A Recent Update on the Visible Light-promoted Organic Transformations - A Mini-review

Page: [965 - 975] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Visible light-induced reactions are a rapidly developing and powerful technique to promote organic transformations. They provide green and sustainable chemistry and have recently received increasing attention from chemists due to their wide application in organic synthesis. Light energy is eco-friendly, cheap, green, and inexhaustible with potential industrial and pharmaceutical applications. In this review, the most recent advances in visible light-induced reactions (2021-till date) have been highlighted.

Graphical Abstract

[1]
Liu, A.; Han, J.; Nakano, A.; Konno, H.; Moriwaki, H.; Abe, H.; Izawa, K.; Soloshonok, V.A. New pharmaceuticals approved by FDA in 2020: Small‐molecule drugs derived from amino acids and related compounds. Chirality, 2022, 34(1), 86-103.
[http://dx.doi.org/10.1002/chir.23376] [PMID: 34713503]
[2]
Al-Madhagi, H.A. FDA-approved drugs in 2022: A brief outline. Saudi Pharm. J., 2023, 31(3), 401-409.
[http://dx.doi.org/10.1016/j.jsps.2023.01.007] [PMID: 37026042]
[3]
Wikipedia contributors. Organic chemistry. In wikipedia, The free encyclopedia. 2023. Available From:https://en.wikipedia.org/w/index.php?title=Organic_chemistry&oldid=1142987945 (Accessed on March 27 2023)
[4]
Rotella, D.P. The critical role of organic chemistry in drug discovery. ACS Chem. Neurosci., 2016, 7(10), 1315-1316.
[http://dx.doi.org/10.1021/acschemneuro.6b00280] [PMID: 27623164]
[5]
MacCoss, M.; Baillie, T.A. Organic chemistry in drug discovery. Science, 2004, 303(5665), 1810-1813.
[http://dx.doi.org/10.1126/science.1096800] [PMID: 15031494]
[6]
Anastas, P.T.; Warner, J.C. Green chemistry: Theory and practice Oxford University Press: Oxford [England] ; New York, 1998.
[7]
Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[8]
Razzaq, T.; Kappe, C.O. On the energy efficiency of microwave-assisted organic reactions. ChemSusChem, 2008, 1(1-2), 123-132.
[http://dx.doi.org/10.1002/cssc.200700036] [PMID: 18605675]
[9]
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
[10]
William J, le Noble. Chemistry under extreme or non-classical conditions (von Eldik, Rudi; Hubbard, Colin D.). J. Chem. Educ., 1997, 74(7), 764.
[11]
Ley, S.V.; Low, C.M.R. Transition metal carbonyls and ultrasound. In: Ultrasound in Synthesis; Ley, S.V.; Low, C.M.R., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1989; pp. 105-119.
[http://dx.doi.org/10.1007/978-3-642-74672-7_14]
[12]
Roth, H.D. The beginnings of organic photochemistry. Angew. Chem. Int. Ed. Engl., 1989, 28(9), 1193-1207.
[http://dx.doi.org/10.1002/anie.198911931]
[13]
Wikipedia contributors. Photosynthesis. In wikipedia, The free encyclopedia. 2023. Available From:https://en.wikipedia.org/w/index.php?title=Photosynthesis&oldid=1147064916 (Accessed on April 2 2023)
[14]
Yoon, T.P.; Ischay, M.A.; Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem., 2010, 2(7), 527-532.
[http://dx.doi.org/10.1038/nchem.687] [PMID: 20571569]
[15]
Protti, S.; Fagnoni, M. The sunny side of chemistry: Green synthesis by solar light. Photochem. Photobiol. Sci., 2009, 8(11), 1499-1516.
[http://dx.doi.org/10.1039/b909128a] [PMID: 19862408]
[16]
Oelgemöller, M.; Jung, C.; Mattay, J. Green photochemistry: Production of fine chemicals with sunlight. Pure Appl. Chem., 2007, 79(11), 1939-1947.
[http://dx.doi.org/10.1351/pac200779111939]
[17]
Wikipedia contributors. Organic photochemistry. In wikipedia, The free encyclopedia. 2022. Available From:https://en.wikipedia.org/w/index.php?title=Organic_photochemistry&oldid=1120397567 (Accessed on March 27 2023)
[18]
Wikipedia contributors. Photocatalysis. In wikipedia, The free encyclopedia. 2023. Available From:https://en.wikipedia.org/w/index.php?title=Photocatalysis&oldid=1138759135 (Accessed on April 2 2023)
[19]
Xu, Y.J. Promises and challenges in photocatalysis. Frontiers in Catalysis, 2021, 1, 708319.
[http://dx.doi.org/10.3389/fctls.2021.708319]
[20]
Xue, Q.; Xie, J.; Jin, H.; Cheng, Y.; Zhu, C. Highly efficient visible-light-induced aerobic oxidative C–C, C–P coupling from C–H bonds catalyzed by a gold(iii)-complex. Org. Biomol. Chem., 2013, 11(10), 1606-1609.
[http://dx.doi.org/10.1039/c3ob27400d] [PMID: 23364576]
[21]
Hari, D.P.; König, B.; Eosin, Y. Eosin Y catalyzed visible light oxidative C-C and C-P bond formation. Org. Lett., 2011, 13(15), 3852-3855.
[http://dx.doi.org/10.1021/ol201376v] [PMID: 21744842]
[22]
Fu, W.; Guo, W.; Zou, G.; Xu, C. Selective trifluoromethylation and alkynylation of tetrahydroisoquinolines using visible light irradiation by Rose Bengal. J. Fluor. Chem., 2012, 140, 88-94.
[http://dx.doi.org/10.1016/j.jfluchem.2012.05.009]
[23]
Leow, D. Phenazinium salt-catalyzed aerobic oxidative amidation of aromatic aldehydes. Org. Lett., 2014, 16(21), 5812-5815.
[http://dx.doi.org/10.1021/ol5029354] [PMID: 25350690]
[24]
Lu, Z.; Parrish, J.D.; Yoon, T.P. [3+2] Photooxygenation of aryl cyclopropanes via visible light photocatalysis. Tetrahedron, 2014, 70(27-28), 4270-4278.
[http://dx.doi.org/10.1016/j.tet.2014.02.045] [PMID: 25170179]
[25]
Parrish, J.D.; Ischay, M.A.; Lu, Z.; Guo, S.; Peters, N.R.; Yoon, T.P. Endoperoxide synthesis by photocatalytic aerobic [2 + 2 + 2] cycloadditions. Org. Lett., 2012, 14(6), 1640-1643.
[http://dx.doi.org/10.1021/ol300428q] [PMID: 22372647]
[26]
Su, Y.; Zhang, L.; Jiao, N. Utilization of natural sunlight and air in the aerobic oxidation of benzyl halides. Org. Lett., 2011, 13(9), 2168-2171.
[http://dx.doi.org/10.1021/ol2002013] [PMID: 21446682]
[27]
Cheng, Y.; Yang, J.; Qu, Y.; Li, P. Aerobic visible-light photoredox radical C-H functionalization: Catalytic synthesis of 2-substituted benzothiazoles. Org. Lett., 2012, 14(1), 98-101.
[http://dx.doi.org/10.1021/ol2028866] [PMID: 22146071]
[28]
Cheng, Y.; Gu, X.; Li, P. Visible-light photoredox in homolytic aromatic substitution: direct arylation of arenes with aryl halides. Org. Lett., 2013, 15(11), 2664-2667.
[http://dx.doi.org/10.1021/ol400946k] [PMID: 23688041]
[29]
Xue, D.; Jia, Z.H.; Zhao, C.J.; Zhang, Y.Y.; Wang, C.; Xiao, J. Direct arylation of N-heteroarenes with aryldiazonium salts by photoredox catalysis in water. Chemistry, 2014, 20(10), 2960-2965.
[http://dx.doi.org/10.1002/chem.201304120] [PMID: 24500947]
[30]
Xiao, T.; Li, L.; Lin, G.; Wang, Q.; Zhang, P.; Mao, Z.; Zhou, L. Synthesis of 6-substituted phenanthridines by metal-free, visible-light induced aerobic oxidative cyclization of 2-isocyanobiphenyls with hydrazines. Green Chem., 2014, 16(5), 2418-2421.
[http://dx.doi.org/10.1039/C3GC42517G]
[31]
Xuan, J.; Xiao, W.J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed., 2012, 51(28), 6828-6838.
[http://dx.doi.org/10.1002/anie.201200223] [PMID: 22711502]
[32]
Xuan, J.; Lu, L.Q.; Chen, J.R.; Xiao, W.J. Visible-light-driven photoredox catalysis in the construction of carbocyclic and heterocyclic ring systems. Eur. J. Org. Chem., 2013, 2013(30), 6755-6770.
[http://dx.doi.org/10.1002/ejoc.201300596]
[33]
Zhou, L.; Lokman Hossain, M.; Xiao, T. Synthesis of N -containing heterocyclic compounds using visible-light photoredox catalysis. Chem. Rec., 2016, 16(1), 319-334.
[http://dx.doi.org/10.1002/tcr.201500228] [PMID: 26751828]
[34]
Aida, K.; Hirao, M.; Funabashi, A.; Sugimura, N.; Ota, E.; Yamaguchi, J. Catalytic reductive ring opening of epoxides enabled by zirconocene and photoredox catalysis. Chem, 2022, 8(6), 1762-1774.
[http://dx.doi.org/10.1016/j.chempr.2022.04.010]
[35]
Zhang, Y.; Song, T.; Zhou, X.; Yang, Y. Oxygen-vacancy-boosted visible light driven photocatalytic oxidative dehydrogenation of saturated N-heterocycles over Nb2O5 nanorods. Appl. Catal. B, 2022, 316, 121622.
[http://dx.doi.org/10.1016/j.apcatb.2022.121622]
[36]
Tilby, M.J.; Dewez, D.F.; Pantaine, L.R.E.; Hall, A.; Martínez-Lamenca, C.; Willis, M.C. Photocatalytic late-stage functionalization of sulfonamides via sulfonyl radical intermediates. ACS Catal., 2022, 12(10), 6060-6067.
[http://dx.doi.org/10.1021/acscatal.2c01442] [PMID: 35633900]
[37]
Ovung, A.; Bhattacharyya, J. Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions. Biophys. Rev., 2021, 13(2), 259-272.
[http://dx.doi.org/10.1007/s12551-021-00795-9] [PMID: 33936318]
[38]
Inoue, M.; Sumii, Y.; Shibata, N. Contribution of organofluorine compounds to pharmaceuticals. ACS Omega, 2020, 5(19), 10633-10640.
[http://dx.doi.org/10.1021/acsomega.0c00830] [PMID: 32455181]
[39]
Zhao, Y.R.; Ma, Z.Y.; Liu, L.; Gao, P.; Duan, X.H.; Hu, M. Synthesis of α-Difluoromethylene Ethers via photoredox-induced hyperconjugative ring opening of gem -Difluorocyclopropanes. J. Org. Chem., 2023, 88(6), 3787-3793.
[http://dx.doi.org/10.1021/acs.joc.2c03062] [PMID: 36827360]
[40]
Song, H.Y.; Zhang, Z.T.; Tan, H.Y.; Lu, Y.H.; Yang, T.B.; Chen, J.Y.; Ji, H.T.; He, W.M. Visible‐light‐promoted electron donor‐acceptor complex enabled decarboxylative alkylation of quinoxalin‐2(1 H)‐ones and N ‐Hydroxyphthalimide Esters with Na 2 S as a Catalytic Donor. Asian J. Org. Chem., 2023, 12(2), e202200658.
[http://dx.doi.org/10.1002/ajoc.202200658]
[41]
Yuan, Y.; Zhang, S.Y.; Dong, W.H.; Wu, F.; Xie, X.M.; Zhang, Z.G. Visible‐light‐induced radical cascade cyclization of o‐ diisocyanoarenes: Synthesis of diethyl benzo[ a ]phenazine‐6,6(5 H)‐Dicarboxylate. Adv. Synth. Catal., 2021, 363(17), 4216-4221.
[http://dx.doi.org/10.1002/adsc.202100474]
[42]
Halicki, P.C.B.; Silva, E.N.; Jardim, G.A.M.; Almeida, R.G.; Vicenti, J.R.M.; Gonçalves, B.L.; Silva, P.E.A.; Ramos, D.F. Benzo[ a]phenazine derivatives: Promising scaffolds to combat resistant Mycobacterium tuberculosis. Chem. Biol. Drug Des., 2021, 98(3), 352-362.
[http://dx.doi.org/10.1111/cbdd.13853] [PMID: 33932096]
[43]
Taheri, M.; Mohebat, R.; Moslemin, M.H. Synthesis of benzo[ a]furo[2, 3- c]phenazine derivatives through an efficient, rapid and via microwave irradiation under solvent-free conditions catalyzed by H 3 PW 12 O 40 @Fe 3 O 4 -ZnO for high-performance removal of methylene blue. Artif. Cells Nanomed. Biotechnol., 2021, 49(1), 250-260.
[http://dx.doi.org/10.1080/21691401.2021.1894163] [PMID: 33703965]
[44]
Bui, T.T.; Tran, V.H.; Kim, H.K. Visible‐light‐mediated synthesis of sulfonyl fluorides from arylazo sulfones. Adv. Synth. Catal., 2022, 364(2), 341-347.
[http://dx.doi.org/10.1002/adsc.202100951]
[45]
Tavakolian, M.; Hosseini-Sarvari, M. Catalyst-free organic transformations under visible-light. ACS Sustain. Chem.& Eng., 2021, 9(12), 4296-4323.
[http://dx.doi.org/10.1021/acssuschemeng.0c06657]
[46]
Sun, K.; Lv, Q.Y.; Chen, X.L.; Qu, L.B.; Yu, B. Recent advances in visible-light-mediated organic transformations in water. Green Chem., 2021, 23(1), 232-248.
[http://dx.doi.org/10.1039/D0GC03447A]
[47]
Wang, X.; Shi, A.; Huang, X.Q.; Chen, X.; Li, T.; Qu, L.; Yu, B. Visible-light-induced cyclization of cyclic N -sulfonyl ketimines to N -sulfonamide fused imidazolidines. Org. Biomol. Chem., 2022, 20(18), 3798-3802.
[http://dx.doi.org/10.1039/D2OB00460G] [PMID: 35445233]
[48]
Shen, J.; Li, J.; Chen, M.; Chen, Y. Photocatalyst-free, metal-free, visible light-induced thiolation/pyridylation of styrenes using an electron donor–acceptor complex as a bifunctional reagent. Org. Chem. Front., 2023, 10(5), 1166-1172.
[http://dx.doi.org/10.1039/D2QO01889F]
[49]
Wang, Y.B.; Chen, F.; Li, M.; Bu, Q.; Du, Z.; Liu, J.; Dai, B.; Liu, N. Visible-light-promoted synthesis of gem -dihaloenones. Green Chem., 2023, 25(3), 1191-1200.
[http://dx.doi.org/10.1039/D2GC03989C]
[50]
Kamal, A.; Singh, H.K.; Maury, S.K.; Kushwaha, A.K.; Srivastava, V.; Singh, S. Photo‐triggered synthesis of sulfonamides in a sustainable solvent via electron donor‐acceptor complex. Asian J. Org. Chem., 2023, 12(2)
[http://dx.doi.org/10.1002/ajoc.202200632]
[51]
Natarajan, P.; Partigya; Pooja, A photocatalyst-free method for the synthesis of 6-alkyl(aryl)phenanthridines under visible light irradiation. New J. Chem., 2022, 46(47), 22862-22868.
[http://dx.doi.org/10.1039/D2NJ04414E]
[52]
Wang, J.M.; Chen, Y.X.; Yao, C.S.; Zhang, K. Catalyst‐free synthesis of benzothiazolopyrimidines via visible‐light‐induced wolff rearrangement/[4+2] Cycloaddition Process. Asian J. Org. Chem., 2022, 11(7)
[http://dx.doi.org/10.1002/ajoc.202200238]
[53]
Goswami, M.; Dutta, A.; Paul, P.; Nongkhlaw, R. Recent developments on catalyst‐free, visible‐light‐triggered synthesis of heterocyclic scaffolds and their mechanistic study. ChemistrySelect, 2021, 6(36), 9684-9700.
[http://dx.doi.org/10.1002/slct.202102696]
[54]
Borah, B.; Sharma, S.; Chowhan, L.R. Visible‐light‐mediated direct expeditious photochemical construction of spirocyclic‐oxindoles. Asian J. Org. Chem., 2023, 12(3)
[http://dx.doi.org/10.1002/ajoc.202300020]
[55]
Srivastava, V.; Singh, P.K.; Tivari, S.; Singh, P.P. Visible light photocatalysis in the synthesis of pharmaceutically relevant heterocyclic scaffolds. Org. Chem. Front., 2022, 9(5), 1485-1507.
[http://dx.doi.org/10.1039/D1QO01602D]
[56]
Festa, A.A.; Voskressensky, L.G.; Van der Eycken, E.V. Visible light-mediated chemistry of indoles and related heterocycles. Chem. Soc. Rev., 2019, 48(16), 4401-4423.
[http://dx.doi.org/10.1039/C8CS00790J] [PMID: 31268435]
[57]
Nicholls, T.P.; Leonori, D.; Bissember, A.C. Applications of visible light photoredox catalysis to the synthesis of natural products and related compounds. Nat. Prod. Rep., 2016, 33(11), 1248-1254.
[http://dx.doi.org/10.1039/C6NP00070C] [PMID: 27470920]
[58]
Pitre, S.P.; Overman, L.E. Strategic use of visible-light photoredox catalysis in natural product synthesis. Chem. Rev., 2022, 122(2), 1717-1751.
[http://dx.doi.org/10.1021/acs.chemrev.1c00247] [PMID: 34232019]
[59]
Frahm, M.; Voss, A.; Brasholz, M. A short total synthesis of (±)-mersicarpine via visible light-induced cascade photooxygenation. Chem. Commun., 2022, 58(36), 5467-5469.
[http://dx.doi.org/10.1039/D2CC01316A] [PMID: 35416221]
[60]
Xu, Z.J.; Liu, X.Y.; Zhu, M.Z.; Xu, Y.L.; Yu, Y.; Xu, H.R.; Cheng, A.X.; Lou, H.X. Photoredox-catalyzed cascade reactions involving aryl radical: Total synthesis of (±)-Norascyronone A and (±)-Eudesmol. Org. Lett., 2021, 23(23), 9073-9077.
[http://dx.doi.org/10.1021/acs.orglett.1c03319] [PMID: 34797080]
[61]
Lackner, G.L.; Quasdorf, K.W.; Overman, L.E. Visible-light photocatalysis in the synthesis of natural products. In: In Visible Light Photocatalysis in Organic Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018; pp. 283-297.
[http://dx.doi.org/10.1002/9783527674145.ch9]
[62]
Cordero-Vargas, A.; Mateus-Ruiz, J.B. Visible-light-mediated photoredox reactions in the total synthesis of natural products. Synthesis, 2020, 52(21), 3111-3128.
[http://dx.doi.org/10.1055/s-0040-1707225]
[63]
Hart, J.D.; Burchill, L.; Day, A.J.; Newton, C.G.; Sumby, C.J.; Huang, D.M.; George, J.H. Visible‐light photoredox catalysis enables the biomimetic synthesis of nyingchinoids A, B, and D, and rasumatranin D. Angew. Chem. Int. Ed., 2019, 58(9), 2791-2794.
[http://dx.doi.org/10.1002/anie.201814089] [PMID: 30648330]