Central Nervous System Agents in Medicinal Chemistry

Author(s): Priya P. Shejul, Radhika K. Raheja and Gaurav M. Doshi*

DOI: 10.2174/1871524923666230825105035

An Update on Potential Antidepressants Derived from Marine Natural Products

Page: [71 - 85] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Depression is one of the most frequently occurring psychiatric disorders worldwide, affecting 121 million worldwide. World Health Organization (WHO) estimates that it is the leading cause of disability and the fourth leading contributor to the "global burden of diseases".

Objective: Investigating and developing a drug with a novel benefit-risk profile is critical. Marine sources have been explored for their benefits as an alternative therapy for depression treatment. Numerous studies have shown that natural compounds containing peptides, alkaloids, polyphenols, diterpenes, glycosides, vitamins, and minerals from marine sources can potentially treat a wide range of disorders, including depression. Such phytoconstituents are known to reduce oxidative stress and neuroinflammation, regulate the synthesis or function of neurotransmitters such as glutamate and acetylcholinesterase, and aid in enhancing serotonin levels and nerve development.

Methods: In this review study, a literature search was conducted using terms often used, including animal models of depression and their precise phases, marine sources, algae, sponges, and indole alkaloids. Additionally, databases were examined, including Scopus, Wiley, Elsevier, Google Scholar, and Web of Science. The Snowball technique was used to identify several articles about depression but correlated to marine sources in addition to database searches.

Results: Current antidepressant medications have several negative side effects on the human body, including dry mouth, cardiovascular interference, gastrointestinal symptoms, genitourinary symptoms, hepatotoxicity, convulsions, and obesity. As a result, researchers can identify a wide range of potential targets for medications derived from marine sources. A combination of marinederived drugs and available treatments can be estimated to minimize the negative effects. So that these resources can be used as efficiently as possible, and various marine-derived substances can be studied for therapeutic efficacy.

Conclusion: This review focuses on the preclinical and clinical findings of marine-derived compounds with antidepressant properties that alter behavioural parameters and biochemical abnormalities, as well as their mechanism of action and in-vivo potential.

Graphical Abstract

[1]
Reddy, M.S. Depression: The disorder and the burden. Indian J. Psychol. Med., 2010, 32(1), 1.
[2]
Kawakami, I.; Iga, J.; Takahashi, S.; Lin, Y.T.; Fujishiro, H. Towards an understanding of the pathological basis of senile depression and incident dementia: Implications for treatment. Psychiatry Clin. Neurosci., 2022, 76(12), 620-632.
[http://dx.doi.org/10.1111/pcn.13485] [PMID: 36183356]
[3]
Wang, S.; Lu, T.; Sun, J.; Huang, L.; Li, R.; Wang, T. Long-term trends in the incidence of depressive disorders in China, the United States, India and globally: A comparative study from 1990 to 2019. Front. Psychol., 2019, 13, 1066706.
[4]
Moncrieff, J.; Cooper, R.E.; Stockmann, T.; Amendola, S.; Hengartner, M.P.; Horowitz, M.A. The serotonin theory of depression: A systematic umbrella review of the evidence. Mol. Psychiatry, 2022.
[http://dx.doi.org/10.1038/s41380-022-01661-0] [PMID: 35854107]
[5]
Smith, G.S.; Kuwabara, H.; Gould, N.F.; Nassery, N.; Savonenko, A.; Joo, J.H.; Bigos, K.L.; Kraut, M.; Brasic, J.; Holt, D.P.; Hall, A.W.; Mathews, W.B.; Dannals, R.F.; Nandi, A.; Workman, C.I. Molecular imaging of the serotonin transporter availability and occupancy by antidepressant treatment in late-life depression. Neuropharmacology, 2021, 194, 108447.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108447] [PMID: 33450276]
[6]
Taylor, W.D.; Boyd, B.D.; Elson, D.; Andrews, P.; Albert, K.; Vega, J.; Newhouse, P.A.; Woodward, N.D.; Kang, H.; Shokouhi, S. Preliminary evidence that cortical amyloid burden predicts poor response to antidepressant medication treatment in cognitively intact individuals with late-life depression. Am. J. Geriatr. Psychiatry, 2021, 29(5), 448-457.
[http://dx.doi.org/10.1016/j.jagp.2020.09.019] [PMID: 33032927]
[7]
Brigitta, B. Pathophysiology of depression and mechanisms of treatment. Dialog. Clin. Neurosci., 2022, 7-20. Available from: https://www.tandfonline.com/doi/abs/10.31887/DCNS.2002.4.1/bbondy (cited 2022 Dec 9)
[8]
Kim, S.K.; Wijesekara, I. Development and biological activities of marine-derived bioactive peptides: A review. J. Funct. Foods, 2010, 2(1), 1-9.
[http://dx.doi.org/10.1016/j.jff.2010.01.003]
[9]
Kiuru, P. DʼAuria, M.; Muller, C.; Tammela, P.; Vuorela, H.; Yli-Kauhaluoma, J. Exploring marine resources for bioactive compounds. Planta Med., 2014, 80(14), 1234-1246.
[http://dx.doi.org/10.1055/s-0034-1383001] [PMID: 25203732]
[10]
Kamala, K.; Sivaperumal, P.; Dharani, G.; Ramachandran, S.G.D. Novel marine-derived natural products for the treatment of depressive disorder. Rajagopal, S.; Ramachandran, S.; Sundararaman, G.; Gadde Venkata, S. Role of nutrients in neurological disorders. Nutritional neurosciences; Springer: Singapore, 2022. Available from: https://link.springer.com/chapter/10.1007/978-981-16-8158-5_13
[11]
Karthikeyan, A.; Joseph, A.; Nair, B.G. Promising bioactive compounds from the marine environment and their potential effects on various diseases. J. Genet. Eng. Biotechnol., 2022, 20(1), 14.
[http://dx.doi.org/10.1186/s43141-021-00290-4]
[12]
Alghazwi, M.; Qi Kan, Y. Zhang, W.; Ping Gai, W.; Yan, X.X. Neuroprotective activities of marine natural products from marine sponges. Curr. Med. Chem., 2016, 23(4), 360-382.
[http://dx.doi.org/10.2174/0929867323666151127201249] [PMID: 26630920]
[13]
Ruiz-Ruiz, F.; Mancera-Andrade, E.I.; Iqbal, H.M. Marine-derived bioactive peptides for biomedical sectors: A review. Protein Pept. Lett., 2017, 24(2), 109-117.
[http://dx.doi.org/10.2174/0929866523666160802155347] [PMID: 27491381]
[14]
Kennedy, S.H.; Lam, R.W.; Mcintyre, R.S.; Valé Rie Tourjman, S.; Bhat, V.; Blier, P. Canadian network for mood and anxiety treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: section 3. J.sage., 2016, 61(9), 540-560. Available from: journals.sagepub.com (cited 2022 Dec 17) Available from: http://journals.sagepub.com/doi/abs/10.1177/0706743716659417
[15]
Osuch, E.; Marais, A. The pharmacological management of depression. Dialog. Clin. Neurosci., 2022, 88(6), 26-35. Available from: https://www.tandfonline.com/doi/abs/10.31887/DCNS.2005.7.3/dkupfer
[16]
Singla, R.K.; Joon, S.; Shen, L.; Shen, B. Translational informatics for natural products as antidepressant agents. Front. Cell Dev. Biol., 2022, 9, 738838.
[http://dx.doi.org/10.3389/fcell.2021.738838] [PMID: 35127696]
[17]
Wang, S.M.; Han, C.; Bahk, W.M.; Lee, S.J.; Patkar, A.A.; Masand, P.S. Addressing the side effects of contemporary antidepressant drugs: A comprehensive review. Chonnam Med. J., 2018, 54(2), 101-112. Available from: synapse.koreamed.org
[http://dx.doi.org/10.4068/cmj.2018.54.2.101]
[18]
Chong, P.S.; Fung, M.L.; Wong, K.H.; Lim, L.W. Therapeutic potential of hericium erinaceus for depressive disorder. Int. J. Mol. Sci., 2019, 21(1), 163.
[http://dx.doi.org/10.3390/ijms21010163] [PMID: 31881712]
[19]
Bagot, R.C.; Labonté, B.; Peña, C.J.; Nestler, E.J. Epigenetic signaling in psychiatric disorders: Stress and depression. Dialogues Clin. Neurosci., 2014, 16(3), 281-295.
[http://dx.doi.org/10.31887/DCNS.2014.16.3/rbagot] [PMID: 25364280]
[20]
Duman, R.S.; Heninger, G.R.; Nestler, E.J. A molecular and cellular theory of depression. Arch. Gen. Psychiatry, 1997, 54(7), 597-606.
[http://dx.doi.org/10.1001/archpsyc.1997.01830190015002] [PMID: 9236543]
[21]
Popoli, M.; Brunello, N.; Perez, J.; Racagni, G. Second messenger-regulated protein kinases in the brain: Their functional role and the action of antidepressant drugs. J. Neurochem., 2000, 74(1), 21-33.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0740021.x] [PMID: 10617102]
[22]
Perez, J.; Tardito, D.; Mori, S.; Racagni, G.; Smeraldi, E.; Zanardi, R. Abnormalities of cAMP signaling in affective disorders: Implications for pathophysiology and treatment. Bipolar Disord., 2000, 2(1), 27-36.
[http://dx.doi.org/10.1034/j.1399-5618.2000.020104.x] [PMID: 11254016]
[23]
Battaini, F. Protein kinase C isoforms as therapeutic targets in nervous system disease states. Pharmacol. Res., 2001, 44(5), 353-361.
[http://dx.doi.org/10.1006/phrs.2001.0893] [PMID: 11712865]
[24]
Coppen, A. The biochemistry of affective disorders. Br. J. Psychiatry, 1967, 113(504), 1237-1264. Available from: https://www.cambridge.org/core/journals/the-british-journal-of-psychiatry/article/biochemistry-of-affective-disorders/1CB6D7B69D1E60F5731D4B8FBC02CE84 (cited 2023 Mar 31)
[http://dx.doi.org/10.1192/bjp.113.504.1237]
[25]
Schildkraut, J.J. The catecholamine hypothesis of affective disorders: A review of supporting evidence. Am. J. Psychiatry, 1965, 122(5), 509-522.
[http://dx.doi.org/10.1176/ajp.122.5.509] [PMID: 5319766]
[26]
Stahl, S.M. Basic psychopharmacology of antidepressants, part 1: Antidepressants have seven distinct mechanisms of action. J. Clin. Psychiatry, 1998, 59(4), 5-14. Available from: https://www.psychiatrist.com/read-pdf/1759/
[PMID: 9554316]
[27]
Potter, W.Z.; Scheinin, M.; Golden, R.N.; Rudorfer, M.V.; Cowdry, R.W.; Calil, H.M.; Ross, R.J.; Linnoila, M. Selective antidepressants and cerebrospinal fluid. Lack of specificity on norepinephrine and serotonin metabolites. Arch. Gen. Psychiatry, 1985, 42(12), 1171-1177. Available from: https://jamanetwork.com/journals/jamapsychiatry/article-abstract/493710 (cited 2023 Mar 31)
[http://dx.doi.org/10.1001/archpsyc.1985.01790350045009] [PMID: 2416297]
[28]
Owens, M.J.; Nemeroff, C.B. Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin. Chem., 1994, 40(2), 288-295. Available from: https://academic.oup.com/clinchem/article-abstract/40/2/288/5647979 (cited 2023 Mar 31)
[http://dx.doi.org/10.1093/clinchem/40.2.288] [PMID: 7508830]
[29]
Delgado, P.L. Depression: The case for a monoamine deficiency. J. Clin. Psychiatry, 2000, 61(6), 7-11. Available from: https://www.psychiatrist.com/wpcontent/uploads/2021/02/12384_depression-case-monoaminedeficiency.pdf (cited 2023 Mar 31)
[PMID: 10775018]
[30]
Correia, A.S.; Cardoso, A.; Vale, N. Oxidative stress in depression: The link with the stress response, neuroinflammation, serotonin, neurogenesis and synaptic plasticity. Antioxidants, 2023, 12(2), 470.
[http://dx.doi.org/10.3390/antiox12020470] [PMID: 36830028]
[31]
Haefner, B. Drugs from the deep: Marine natural products as drug candidates. Drug Discov. Today, 2003, 8(12), 536-544.
[http://dx.doi.org/10.1016/S1359-6446(03)02713-2] [PMID: 12821301]
[32]
El-Alfy, A.T.; Abourashed, E.A.; Matsumoto, R.R. Nature against depression. Curr. Med. Chem., 2012, 19(14), 2229-2241.
[http://dx.doi.org/10.2174/092986712800229096] [PMID: 22414105]
[33]
Sipkema, D.; Franssen, M.C.R.; Osinga, R.; Tramper, J.; Wijffels, R.H. Marine sponges as pharmacy. Mar. Biotechnol., 2005, 7(3), 142-162. Available from: https://pubmed.ncbi.nlm.nih.gov/15776313/ (cited 2022 Dec 7)
[http://dx.doi.org/10.1007/s10126-004-0405-5] [PMID: 15776313]
[34]
Diers, J.A.; Ivey, K.D.; El-Alfy, A.; Shaikh, J.; Wang, J.; Kochanowska, A.J.; Stoker, J.F.; Hamann, M.T.; Matsumoto, R.R. Identification of antidepressant drug leads through the evaluation of marine natural products with neuropsychiatric pharmacophores. Pharmacol. Biochem. Behav., 2008, 89(1), 46-53.
[http://dx.doi.org/10.1016/j.pbb.2007.10.021] [PMID: 18037479]
[35]
Kochanowska, A.J.; Rao, K.V.; Childress, S.; El-Alfy, A.; Matsumoto, R.R.; Kelly, M.; Stewart, G.S.; Sufka, K.J.; Hamann, M.T. Secondary metabolites from three florida sponges with antidepressant activity. J. Nat. Prod., 2008, 71(2), 186-189.
[http://dx.doi.org/10.1021/np070371u] [PMID: 18217716]
[36]
Riveros, M.E.; Ávila, A.; Schruers, K.; Ezquer, F. Antioxidant biomolecules and their potential for the treatment of difficult-to-treat depression and conventional treatment-resistant depression. Antioxidants, 2022, 11(3), 540.
[http://dx.doi.org/10.3390/antiox11030540] [PMID: 35326190]
[37]
Lind, K.F.; Hansen, E.; Østerud, B.; Eilertsen, K.E.; Bayer, A.; Engqvist, M. Antioxidant and anti-inflammatory activities of barettin. Mar. Drugs, 2013, 11, 2655-2666. Available from: https://www.mdpi.com/1660-3397/11/7/2655/htm (cited 2023 Mar 31)
[http://dx.doi.org/10.3390/md11072655]
[38]
Chen, Y.; Lu, H.; Ding, Y.; Liu, S.; Ding, Y.; Lu, B.; Xiao, J.; Zhou, X. Dietary protective potential of fucoxanthin as an active food component on neurological disorders. J. Agric. Food Chem., 2023, 71(8), 3599-3619.
[http://dx.doi.org/10.1021/acs.jafc.2c08249] [PMID: 36802555]
[39]
Kim, M.; Kwon, S.; Cho, S.; Um, M.Y. Ishige foliacea ameliorates depressive-like behaviors in stress hormone treated mice. Appl. Biol. Chem., 2022, 65(1), 1-8. Available from: http://applbiolchem.springeropen.com/articles/10.1186/s13765-022-00757-z (cited 2023 Apr 1)
[http://dx.doi.org/10.1186/s13765-022-00757-z]
[40]
Abreu, T.M.; Corpe, F.P.; Teles, F.B.; da Conceição Rivanor, R.L.; de Sousa, C.N.S.; da Silva Medeiros, I.; de Queiroz, I.N.L.; Figueira-Mansur, J.; Mota, É.F.; Mohana-Borges, R.; Macedo, D.S.; de Vasconcelos, S.M.M.; Júnior, J.E.R.H.; Benevides, N.M.B. Lectin isolated from the red marine alga solieria filiformis (kützing) p.w. gabrielson: Secondary structure and antidepressant-like effect in mice submitted to the lipopolysaccharide-induced inflammatory model of depression. Algal Res., 2022, 65, 102715.
[http://dx.doi.org/10.1016/j.algal.2022.102715]
[41]
Yende, SR; Kapgate, R; Sumit, K Ethnomedicinal and pharmacological potential of marine macroalgae for CNS disorders: An overview. J. Med. Herbs.Ethnomed., 2022, 1-6.
[42]
Rasmussen, R.S.; Morrissey, M.T. Marine biotechnology for production of food ingredients. Adv. Food Nutr. Res., 2007, 52, 237-292. Available from: https://pubmed.ncbi.nlm.nih.gov/17425947/ (cited 2023 Apr 1)
[http://dx.doi.org/10.1016/S1043-4526(06)52005-4] [PMID: 17425947]
[43]
Kumari, A. A comprehensive review on algal nutraceuticals as prospective therapeutic agent for different diseases. 3 Biotech, 2023, 13(2), 1-17. Available from: https://link.springer.com/article/10.1007/s13205-022-03454-2 (cited 2023 Apr 1)
[44]
Pandey, A. Microalgae biomass production for co2 mitigation and biodiesel production. J. Microbiol. Exp., 2017, 4(4)
[http://dx.doi.org/10.15406/jmen.2017.04.00117]
[45]
Menaa, F.; Wijesinghe, U.; Thiripuranathar, G.; Althobaiti, N.A.; Albalawi, A.E.; Khan, B.A.; Menaa, B. Marine algae-derived bioactive compounds: A new wave of nanodrugs? Mar. Drugs, 2021, 19(9), 484.
[http://dx.doi.org/10.3390/md19090484] [PMID: 34564146]
[46]
Suresh, D.; Madhu, M.; Saritha, C. Antidepressant activity of spirulina platensis in experimentally induced dipression in mice. Int. J. Res. Develop. Pharma. Life Sci., 2014, 3(3), 1026-1035. Available from: http://imsear.searo.who.int/handle/123456789/150428
[47]
Kim, N.H.; Jeong, H.J.; Lee, J.Y.; Go, H.; Ko, S.G.; Hong, S.H.; Kim, H.M.; Um, J.Y. The effect of hydrolyzed Spirulina by malted barley on forced swimming test in ICR mice. Int. J. Neurosci., 2008, 118(11), 1523-1533.
[http://dx.doi.org/10.1080/00207450802325603] [PMID: 18853331]
[48]
Moradi-Kor, N.; Ghanbari, A.; Rashidipour, H.; Bandegi, A.R.; Yousefi, B.; Barati, M. Therapeutic effects of spirulina platensis against adolescent stress-induced oxidative stress, brain-derived neurotrophic factor alterations and morphological remodeling in the amygdala of adult female rats. J. Exp. Pharmacol., 2020, 13, 75.
[49]
Subermaniam, K.; Teoh, S.L.; Yow, Y.Y.; Tang, Y.Q.; Lim, L.W.; Wong, K.H. Marine algae as emerging therapeutic alternatives for depression: A review. Iran. J. Basic Med. Sci., 2021, 24(8), 997.
[50]
Sasaki, K.; Othman, M.B.; Demura, M.; Watanabe, M.; Isoda, H. Modulation of neurogenesis through the promotion of energy production activity is behind the antidepressant-like effect of colonial green alga, botryococcus braunii. Front. Physiol., 2017, 8, 900.
[http://dx.doi.org/10.3389/fphys.2017.00900] [PMID: 29176952]
[51]
Soetantyo, G.I.; Sarto, M. The antidepressant effect of chlorella vulgaris on female wistar rats (rattus norvegicus berkenhout, 1769) with chronic unpredictable mild stress treatment. J. Trop. Biodiv. Biotechnol., 2019, 4(2), 72.
[http://dx.doi.org/10.22146/jtbb.43967]
[52]
Kim, N.H.; Kim, K.Y.; Jeong, H.J.; Kim, H.M.; Hong, S.H.; Um, J.Y. Effects of hydrolyzed Chlorella vulgaris by malted barley on the immunomodulatory response in ICR mice and in Molt-4 cells. J. Sci. Food Agric., 2010, 90(9), 1551-1556.
[http://dx.doi.org/10.1002/jsfa.3989] [PMID: 20549811]
[53]
Jiang, X.; Chen, L.; Shen, L.; Chen, Z.; Xu, L.; Zhang, J.; Yu, X. Trans-astaxanthin attenuates lipopolysaccharide-induced neuroinflammation and depressive-like behavior in mice. Brain Res., 2016, 1649(Pt A), 30-37.
[http://dx.doi.org/10.1016/j.brainres.2016.08.029] [PMID: 27559013]
[54]
Jiang, X.; Zhu, K.; Xu, Q.; Wang, G.; Zhang, J.; Cao, R. The antidepressant-like effect of trans-astaxanthin involves the serotonergic system. Oncotarget, 2017, 8(15), 25552-25563.
[http://dx.doi.org/10.18632/oncotarget.16069]
[55]
Qiao, J.; Rong, L.; Wang, Z.; Zhang, M. Involvement of Akt/GSK3β/CREB signaling pathway on chronic omethoate induced depressive-like behavior and improvement effects of combined lithium chloride and astaxanthin treatment. Neurosci. Lett., 2017, 649, 55-61.
[http://dx.doi.org/10.1016/j.neulet.2017.03.048] [PMID: 28366776]
[56]
Siddiqui, P.J.A.; Khan, A.; Uddin, N.; Khaliq, S.; Rasheed, M.; Nawaz, S.; Hanif, M.; Dar, A. Antidepressant-like deliverables from the sea: evidence on the efficacy of three different brown seaweeds via involvement of monoaminergic system. Biosci. Biotechnol. Biochem., 2017, 81(7), 1369-1378.
[http://dx.doi.org/10.1080/09168451.2017.1313697] [PMID: 28406051]
[57]
Abreu, T.M.; Monteiro, V.S.; Martins, A.B.S.; Teles, F.B.; da Conceição Rivanor, R.L.; Mota, É.F.; Macedo, D.S.; de Vasconcelos, S.M.M.; Júnior, J.E.R.H.; Benevides, N.M.B. Involvement of the dopaminergic system in the antidepressant-like effect of the lectin isolated from the red marine alga Solieria filiformis in mice. Int. J. Biol. Macromol., 2018, 111, 534-541.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.132] [PMID: 29289668]
[58]
Violle, N.; Rozan, P.; Demais, H.; Nyvall Collen, P.; Bisson, J.F. Evaluation of the antidepressant- and anxiolytic-like effects of a hydrophilic extract from the green seaweed Ulva sp. in rats. Nutr. Neurosci., 2018, 21(4), 248-256.
[http://dx.doi.org/10.1080/1028415X.2016.1276704] [PMID: 28102110]
[59]
Subermaniam, K.; Yow, Y.Y.; Lim, S.H.; Koh, O.H.; Wong, K.H. Malaysian macroalga Padina australis Hauck attenuates high dose corticosterone-mediated oxidative damage in PC12 cells mimicking the effects of depression. Saudi J. Biol. Sci., 2020, 27(6), 1435-1445.
[http://dx.doi.org/10.1016/j.sjbs.2020.04.042] [PMID: 32489279]
[60]
Panahi, Y.; Badeli, R.; Karami, G.R.; Badeli, Z.; Sahebkar, A. A randomized controlled trial of 6-week Chlorella vulgaris supplementation in patients with major depressive disorder. Complement. Ther. Med., 2015, 23(4), 598-602.
[http://dx.doi.org/10.1016/j.ctim.2015.06.010] [PMID: 26275653]
[61]
Talbott, S; Capelli, B; Ding, L; Li, Y; Artaria, C Cronicon astaxanthin supplementation reduces depression and fatigue in healthy subjects astaxanthin supplementation reduces depression and fatigue in healthy subjects. Funct. Food. Heal. Dis., 2019.
[62]
Miyake, Y.; Tanaka, K.; Okubo, H.; Sasaki, S.; Arakawa, M. Seaweed consumption and prevalence of depressive symptoms during pregnancy in Japan: Baseline data from the kyushu okinawa maternal and child health study. BMC Pregnancy Childbirth, 2014, 14(1), 301.
[http://dx.doi.org/10.1186/1471-2393-14-301] [PMID: 25186917]
[63]
Allaert, F.A.; Demais, H.; Collén, P.N. A randomized controlled double-blind clinical trial comparing versus placebo the effect of an edible algal extract (Ulva Lactuca) on the component of depression in healthy volunteers with anhedonia. BMC Psychiatry, 2018, 18(1), 215.
[http://dx.doi.org/10.1186/s12888-018-1784-x] [PMID: 29954354]
[64]
Munir, S; Shahid, A; Aslam, B; Ashfaq, UA; Akash, MSH; Ali, MA The therapeutic prospects of naturally occurring and synthetic indole alkaloids for depression and anxiety disorders. Evid.based. Complem. Altern. Med., 2020, 2020
[http://dx.doi.org/10.1155/2020/8836983]
[65]
Dey, P; Kundu, A; Kumar, A; Gupta, M; Lee, BM; Bhakta, T Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). Rec. Adv. Nat. Prod. Anal., 2020, 505-567.
[66]
Kochanowska-Karamyan, A.J.; Hamann, M.T. Marine indole alkaloids: Potential new drug leads for the control of depression and anxiety. Chem. Rev., 2010, 110(8), 4489-4497.
[http://dx.doi.org/10.1021/cr900211p] [PMID: 20380420]
[67]
Nirogi, R.V.S.; Kambhampati, R.; Kothmirkar, P.; Konda, J.; Bandyala, T.R.; Gudla, P.; Arepalli, S.; Gangadasari, N.P.; Shinde, A.K.; Deshpande, A.D.; Dwarampudi, A.; Chindhe, A.K.; Dubey, P.K. Synthesis and structure–activity relationship of novel conformationally restricted analogues of serotonin as 5-HT 6 receptor ligands. J. Enzyme Inhib. Med. Chem., 2012, 27(3), 443-450.
[http://dx.doi.org/10.3109/14756366.2011.595713] [PMID: 21774748]
[68]
Walker, J.; Daisley, R.W.; Beckett, A.H. Substituted oxindoles. III. synthesis and pharmacology of some substituted oxindoles. J. Med. Chem., 1970, 13(5), 983-985.
[http://dx.doi.org/10.1021/jm00299a048] [PMID: 5458399]
[69]
Bialonska, D.; Zjawiony, J. Aplysinopsins--marine indole alkaloids: Chemistry, bioactivity and ecological significance. Mar. Drugs, 2009, 7(2), 166-183.
[http://dx.doi.org/10.3390/md7020166] [PMID: 19597579]
[70]
Taylor, K.M.; Baird-Lambert, J.A.; Davis, P.A.; Spence, I. Methylaplysinopsin and other marine natural products affecting neurotransmission. Fed. Proc., 1981, 40(1), 15-20.
[PMID: 6256214]
[71]
Ibrahim, M.A.; El-Alfy, A.T.; Ezel, K.; Radwan, M.O.; Shilabin, A.G.; Kochanowska-Karamyan, A.J. Marine inspired 2-(5-halo-1h-indol-3-yl)-n, n-dimethylethanamines as modulators of serotonin receptors: An example illustrating the power of bromine as part of the uniquely marine chemical space. Mar. Drugs, 2017, 15(8), 248. [https://www.mdpi.com/1660-3397/15/8/248/htm (cited 2022 Dec 6)
[72]
Hu, J.F.; Schetz, J.A.; Kelly, M.; Peng, J.N.; Ang, K.K.H.; Flotow, H.; Leong, C.Y.; Ng, S.B.; Buss, A.D.; Wilkins, S.P.; Hamann, M.T. New antiinfective and human 5-HT2 receptor binding natural and semisynthetic compounds from the Jamaican sponge Smenospongia aurea. J. Nat. Prod., 2002, 65(4), 476-480.
[http://dx.doi.org/10.1021/np010471e] [PMID: 11975483]
[73]
Sperry, J. Concise syntheses of 5,6-dibromotryptamine and 5,6-dibromo-N,N-dimethyltryptamine en route to the antibiotic alternatamide D. Tetrahedron Lett., 2011, 52(31), 4042-4044.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.126]
[74]
Mollica, A.; Locatelli, M.; Stefanucci, A.; Pinnen, F. Synthesis and bioactivity of secondary metabolites from marine sponges containing dibrominated indolic systems. Molecules, 2012, 17, 6083-6099. Available from: https://www.mdpi.com/1420-3049/17/5/6083/htm (cited 2022 Dec 6)
[75]
Olsen, E.K.; Hansen, E.; W K Moodie, L. Isaksson, J.; Sepčić K.; Cergolj, M.; Svenson, J.; Andersen, J.H. Marine AChE inhibitors isolated from Geodia barretti: natural compounds and their synthetic analogs. Org. Biomol. Chem., 2016, 14(5), 1629-1640.
[http://dx.doi.org/10.1039/C5OB02416A] [PMID: 26695619]
[76]
Hedner, E.; Sjögren, M.; Frändberg, P.A.; Johansson, T.; Göransson, U.; Dahlström, M.; Jonsson, P.; Nyberg, F.; Bohlin, L. Brominated cyclodipeptides from the marine sponge Geodia barretti as selective 5-HT ligands. J. Nat. Prod., 2006, 69(10), 1421-1424.
[http://dx.doi.org/10.1021/np0601760] [PMID: 17067154]
[77]
Lax, N.C. Characterization of g-protein coupled receptors in pain, depression and anxiety A Doctoral Dissertation Duquesne University, 2018. Available from: https://dsc.duq.edu/etd/1725
[78]
Jimenez, E.C. Bromotryptophan and its analogs in peptides from marine animals. Protein Pept. Lett., 2019, 26(4), 251-260.
[http://dx.doi.org/10.2174/0929866526666190119170020] [PMID: 30663557]
[79]
Bifulco, G.; Bruno, I.; Minale, L.; Riccio, R.; Calignano, A.; Debitus, C. (+/-)-Gelliusines A and B, two diastereomeric brominated tris-indole alkaloids from a deep water new caledonian marine sponge (Gellius or Orina sp.). J. Nat. Prod., 1994, 57(9), 1294-1299.
[http://dx.doi.org/10.1021/np50111a020] [PMID: 7798965]
[80]
Munir, S.; Shahid, A.; Aslam, B.; Ashfaq, UA.; Akash, MSH.; Ali, MA. The therapeutic prospects of naturally occurring and synthetic indole alkaloids for depression and anxiety disorders. Evid. Based Complement. Alternat. Med., 2020, 2020, 8836983.
[http://dx.doi.org/10.1155/2020/8836983]
[81]
Liang, D.; Wang, Y.; Wang, Y.; Di, D. A simple synthesis of the debrominated analogue of veranamine. J. Chem. Res., 2015, 39(2), 105-107.
[http://dx.doi.org/10.3184/174751915X14225441524178]
[82]
Bulling, S.; Schicker, K.; Zhang, Y.W.; Steinkellner, T.; Stockner, T.; Gruber, C.W.; Boehm, S.; Freissmuth, M.; Rudnick, G.; Sitte, H.H.; Sandtner, W. The mechanistic basis for noncompetitive ibogaine inhibition of serotonin and dopamine transporters. J. Biol. Chem., 2012, 287(22), 18524-18534.
[http://dx.doi.org/10.1074/jbc.M112.343681] [PMID: 22451652]
[83]
Andreeva, N.I.; Golovina, S.M.; Faermark, M.F.; Shvarts, G.Ia. Mashkovskiĭ M.D. The comparative influence of pyrazidol, inkazan and other antidepressant monoamine oxidase inhibitors on the pressor effect of tyramine. Farmakol. Toksikol., 1991, 54(2), 38-40.
[PMID: 1884793]
[84]
Kraeuter, A.K.; Guest, P.C.; Sarnyai, Z. The forced swim test for depression-like behavior in rodents.Pre-Clinical Models. Methods in Molecular Biology; Guest, P., Ed.; Humana Press: New York, NY, 2019, 1916, pp. 75-80.
[http://dx.doi.org/10.1007/978-1-4939-8994-2_5]
[85]
Hao, Y.; Ge, H.; Sun, M.; Gao, Y. Selecting an appropriate animal model of depression. Int. J. Mol. Sci., 2019, 20(19), 4827.
[http://dx.doi.org/10.3390/ijms20194827] [PMID: 31569393]
[86]
Campus, P.; Colelli, V.; Orsini, C.; Sarra, D.; Cabib, S. Evidence for the involvement of extinction-associated inhibitory learning in the forced swimming test. Behav. Brain Res., 2015, 278, 348-355.
[http://dx.doi.org/10.1016/j.bbr.2014.10.009] [PMID: 25448432]
[87]
Bogdanova, O.V.; Kanekar, S.; D’Anci, K.E.; Renshaw, P.F. Factors influencing behavior in the forced swim test. Physiol. Behav., 2013, 118, 227-239.
[http://dx.doi.org/10.1016/j.physbeh.2013.05.012]
[88]
Grandjean, J.; Azzinnari, D.; Seuwen, A.; Sigrist, H.; Seifritz, E.; Pryce, C.R.; Rudin, M. Chronic psychosocial stress in mice leads to changes in brain functional connectivity and metabolite levels comparable to human depression. Neuroimage, 2016, 142, 544-552.
[http://dx.doi.org/10.1016/j.neuroimage.2016.08.013] [PMID: 27520750]
[89]
Kraeuter, A.K.; Guest, P.C.; Sarnyai, Z. Neuropsychiatric sequelae of early nutritional modifications: A beginner’s guide to behavioral analysis. Methods Mol. Biol., 2018, 1735, 403-420. Available from: https://pubmed.ncbi.nlm.nih.gov/29380331/
[http://dx.doi.org/10.1007/978-1-4939-7614-0_28]
[90]
Nestler, E.J.; Hyman, S.E. Animal models of neuropsychiatric disorders. Nat. Neurosci., 2010, 13(10), 1161-1169.
[http://dx.doi.org/10.1038/nn.2647] [PMID: 20877280]
[91]
Powell, T.R.; Fernandes, C.; Schalkwyk, L.C. Depression-related behavioral tests. Curr. Protoc. Mouse Biol., 2012, 2(2), 119-127.
[http://dx.doi.org/10.1002/9780470942390.mo110176] [PMID: 26069008]
[92]
Huang, L.; Xiao, D.; Sun, H.; Qu, Y.; Su, X. Behavioral tests for evaluating the characteristics of brain diseases in rodent models: Optimal choices for improved outcomes (Review). Mol. Med. Rep., 2022, 25(5), 183.
[http://dx.doi.org/10.3892/mmr.2022.12699] [PMID: 35348193]
[93]
O’Leary, O.F.; Cryan, J.F. The tail-suspension test: A model for characterizing antidepressant activity in mice. Neuromethods, 2009, 42, 119-137.
[http://dx.doi.org/10.1007/978-1-60761-303-9_7]
[94]
Walsh, R.N.; Cummins, R.A. The open-field test: A critical review. Psychol. Bull., 1976, 83(3), 482-504.
[http://dx.doi.org/10.1037/0033-2909.83.3.482] [PMID: 17582919]
[95]
Zeldetz, V.; Natanel, D.; Boyko, M.; Zlotnik, A.; Shiyntum, H.N.; Grinshpun, J. A new method for inducing a depression-like behavior in rats. J. Vis. Exp., 2018, 132, e57137. Available from: https://www.jove.com/t/57137/a-new-method-for-inducing-adepression-like-behavior-in-rats
[96]
Fuchs, E.; Flügge, G. Experimental animal models for the simulation of depression and anxiety., 2022, 8(3), 323-333. Available from: https://www.tandfonline.com/doi/abs/10.31887/DCNS.2006.8.3/efuchs (cited 2022 Dec 12)
[97]
Hall, C.; Ballachey, E.L. A study of the rat's behavior in a field. A contribution to method in comparative psychology. Uni. Calif. Public. Psychol., 1932, 6, 1-12. Available from: psycnet.apa.org Available from: https://psycnet.apa.org/record/1932-04321-001
[98]
He, L.W.; Zeng, L.; Tian, N.; Li, Y.; He, T.; Tan, D.M.; Zhang, Q.; Tan, Y. Optimization of food deprivation and sucrose preference test in SD rat model undergoing chronic unpredictable mild stress. Animal Model. Exp. Med., 2020, 3(1), 69-78.
[http://dx.doi.org/10.1002/ame2.12107] [PMID: 32318662]
[99]
Hakim, J.D.; Keay, K.A. Prolonged ad libitum access to low-concentration sucrose changes the neurochemistry of the nucleus accumbens in male Sprague-Dawley rats. Physiol. Behav., 2019, 201, 95-103.
[http://dx.doi.org/10.1016/j.physbeh.2018.12.016] [PMID: 30553896]
[100]
Kõiv, K.; Vares, M.; Kroon, C.; Metelitsa, M.; Tiitsaar, K.; Laugus, K.; Jaako, K.; Harro, J. Effect of chronic variable stress on sensitization to amphetamine in high and low sucrose-consuming rats. J. Psychopharmacol., 2019, 33(12), 1512-1523.
[http://dx.doi.org/10.1177/0269881119856000] [PMID: 31208275]
[101]
Yin, C.Y.; Li, L.D.; Xu, C.; Du, Z.W.; Wu, J.M.; Chen, X.; Xia, T.; Huang, S.Y.; Meng, F.; Zhang, J.; Xu, P.J.; Hua, F.Z.; Muhammad, N.; Han, F.; Zhou, Q.G. A novel method for automatic pharmacological evaluation of sucrose preference change in depression mice. Pharmacol. Res., 2021, 168, 105601.
[http://dx.doi.org/10.1016/j.phrs.2021.105601] [PMID: 33838294]
[102]
Inui-Yamamoto, C.; Yamamoto, T.; Ueda, K.; Nakatsuka, M.; Kumabe, S.; Inui, T.; Iwai, Y. Taste preference changes throughout different life stages in male rats. PLoS One, 2017, 12(7), e0181650.
[http://dx.doi.org/10.1371/journal.pone.0181650] [PMID: 28742813]
[103]
Liu, M.Y.; Yin, C.Y.; Zhu, L.J.; Zhu, X.H.; Xu, C.; Luo, C.X. Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat. Protocol., 2018, 13(7), 1686-1698.
[http://dx.doi.org/10.1038/s41596-018-0011-z]
[104]
Dulawa, S.C.; Hen, R. Recent advances in animal models of chronic antidepressant effects: The novelty-induced hypophagia test. Neurosci. Biobehav. Rev., 2005, 29(4-5), 771-783.
[http://dx.doi.org/10.1016/j.neubiorev.2005.03.017] [PMID: 15890403]
[105]
Yan, H.C.; Cao, X.; Das, M.; Zhu, X.H.; Gao, T.M. Behavioral animal models of depression. Neurosci. Bull., 2010, 26(4), 327-337.
[http://dx.doi.org/10.1007/s12264-010-0323-7] [PMID: 20651815]
[106]
Zhu, X.H.; Yan, H.C.; Zhang, J.; Qu, H.D.; Qiu, X.S.; Chen, L.; Li, S.J.; Cao, X.; Bean, J.C.; Chen, L.H.; Qin, X.H.; Liu, J.H.; Bai, X.C.; Mei, L.; Gao, T.M. Intermittent hypoxia promotes hippocampal neurogenesis and produces antidepressant-like effects in adult rats. J. Neurosci., 2010, 30(38), 12653-12663.
[http://dx.doi.org/10.1523/JNEUROSCI.6414-09.2010] [PMID: 20861371]
[107]
Caspani, O.; Reitz, M.C.; Ceci, A.; Kremer, A.; Treede, R.D. Tramadol reduces anxiety-related and depression-associated behaviors presumably induced by pain in the chronic constriction injury model of neuropathic pain in rats. Pharmacol. Biochem. Behav., 2014, 124, 290-296.
[http://dx.doi.org/10.1016/j.pbb.2014.06.018] [PMID: 24974768]
[108]
Bi, L.L.; Wang, J.; Luo, Z.Y.; Chen, S.P.; Geng, F.; Chen, Y.; Li, S.J.; Yuan, C.; Lin, S.; Gao, T.M. Enhanced excitability in the infralimbic cortex produces anxiety-like behaviors. Neuropharmacology, 2013, 72, 148-156.
[http://dx.doi.org/10.1016/j.neuropharm.2013.04.048] [PMID: 23643746]
[109]
Henningsen, K.; Andreasen, J.T.; Bouzinova, E.V.; Jayatissa, M.N.; Jensen, M.S.; Redrobe, J.P.; Wiborg, O. Cognitive deficits in the rat chronic mild stress model for depression: Relation to anhedonic-like responses. Behav. Brain Res., 2009, 198(1), 136-141.
[http://dx.doi.org/10.1016/j.bbr.2008.10.039] [PMID: 19038290]