. Res., 2022, 36(24), 6267-6278.
[http://dx.doi.org/10.1080/14786419.2022.2027938] [PMID: 35075960]
[80]
Pan, S.; Lee, E.; Ju, Lee Y.; Jin, M.; Lee, E. Suppressive effect of tamarixetin, isolated from Inula japonica, on degranulation and eicosanoid production in bone marrow-derived mast cells. Allergol. Immunopathol., 2021, 49(3), 42-49.
[http://dx.doi.org/10.15586/aei.v49i3.75] [PMID: 33938187]
[81]
Wang, L.; Wang, Y.; Yang, W.; He, X.; Xu, S.; Liu, X.; He, Y.; Hu, Q.; Yuan, D.; Jin, T. Network pharmacology and molecular docking analysis on mechanisms of Tibetan Hongjingtian (Rhodiola crenulata) in the treatment of COVID-19. J. Med. Microbiol., 2021, 70(7), 001374.
[http://dx.doi.org/10.1099/jmm.0.001374] [PMID: 34313585]
[82]
Darsandhari, S.; Dhakal, D.; Shrestha, B.; Lee, S.; Jung, N.; Jung, H.J.; Sohng, J.K. Biosynthesis of bioactive tamarixetin in recombinant Escherichia coli. Biotechnol. Appl. Biochem., 2021, 68(3), 531-537.
[http://dx.doi.org/10.1002/bab.1958] [PMID: 32430989]
[83]
Shaji, S.K. G, D.; Sunilkumar, D.; Pandurangan, N.; Kumar, G.B.; Nair, B.G. Nuclear factor-κB plays an important role in Tamarixetin-mediated inhibition of matrix metalloproteinase-9 expression. Eur. J. Pharmacol., 2021, 893, 173808.
[http://dx.doi.org/10.1016/j.ejphar.2020.173808] [PMID: 33345858]
[84]
Sak, K.; Lust, H.; Kase, M.; Jaal, J. Cytotoxic action of methylquercetins in human lung adenocarcinoma cells. Oncol. Lett., 2018, 15(2), 1973-1978.
[PMID: 29399199]
[85]
Sung, S.H.; Kim, J.W.; Yang, H.; Cho, N.; Kim, B.; Kim, Y.C. Hepatoprotective constituents of Firmiana simplex stem bark against ethanol insult to primary rat hepatocytes. Pharmacogn. Mag., 2015, 11(41), 55-60.
[http://dx.doi.org/10.4103/0973-1296.149704] [PMID: 25709211]
[86]
Xu, J.; Cai, X.; Teng, S.; Lu, J.; Zhou, Y.; Wang, X.; Meng, Z. The pro-apoptotic activity of tamarixetin on liver cancer cells via regulation mitochondrial apoptotic pathway. Appl. Biochem. Biotechnol., 2019, 189(2), 647-660.
[http://dx.doi.org/10.1007/s12010-019-03033-x] [PMID: 31093908]
[87]
Yannai, S.; Day, A.J.; Williamson, G.; Rhodes, M.J.C. Characterization of flavonoids as monofunctional or bifunctional inducers of quinone reductase in murine hepatoma cell lines. Food Chem. Toxicol., 1998, 36(8), 623-630.
[http://dx.doi.org/10.1016/S0278-6915(98)00022-2] [PMID: 9734712]
[88]
Tan, K.W.; Li, Y.; Paxton, J.W.; Birch, N.P.; Scheepens, A. Identification of novel dietary phytochemicals inhibiting the efflux transporter breast cancer resistance protein (BCRP/ABCG2). Food Chem., 2013, 138(4), 2267-2274.
[http://dx.doi.org/10.1016/j.foodchem.2012.12.021] [PMID: 23497885]
[89]
Shaji, S.K.; Drishya, G.; Sunilkumar, D.; Suravajhala, P.; Kumar, G.B.; Nair, B.G. Systematic understanding of anti-tumor mechanisms of Tamarixetin through network and experimental analyses. Sci. Rep., 2022, 12(1), 3966.
[http://dx.doi.org/10.1038/s41598-022-07087-6] [PMID: 35273218]
[90]
Lemoui, R.; Benyahia, S.; Noman, L.; Bencherchar, I.; Oke-Altuntas, F.; Rebbas, K.; Benayache, S.; Benayache, F.; Demirtas, I. Isolation of phytoconstituents and evaluation of biological potentials of Berberis hispanica from Algeria. Bangladesh J. Pharmacol., 2018, 13(2), 179-186.
[http://dx.doi.org/10.3329/bjp.v13i2.36133]
[91]
Wright, B.; Moraes, L.A.; Kemp, C.F.; Mullen, W.; Crozier, A.; Lovegrove, J.A.; Gibbins, J.M. A structural basis for the inhibition of collagen-stimulated platelet function by quercetin and structurally related flavonoids. Br. J. Pharmacol., 2010, 159(6), 1312-1325.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00632.x] [PMID: 20148891]
[92]
Stainer, A.R.; Sasikumar, P.; Bye, A.P.; Unsworth, A.J.; Holbrook, L.M.; Tindall, M.; Lovegrove, J.A.; Gibbins, J.M. The metabolites of the dietary flavonoid quercetin possess potent antithrombotic activity, and interact with aspirin to enhance antiplatelet effects. TH Open, 2019, 3(3), e244-e258.
[http://dx.doi.org/10.1055/s-0039-1694028] [PMID: 31367693]
[93]
Pérez-Vizcaíno, F.; Ibarra, M.; Cogolludo, A.L.; Duarte, J.; Zaragozá-Arnáez, F.; Moreno, L.; López-López, G.; Tamargo, J. Endothelium-independent vasodilator effects of the flavonoid quercetin and its methylated metabolites in rat conductance and resistance arteries. J. Pharmacol. Exp. Ther., 2002, 302(1), 66-72.
[http://dx.doi.org/10.1124/jpet.302.1.66] [PMID: 12065701]
[94]
Hayamizu, K.; Morimoto, S.; Nonaka, M.; Hoka, S.; Sasaguri, T. Cardiotonic actions of quercetin and its metabolite tamarixetin through a digitalis-like enhancement of Ca2+ transients. Arch. Biochem. Biophys., 2018, 637, 40-47.
[http://dx.doi.org/10.1016/j.abb.2017.11.009] [PMID: 29169900]
[95]
Chan, K.; Leung, H.C.M.; Tsoi, J.K.H. Predictive QSAR model confirms flavonoids in Chinese medicine can activate voltage-gated calcium (CaV) channel in osteogenesis. Chin. Med., 2020, 15(1), 31.
[http://dx.doi.org/10.1186/s13020-020-00313-1] [PMID: 32256687]
[96]
Shimizu, I.; Minamino, T. Physiological and pathological cardiac hypertrophy. J. Mol. Cell. Cardiol., 2016, 97, 245-262.
[http://dx.doi.org/10.1016/j.yjmcc.2016.06.001] [PMID: 27262674]
[97]
Rai, V.; Sharma, P.; Agrawal, S.; Agrawal, D.K. Relevance of mouse models of cardiac fibrosis and hypertrophy in cardiac research. Mol. Cell. Biochem., 2017, 424(1-2), 123-145.
[http://dx.doi.org/10.1007/s11010-016-2849-0] [PMID: 27766529]
[98]
Toba, H.; Cannon, P.L.; Yabluchanskiy, A.; Iyer, R.P.; D’Armiento, J.; Lindsey, M.L. Transgenic overexpression of macrophage matrix metalloproteinase-9 exacerbates age-related cardiac hypertrophy, vessel rarefaction, inflammation, and fibrosis. Am. J. Physiol. Heart Circ. Physiol., 2017, 312(3), H375-H383.
[http://dx.doi.org/10.1152/ajpheart.00633.2016] [PMID: 28011588]
[99]
Fan, C.; Li, Y.; Yang, H.; Cui, Y.; Wang, H.; Zhou, H.; Zhang, J.; Du, B.; Zhai, Q.; Wu, D.; Chen, X.; Guo, H. Tamarixetin protects against cardiac hypertrophy via inhibiting NFAT and AKT pathway. J. Mol. Histol., 2019, 50(4), 343-354.
[http://dx.doi.org/10.1007/s10735-019-09831-1] [PMID: 31111288]
[100]
Salib, J.Y.; Shafik, N.H.; Michael, H.N.; Eskander, E.F. Antibacterial activity of Barleria cristata bark extracts. J. Appl. Sci. Res., 2013, 9(3), 2156-2159.
[101]
Song, W.; Wang, B.; Sui, L.; Shi, Y.; Ren, X.; Wang, X.; Kong, X.; Hou, J.; Wang, L.; Wei, L.; Luan, Y.; Guan, J.; Zhao, Y. Tamarixetin attenuated the virulence of staphylococcus aureus by directly targeting caseinolytic protease P. J. Nat. Prod., 2022, 85(8), 1936-1944.
[http://dx.doi.org/10.1021/acs.jnatprod.2c00138] [PMID: 35833867]
[102]
Mirzaei, A.; Nasr Esfahani, B.; Ghanadian, M.; Moghim, S. Alhagi maurorum extract modulates quorum sensing genes and biofilm formation in Proteus mirabilis. Sci. Rep., 2022, 12(1), 13992.
[http://dx.doi.org/10.1038/s41598-022-18362-x] [PMID: 35978046]
[103]
Mahmoud, H.S.; Fayed, H.M.; Osman, G.S. Rapid urease test and faecal antigen detection for rapid diagnosis of helicobacter pylori infection in dyspepsia. Open J. Gastroenterol., 2016, 6(1), 5-10.
[http://dx.doi.org/10.4236/ojgas.2016.61002]
[104]
Liu, J.; Fang, J.; Zhang, J.; Wang, D.; Zhang, Z.; Wang, C.; Sun, J.; Chen, J.; Li, H.; Jing, S. Protective effect of anwulignan on gastric injury induced by indomethacin in mice. J. Pharmacol. Exp. Ther., 2022, 383(1), 80-90.
[http://dx.doi.org/10.1124/jpet.121.001055] [PMID: 36041883]
[105]
Swarnakar, S.; Mishra, A.; Ganguly, K.; Sharma, A.V. Matrix metalloproteinase-9 activity and expression is reduced by melatonin during prevention of ethanol-induced gastric ulcer in mice. J. Pineal Res., 2007, 43(1), 56-64.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00443.x] [PMID: 17614836]
[106]
Yadav, D.K.; Bharitkar, Y.P.; Hazra, A.; Pal, U.; Verma, S.; Jana, S.; Singh, U.P.; Maiti, N.C.; Mondal, N.B.; Swarnakar, S. Tamarixetin 3- O -β- D -glucopyranoside from azadirachta indica leaves: Gastroprotective role through inhibition of matrix metalloproteinase-9 activity in mice. J. Nat. Prod., 2017, 80(5), 1347-1353.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00957] [PMID: 28493718]
[107]
Das, S.; Datta, S.; Ghosal, A.; Chaudhuri, N.R.; Sundaram, G.; Basu, S. Screening of BACE1 inhibitors with antiamyloidogenic activity: A study of flavonoids and flavonoid derivatives. Neurosci. Lett., 2023, 792, 136965.
[http://dx.doi.org/10.1016/j.neulet.2022.136965] [PMID: 36379389]
[108]
Linde, K.; Berner, M.; Egger, M.; Mulrow, C. St John’s wort for depression. Br. J. Psychiatry, 2005, 186(2), 99-107.
[http://dx.doi.org/10.1192/bjp.186.2.99] [PMID: 15684231]
[109]
Paulke, A.; Nöldner, M.; Schubert-Zsilavecz, M.; Wurglics, M.St. John’s wort flavonoids and their metabolites show antidepressant activity and accumulate in brain after multiple oral doses. Pharmazie, 2008, 63(4), 296-302.
[PMID: 18468390]
[110]
Baes, M.; Gulick, T.; Choi, H.S.; Martinoli, M.G.; Simha, D.; Moore, D.D. A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol. Cell. Biol., 1994, 14(3), 1544-1552.
[PMID: 8114692]
[111]
Choi, E.J.; Jang, Y.J.; Cha, E.Y.; Shin, J.G.; Lee, S.S. Identification and characterization of novel alternative splice variants of human constitutive androstane receptor in liver samples of Koreans and Caucasians. Drug Metab. Dispos., 2013, 41(4), 888-896.
[http://dx.doi.org/10.1124/dmd.112.049791] [PMID: 23378627]
[112]
Lau, A.J.; Chang, T.K.H. Indirect activation of the SV23 and SV24 splice variants of human constitutive androstane receptor: Analysis with 3-hydroxyflavone and its analogues. Br. J. Pharmacol., 2013, 170(2), 403-414.
[http://dx.doi.org/10.1111/bph.12284] [PMID: 23809009]
[113]
Zou, C.; Wang, Y.; Shen, Z. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J. Biochem. Biophys. Methods, 2005, 64(3), 207-215.
[http://dx.doi.org/10.1016/j.jbbm.2005.08.001] [PMID: 16182371]
[114]
Chen, Q.; Zhang, W.; Jin, W.; Lee, I.; Min, B.S.; Jung, H.J.; Na, M.; Lee, S.; Bae, K. Flavonoids and isoflavonoids from sophorae flos improve glucose uptake in vitro. Planta Med., 2010, 76(1), 79-81.
[http://dx.doi.org/10.1055/s-0029-1185944] [PMID: 19637114]
[115]
Wei-na, G.; Xiang-yu, B.; Xiu, J.; Ling-ling, W.; Yu-ying, M.; Yi-jing, Y.; Ling-ling, P.; Chang-jiang, G. Effects of quercetin and its methylated products on protein expressions and activity of dnmts in BRL hepatocytes. Ying Yang Xue Bao, 2020, 42(03), 275-280.
[116]
Kim, H.J.; Lee, J.; Chung, M.Y.; Park, S.H.; Park, J.H.; Choi, H.K.; Hwang, J.T. Tamarixetin abrogates adipogenesis through inhibiting p300/CBP-associated factor acetyltransferase activity in 3T3-L1 preadipocyte cells. J. Med. Food, 2022, 25(3), 272-280.
[http://dx.doi.org/10.1089/jmf.2021.K.0126] [PMID: 35320012]
[117]
Lafrenière, J.; Couillard, C.; Lamarche, B.; Laramée, C.; Vohl, M.C.; Lemieux, S. associations between self-reported vegetable and fruit intake assessed with a new web-based 24-h dietary recall and serum carotenoids in free-living adults: A relative validation study. J. Nutr. Sci., 2019, 8, e26.
[118]
Lomozová, Z.; Catapano, M.C.; Hrubša, M.; Karlíčková, J.; Macáková, K.; Kučera, R.; Mladěnka, P. Chelation of iron and copper by quercetin B-ring methyl metabolites, isorhamnetin and tamarixetin, and their effect on metal-based fenton chemistry. J. Agric. Food Chem., 2021, 69(21), 5926-5937.
[http://dx.doi.org/10.1021/acs.jafc.1c01729] [PMID: 34003649]
[119]
Ashmawy, N.S.; Gad, H.A.; Al-Musayeib, N.; El-Ahmady, S.H.; Ashour, M.L.; Singab, A.N.B. Phytoconstituents from Polyscias guilfoylei leaves with histamine-release inhibition activity. Z. Naturforsch. C J. Biosci., 2019, 74(5-6), 145-150.
[http://dx.doi.org/10.1515/znc-2018-0167] [PMID: 30721147]
[120]
Nielsen, S.E.; Freese, R.; Kleemola, P.; Mutanen, M. Flavonoids in human urine as biomarkers for intake of fruits and vegetables. Cancer Epidemiol. Biomarkers Prev., 2002, 11(5), 459-466.
[PMID: 12010860]
[121]
Krogholm, K.S.; Bysted, A.; Brantsæter, A.L.; Jakobsen, J.; Rasmussen, S.E.; Kristoffersen, L.; Toft, U. Evaluation of flavonoids and enterolactone in overnight urine as intake biomarkers of fruits, vegetables and beverages in the Inter99 cohort study using the method of triads. Br. J. Nutr., 2012, 108(10), 1904-1912.
[http://dx.doi.org/10.1017/S0007114512000104] [PMID: 22453033]