Degree Descriptors and Graph Entropy Quantities of Zeolite ACO

Page: [263 - 273] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Cheminformatics is a fascinating emerging subfield of chemical graph theory that studies quantitative structure-activity and property relationships of molecules and, in turn, uses these to predict the physical and chemical properties, which are extremely useful in drug discovery and optimization. Knowledge discovery can be put to use in pharmaceutical data matching to help in finding promising lead compounds.

Materials and Methods: Topological descriptors are numerical quantities corresponding to the chemical structures that are used in the study of these phenomena.

Results: This paper is concerned with developing the generalized analytical expression of topological descriptors for zeolite ACO structures with underlying degree and degree-sum parameters.

Conclusion: To demonstrate improved discrimination power between the topological descriptors, we have further modified Shannon’s entropy approach and used it to calculate the entropy measures of zeolite ACO structures.

Graphical Abstract

[1]
Derbe, T.; Temesgen, S.; Bitew, M. A short review on synthesis, characterization, and applications of zeolites. Adv. Mater. Sci. Eng., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/6637898]
[2]
Feng, P.; Bu, X.; Stucky, G.D. Hydrothermal syntheses and structural characterization of zeolite analogue compounds based on cobalt phosphate. Nature., 1997, 388(6644), 735-741.
[http://dx.doi.org/10.1038/41937]
[3]
O’Keeffe, M.; Yaghi, O.M. Germanate zeolites: Contrasting the behavior of germanate and silicate structures built from cubic T8O20 units (T=Ge or Si). Chem., 1999, 5(10), 2796-2801.
[http://dx.doi.org/10.1002/(SICI)1521-3765(19991001)5:10<2796::AID-CHEM2796>3.0.CO;2-6]
[4]
Shah, M.S.; Fetisov, E.O.; Tsapatsis, M.; Siepmann, J.I. C2 adsorption in zeolites: In silico screening and sensitivity to molecular models. Mol. Syst. Des. Eng., 2018, 3(4), 619-626.
[http://dx.doi.org/10.1039/C8ME00004B]
[5]
Baur, W.H.; Fischer, R.X. Letter: On the classification and standardization of zeolite crystal structures: Telling apart the ACO from the GIS and MER framework types. J. Chem. Soc., Dalton Trans., 2002, 4(4), 630-631.
[http://dx.doi.org/10.1039/b110001g]
[6]
Bouëssel du Bourg, L.; Ortiz, A.U.; Boutin, A.; Coudert, F.X. Thermal and mechanical stability of zeolitic imidazolate frameworks polymorphs. APL Mater., 2014, 2(12), 124110.
[http://dx.doi.org/10.1063/1.4904818]
[7]
Zhao, X.; Wu, T.; Zheng, S.T.; Wang, L.; Bu, X.; Feng, P. A zeolitic porous lithium–organic framework constructed from cubane clusters. Chem. Commun., 2011, 47(19), 5536-5538.
[http://dx.doi.org/10.1039/C1CC11245G] [PMID: 21472190]
[8]
First, E.L.; Gounaris, C.E.; Wei, J.; Floudas, C.A. Computational characterization of zeolite porous networks: An automated approach. Phys. Chem. Chem. Phys., 2011, 13(38), 17339-17358.
[http://dx.doi.org/10.1039/c1cp21731c] [PMID: 21881655]
[9]
Zou, X.; Ren, H.; Zhu, G. Topology-directed design of porous organic frameworks and their advanced applications. Chem. Commun., 2013, 49(38), 3925-3936.
[http://dx.doi.org/10.1039/c3cc00039g] [PMID: 23508060]
[10]
Eddaoudi, M.; Sava, D.F.; Eubank, J.F.; Adil, K.; Guillerm, V. Zeolite-like metal–organic frameworks (ZMOFs): Design, synthesis, and properties. Chem. Soc. Rev., 2015, 44(1), 228-249.
[http://dx.doi.org/10.1039/C4CS00230J] [PMID: 25341691]
[11]
Alkordi, M.H.; Brant, J.A.; Wojtas, L.; Kravtsov, V.C.; Cairns, A.J.; Eddaoudi, M. Zeolite-like metal-organic frameworks (ZMOFs) based on the directed assembly of finite metal-organic cubes (MOCs). J. Am. Chem. Soc., 2009, 131(49), 17753-17755.
[http://dx.doi.org/10.1021/ja905557z] [PMID: 19921841]
[12]
De, N.; Cancan, M.; Alaeiyan, M.; Farahani, M.R. On some degree based topological indices of mk -graph. J. Discret. Math. Sci. Cryptogr., 2020, 23(6), 1183-1194.
[http://dx.doi.org/10.1080/09720529.2020.1809112]
[13]
Arockiaraj, M.; Clement, J.; Paul, D.; Balasubramanian, K. Quantitative structural descriptors of sodalite materials. J. Mol. Struct., 2021, 1223, 128766.
[http://dx.doi.org/10.1016/j.molstruc.2020.128766]
[14]
Arockiaraj, M.; Paul, D.; Klavžar, S.; Clement, J.; Tigga, S.; Balasubramanian, K. Relativistic topological and spectral characteristics of zeolite SAS structures. J. Mol. Struct., 2022, 1270, 133854.
[http://dx.doi.org/10.1016/j.molstruc.2022.133854]
[15]
Jacob, K.; Clement, J.; Arockiaraj, M.; Paul, D.; Balasubramanian, K. Topological characterization and entropy measures of tetragonal zeolite merlinoites. J. Mol. Struct., 2023, 1277, 134786.
[http://dx.doi.org/10.1016/j.molstruc.2022.134786]
[16]
Arockiaraj, M.; Paul, D.; Klavžar, S.; Clement, J.; Tigga, S.; Balasubramanian, K. Relativistic distance based and bond additive topological descriptors of zeolite RHO materials. J. Mol. Struct., 2022, 1250, 131798.
[http://dx.doi.org/10.1016/j.molstruc.2021.131798]
[17]
Arockiaraj, M.; Kavitha, S.R.J.; Mushtaq, S.; Balasubramanian, K. Relativistic topological molecular descriptors of metal trihalides. J. Mol. Struct., 2020, 1217, 128368.
[http://dx.doi.org/10.1016/j.molstruc.2020.128368]
[18]
Ivanciuc, O. QSAR comparative study of Wiener descriptors for weighted molecular graphs. J. Chem. Inf. Comput. Sci., 2000, 40(6), 1412-1422.
[http://dx.doi.org/10.1021/ci000068y] [PMID: 11128100]
[19]
Adnan, M.; Bokhary, S.A.U.H.; Abbas, G.; Iqbal, T. Degree-based topological indices and QSPR analysis of antituberculosis drugs. J. Chem., 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/5748626]
[20]
Paul, D.; Arockiaraj, M.; Jacob, K.; Clement, J. Multiplicative versus scalar multiplicative degree based descriptors in QSAR/QSPR studies and their comparative analysis in entropy measures. Eur. Phys. J. Plus, 2023, 138(4), 323.
[http://dx.doi.org/10.1140/epjp/s13360-023-03920-7]
[21]
Verma, J.; Khedkar, V.; Coutinho, E. 3D-QSAR in drug design--a review. Curr. Top. Med. Chem., 2010, 10(1), 95-115.
[http://dx.doi.org/10.2174/156802610790232260] [PMID: 19929826]
[22]
Kwon, S.; Bae, H.; Jo, J.; Yoon, S. Comprehensive ensemble in QSAR prediction for drug discovery. BMC Bioinformatics., 2019, 20(1), 521.
[http://dx.doi.org/10.1186/s12859-019-3135-4] [PMID: 31655545]
[23]
Arockiaraj, M.; Kavitha, S.R.J.; Balasubramanian, K.; Gutman, I. Hyper-Wiener and Wiener polarity indices of silicate and oxide frameworks. J. Math. Chem., 2018, 56(5), 1493-1510.
[http://dx.doi.org/10.1007/s10910-018-0881-x]
[24]
Balasubramanian, K. Computational and artificial intelligence techniques for drug discovery and administration.Compr. Pharmacol; Kenakin, T., Ed.; , 2022, 2, pp. 553-616.
[http://dx.doi.org/10.1016/B978-0-12-820472-6.00015-3]
[25]
Liu, J.B.; Iqbal, H.; Shahzad, K. Topological properties of concealed non-kekulean benzenoid hydrocarbon. Polycycl. Aromat. Compd., 2023, 43(2), 1776-1787.
[http://dx.doi.org/10.1080/10406638.2022.2039230]
[26]
Paul, D.; Arockiaraj, M.; Tigga, S.; Balasubramanian, K. Zeolite AST: Relativistic degree and distance based topological descriptors. Comput. Theor. Chem., 2022, 1218, 113933.
[http://dx.doi.org/10.1016/j.comptc.2022.113933]
[27]
Qi, R.; Ali, H.; Babar, U.; Liu, J.B.; Ali, P. On the sum of degree-based topological indices of rhombus-type silicate and oxide structures. J. Math., 2021, 2021, 1-16.
[http://dx.doi.org/10.1155/2021/1100024]
[28]
Hayat, S.; Khan, S.; Imran, M. Quality testing of spectrum-based distance descriptors for polycyclic aromatic hydrocarbons with applications to carbon nanotubes and nanocones. Arab. J. Chem., 2021, 14(3), 102994.
[http://dx.doi.org/10.1016/j.arabjc.2021.102994]
[29]
Hayat, S.; Khan, S.; Khan, A.; Liu, J.B. Valency-based molecular descriptors for measuring the π-electronic energy of lower polycyclic aromatic hydrocarbons. Polycycl. Aromat. Compd., 2022, 42(4), 1113-1129.
[http://dx.doi.org/10.1080/10406638.2020.1768414]
[30]
Arockiaraj, M.; Clement, J.; Paul, D.; Balasubramanian, K. Relativistic distance-based topological descriptors of Linde type A zeolites and their doped structures with very heavy elements. Mol. Phys., 2021, 119(3), e1798529.
[http://dx.doi.org/10.1080/00268976.2020.1798529]
[31]
Sarkar, P.; De, N.; Pal, A. On some topological indices and their importance in chemical sciences: A comparative study. Eur. Phys. J. Plus, 2022, 137(2), 195.
[http://dx.doi.org/10.1140/epjp/s13360-022-02431-1]
[32]
Kavitha, S.R.J.; Abraham, J.; Arockiaraj, M.; Jency, J.; Balasubramanian, K. Topological characterization and graph entropies of tessellations of kekulene structures: Existence of isentropic structures and applications to thermochemistry, NMR and ESR. J. Phys. Chem. A, 2021, 125(36), 8140-8158.
[http://dx.doi.org/10.1021/acs.jpca.1c06264] [PMID: 34469167]
[33]
Abraham, J.; Arockiaraj, M.; Jency, J.; Kavitha, S.R.J.; Balasubramanian, K. Graph entropies, enumeration of circuits, walks and topological properties of three classes of isoreticular metal organic frameworks. J. Math. Chem., 2022, 60(4), 695-732.
[http://dx.doi.org/10.1007/s10910-021-01321-8]
[34]
Zhang, G.; Azeem, M.; Aslam, A.; Yousaf, S.; Kanwal, S. Topological aspects of certain covalent organic frameworks and metal organic frameworks. J. Funct. Spaces., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/5426037]
[35]
Arockiaraj, M.; Jency, J.; Abraham, J.; Ruth Julie Kavitha, S.; Balasubramanian, K. Two-dimensional coronene fractal structures: Topological entropy measures, energetics, NMR and ESR spectroscopic patterns and existence of isentropic structures. Mol. Phys., 2022, 120(11), e2079568.
[http://dx.doi.org/10.1080/00268976.2022.2079568]
[36]
Sabirov, D.S.; Shepelevich, I.S. Information entropy in chemistry: An overview. Entropy., 2021, 23(10), 1240.
[http://dx.doi.org/10.3390/e23101240] [PMID: 34681964]
[37]
Mowshowitz, A.; Dehmer, M. Entropy and the complexity of graphs revisited. Entropy., 2012, 14(3), 559-570.
[http://dx.doi.org/10.3390/e14030559]
[38]
Sanders, M.J.; Leslie, M.; Catlow, C.R.A. Interatomic potentials for SiO2. J. Chem. Soc. Chem. Commun., 1984, (19), 1271.
[http://dx.doi.org/10.1039/c39840001271]
[39]
Jackson, R.A.; Catlow, C.R.A. Computer simulation studies of zeolite structure. Mol. Simul., 1988, 1(4), 207-224.
[http://dx.doi.org/10.1080/08927028808080944]
[40]
Wolffis, J.J.; Vanpoucke, D.E.P.; Sharma, A.; Lawler, K.V.; Forster, P.M. Predicting partial atomic charges in siliceous zeolites. Microporous Mesoporous Mater., 2019, 277, 184-196.
[http://dx.doi.org/10.1016/j.micromeso.2018.10.028]
[41]
Bushuev, Y.G.; Sastre, G. Atomistic simulations of structural defects and water occluded in SSZ-74 zeolite. J. Phys. Chem. C, 2009, 113(25), 10877-10886.
[http://dx.doi.org/10.1021/jp9013306]
[42]
García-Pérez, E.; Parra, J.B.; Ania, C.O.; Dubbeldam, D.; Vlugt, T.J.H.; Castillo, J.M.; Merkling, P.J.; Calero, S. Unraveling the argon adsorption processes in MFI-type zeolite. J. Phys. Chem. C, 2008, 112(27), 9976-9979.
[http://dx.doi.org/10.1021/jp803753h]
[43]
Miao, J.; Lang, Z.; Xue, T.; Li, Y.; Li, Y.; Cheng, J.; Zhang, H.; Tang, Z. Revival of zeolite-templated nanocarbon materials: Recent advances in energy storage and conversion. Adv. Sci., 2020, 7(20), 2001335.
[http://dx.doi.org/10.1002/advs.202001335] [PMID: 33101857]
[44]
Dovesi, R.; Orlando, R.; Civalleri, B.; Roetti, C.; Saunders, V.R.; Zicovich-Wilson, C.M. CRYSTAL: A computational tool for the ab initio study of the electronic properties of crystals. Z. Kristallogr. Cryst. Mater., 2005, 220(5-6), 571-573.
[http://dx.doi.org/10.1524/zkri.220.5.571.65065]