A Review on the Anticancer Activity of Carbazole-based Tricyclic Compounds

Page: [4826 - 4849] Pages: 24

  • * (Excluding Mailing and Handling)

Abstract

Cancers are a huge threat to human life and health. Every year, many people suffer and die from various cancers, and numerous resources have been used to combat cancer. Due to several disadvantages of anticancer agents, such as drug-induced side effects, drug resistance, etc., there are still wide gaps in their ability to conquer cancer. Therefore, there is an urgent need to discover and develop many novel chemotypes to suppress cancer. In this review, we mainly focus on the anticancer potency of two representative sorts of carbazole-based compounds: carboline derivatives and diazacarbazole derivatives. Diazacarbazole derivatives, which have not been fully explored yet, might bring us a new vision and a valuable opportunity for overcoming the enormous hurdle we are now facing in the cancer campaign. We also provide several synthetic approaches for constructing the critical skeletons of the carbazole-based tricyclic compounds.

[1]
Kumar, S.; Singh, A.; Kumar, K.; Kumar, V. Recent insights into synthetic β-carbolines with anti-cancer activities. Eur. J. Med. Chem., 2017, 142, 48-73.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.059] [PMID: 28583770]
[2]
World Health Organization Report. Available from: http:/www.who.int/cancer/en/
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLobocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Petignat, P.; du Bois, A.; Bruchim, I.; Fink, D.; Provencher, D.M. Should intraperitoneal chemotherapy be considered as standard first-line treatment in advanced stage ovarian cancer? Crit. Rev. Oncol. Hematol., 2007, 62(2), 137-147.
[http://dx.doi.org/10.1016/j.critrevonc.2006.11.009] [PMID: 17188887]
[5]
Nicolson, M.; Leonard, R.C.F. Adverse effects of cancer chemotherapy. An overview of techniques for avoidance/minimisation. Drug Saf., 1992, 7(5), 316-322.
[http://dx.doi.org/10.2165/00002018-199207050-00002] [PMID: 1418691]
[6]
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[7]
Phour, A.; Gaur, V.; Banerjee, A.; Bhattacharyya, J. Recombinant protein polymers as carriers of chemotherapeutic agents. Adv. Drug Deliv. Rev., 2022, 190, 114544.
[http://dx.doi.org/10.1016/j.addr.2022.114544] [PMID: 36176240]
[8]
Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol., 2018, 54(2), 407-419.
[http://dx.doi.org/10.3892/ijo.2018.4661] [PMID: 30570109]
[9]
Hussain, M.; Gadgeel, S.; Kucuk, O.; Du, W.; Salwen, W.; Ensley, J. Paclitaxel, cisplatin, and 5-fluorouracil for patients with advanced or recurrent squamous cell carcinoma of the head and neck. Cancer, 1999, 86(11), 2364-2369.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19991201)86:11<2364::AID-CNCR26>3.0.CO;2-3] [PMID: 10590379]
[10]
Abu Samaan, T.M.; Samec, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules, 2019, 9(12), 789.
[http://dx.doi.org/10.3390/biom9120789] [PMID: 31783552]
[11]
Gornstein, E.L.; Schwarz, T.L. Neurotoxic mechanisms of paclitaxel are local to the distal axon and independent of transport defects. Exp. Neurol., 2017, 288, 153-166.
[http://dx.doi.org/10.1016/j.expneurol.2016.11.015] [PMID: 27894788]
[12]
Du, X.; Khan, A.R.; Fu, M.; Ji, J.; Yu, A.; Zhai, G. Current development in the formulations of non-injection administration of paclitaxel. Int. J. Pharm., 2018, 542(1-2), 242-252.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.030] [PMID: 29555439]
[13]
Thomas, A.C.G. Neurological adverse effects of cancer chemotherapy. Adverse Drug React. Bull., 2013, 278(1), 1071-1074.
[http://dx.doi.org/10.1097/FAD.0b013e32835ed7b5]
[14]
Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett., 2014, 347(2), 159-166.
[http://dx.doi.org/10.1016/j.canlet.2014.03.013] [PMID: 24657660]
[15]
Assaraf, Y.G.; Brozovic, A.; Gonçalves, A.C.; Jurkovicova, D.; Linē, A.; Machuqueiro, M.; Saponara, S.; Sarmento-Ribeiro, A.B.; Xavier, C.P.R.; Vasconcelos, M.H. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist. Updat., 2019, 46, 100645.
[http://dx.doi.org/10.1016/j.drup.2019.100645] [PMID: 31585396]
[16]
Cegielski, J.P.; Dalton, T.; Yagui, M.; Wattanaamornkiet, W.; Volchenkov, G.V.; Via, L.E.; Van Der Walt, M.; Tupasi, T.; Smith, S.E.; Odendaal, R.; Leimane, V.; Kvasnovsky, C.; Kuznetsova, T.; Kurbatova, E.; Kummik, T.; Kuksa, L.; Kliiman, K.; Kiryanova, E.V.; Kim, H.; Kim, C.; Kazennyy, B.Y.; Jou, R.; Huang, W.L.; Ershova, J.; Erokhin, V.V.; Diem, L.; Contreras, C.; Cho, S.N.; Chernousova, L.N.; Chen, M.P.; Caoili, J.C.; Bayona, J.; Akksilp, S.; Calahuanca, G.Y.; Wolfgang, M.; Viiklepp, P.; Vasilieva, I.A.; Taylor, A.; Tan, K.; Suarez, C.; Sture, I.; Somova, T.; Smirnova, T.G.; Sigman, E.; Skenders, G.; Sitti, W.; Shamputa, I.C.; Riekstina, V.; Pua, K.R.; Therese, M.; Perez, C.; Park, S.; Norvaisha, I.; Nemtsova, E.S.; Min, S.; Metchock, B.; Levina, K.; Lei, Y-C.; Lee, J.; Larionova, E.E.; Lancaster, J.; Jeon, D.; Jave, O.; Khorosheva, T.; Hwang, S.H.; Huang, A.S-E.; Gler, M.T.; Dravniece, G.; Eum, S.; Demikhova, O.V.; Degtyareva, I.; Danilovits, M.; Cirula, A.; Cho, E.; Cai, Y.; Brand, J.; Bonilla, C.; Barry, C.E.; Asencios, L.; Andreevskaya, S.N.; Akksilp, R. Extensive drug resistance acquired during treatment of multidrug-resistant tuberculosis. Clin. Infect. Dis., 2014, 59(8), 1049-1063.
[http://dx.doi.org/10.1093/cid/ciu572] [PMID: 25057101]
[17]
Stavrovskaya, A.A. Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry. Biokhimiia, 2000, 65(1), 95-106.
[18]
Catalano, A.; Iacopetta, D.; Ceramella, J.; Scumaci, D.; Giuzio, F.; Saturnino, C.; Aquaro, S.; Rosano, C.; Sinicropi, M.S. Multidrug Resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules, 2022, 27(3), 616.
[http://dx.doi.org/10.3390/molecules27030616] [PMID: 35163878]
[19]
Yang, X.; Liu, K. P-gp inhibition-based strategies for modulating pharmacokinetics of anticancer drugs: An update. Curr. Drug Metab., 2016, 17(8), 806-826.
[http://dx.doi.org/10.2174/1389200217666160629112717] [PMID: 27364832]
[20]
Ling, V. P-glycoprotein: Its role in drug resistance. Am. J. Med., 1995, 99(6), 31s-34s.
[http://dx.doi.org/10.1016/S0002-9343(99)80283-6] [PMID: 8585532]
[21]
Mollazadeh, S.; Sahebkar, A.; Hadizadeh, F.; Behravan, J.; Arabzadeh, S. Structural and functional aspects of P-glycoprotein and its inhibitors. Life Sci., 2018, 214, 118-123.
[http://dx.doi.org/10.1016/j.lfs.2018.10.048] [PMID: 30449449]
[22]
Cancer Management in Man: Chemotherapy, Biological Therapy, Hyperthermia and Supporting Measures; Springer: Dordrecht, 2011.
[23]
Tomar, M.S.; Kumar, A.; Srivastava, C.; Shrivastava, A. Elucidating the mechanisms of temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(2), 188616.
[http://dx.doi.org/10.1016/j.bbcan.2021.188616] [PMID: 34419533]
[24]
Pommier, Y.; Pharm, D.; Fesen, M.R.; Fujimori, A.; Bertrand, R.; Solary, E.; Kohlhagen, G.; Kohn, K.W. Cellular determinants of sensitivity and resistance to DNA topoisomerase inhibitors. Cancer Invest., 1994, 12(5), 530-542.
[http://dx.doi.org/10.3109/07357909409021413] [PMID: 7922710]
[25]
Robert, J.; Larsen, A.K. Drug resistance to topoisomerase II inhibitors. Biochimie, 1998, 80(3), 247-254.
[http://dx.doi.org/10.1016/S0300-9084(98)80007-2] [PMID: 9615864]
[26]
Casorelli, I.; Bossa, C.; Bignami, M. DNA damage and repair in human cancer: Molecular mechanisms and contribution to therapy-related leukemias. Int. J. Environ. Res. Public Health, 2012, 9(8), 2636-2657.
[http://dx.doi.org/10.3390/ijerph9082636] [PMID: 23066388]
[27]
Wray, J.; Williamson, E.A.; Sheema, S.; Lee, S.H.; Libby, E.; Willman, C.L.; Nickoloff, J.A.; Hromas, R. Metnase mediates chromosome decatenation in acute leukemia cells. Blood, 2009, 114(9), 1852-1858.
[http://dx.doi.org/10.1182/blood-2008-08-175760] [PMID: 19458360]
[28]
Wray, J.; Williamson, E.A.; Royce, M.; Shaheen, M.; Beck, B.D.; Lee, S.H.; Nickoloff, J.A.; Hromas, R. Metnase mediates resistance to topoisomerase II inhibitors in breast cancer cells. PLoS One, 2009, 4(4), e5323.
[http://dx.doi.org/10.1371/journal.pone.0005323] [PMID: 19390626]
[29]
Costantino, L.; Barlocco, D. Designed multiple ligands: Basic research vs clinical outcomes. Curr. Med. Chem., 2012, 19(20), 3353-3387.
[http://dx.doi.org/10.2174/092986712801215883] [PMID: 22680630]
[30]
Swinney, D.C.; Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov., 2011, 10(7), 507-519.
[http://dx.doi.org/10.1038/nrd3480] [PMID: 21701501]
[31]
Kucuksayan, E.; Ozben, T. Hybrid compounds as multitarget directed anticancer agents. Curr. Top. Med. Chem., 2017, 17(8), 907-918.
[http://dx.doi.org/10.2174/1568026616666160927155515] [PMID: 27697050]
[32]
Oliveira Pedrosa, M.; Duarte da Cruz, R.; Oliveira Viana, J.; de Moura, R.; Ishiki, H.; Barbosa Filho, J.; Diniz, M.; Scotti, M.; Scotti, L.; Bezerra Mendonca, F. Hybrid compounds as direct multitarget ligands: A review. Curr. Top. Med. Chem., 2017, 17(9), 1044-1079.
[http://dx.doi.org/10.2174/1568026616666160927160620] [PMID: 27697048]
[33]
Alam, M.M.; Hassan, A.H.E.; Kwon, Y.H.; Lee, H.J.; Kim, N.Y.; Min, K.H.; Lee, S.Y.; Kim, D.H.; Lee, Y.S. Design, synthesis and evaluation of alkylphosphocholine-gefitinib conjugates as multitarget anticancer agents. Arch. Pharm. Res., 2018, 41(1), 35-45.
[http://dx.doi.org/10.1007/s12272-017-0977-z] [PMID: 29094267]
[34]
Chen, Z.; Han, L.; Xu, M.; Xu, Y.; Qian, X. Rationally designed multitarget anticancer agents. Curr. Med. Chem., 2013, 20(13), 1694-1714.
[http://dx.doi.org/10.2174/0929867311320130009] [PMID: 23410168]
[35]
Xi, J.J.; He, R.Y.; Zhang, J.K.; Cai, Z.B.; Zhuang, R.X.; Zhao, Y.M.; Shao, Y.D.; Pan, X.W.; Shi, T.T.; Dong, Z.J.; Liu, S.R.; Kong, L.M. Design, synthesis, and biological evaluation of novel 3-(thiophen-2-ylthio)pyridine derivatives as potential multitarget anticancer agents. Arch. Pharm., 2019, 352(8), 1900024.
[http://dx.doi.org/10.1002/ardp.201900024] [PMID: 31338897]
[36]
Zhang, L.; Shan, Y.; Ji, X.; Zhu, M.; Li, C.; Sun, Y.; Si, R.; Pan, X.; Wang, J.; Ma, W.; Dai, B.; Wang, B.; Zhang, J. Discovery and evaluation of triple inhibitors of VEGFR-2, TIE-2 and EphB4 as anti-angiogenic and anti-cancer agents. Oncotarget, 2017, 8(62), 104745-104760.
[http://dx.doi.org/10.18632/oncotarget.20065] [PMID: 29285210]
[37]
Wang, J.; Zhang, L.; Pan, X.; Dai, B.; Sun, Y.; Li, C.; Zhang, J. Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents. Sci. Rep., 2017, 7(1), 45145.
[http://dx.doi.org/10.1038/srep45145] [PMID: 28332573]
[38]
Kaise, A.; Ohta, K.; Endo, Y. Novel p-carborane-containing multitarget anticancer agents inspired by the metabolism of 17β-estradiol. Bioorg. Med. Chem., 2017, 25(24), 6371-6378.
[http://dx.doi.org/10.1016/j.bmc.2017.10.006] [PMID: 29054710]
[39]
Gu, W.; Wang, S. Synthesis and antimicrobial activities of novel 1H-dibenzo[a,c]carbazoles from dehydroabietic acid. Eur. J. Med. Chem., 2010, 45(10), 4692-4696.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.038] [PMID: 20702006]
[40]
Yaqub, G.; Hannan, A.; Akbar, E.; Usman, M.; Hamid, A.; Sadiq, Z.; Iqbal, M. Synthesis, antibacterial, and antifungal activities of novel pyridazino carbazoles. J. Chem., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/818739]
[41]
Zhang, F.F.; Gan, L.L.; Zhou, C.H. Synthesis, antibacterial and antifungal activities of some carbazole derivatives. Bioorg. Med. Chem. Lett., 2010, 20(6), 1881-1884.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.159] [PMID: 20176480]
[42]
Gu, W.; Qiao, C.; Wang, S.F.; Hao, Y.; Miao, T.T. Synthesis and biological evaluation of novel N-substituted 1H-dibenzo[a,c]carbazole derivatives of dehydroabietic acid as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2014, 24(1), 328-331.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.009] [PMID: 24300736]
[43]
Bandgar, B.P.; Adsul, L.K.; Chavan, H.V.; Jalde, S.S.; Shringare, S.N.; Shaikh, R.; Meshram, R.J.; Gacche, R.N.; Masand, V. Synthesis, biological evaluation, and docking studies of 3-(substituted)-aryl-5-(9-methyl-3-carbazole)-1H-2-pyrazolines as potent anti-inflammatory and antioxidant agents. Bioorg. Med. Chem. Lett., 2012, 22(18), 5839-5844.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.080] [PMID: 22901385]
[44]
Bashir, M.; Bano, A.; Ijaz, A.; Chaudhary, B. Recent developments and biological activities of n-substituted carbazole derivatives: A review. Molecules, 2015, 20(8), 13496-13517.
[http://dx.doi.org/10.3390/molecules200813496] [PMID: 26213906]
[45]
Tsutsumi, L.S.; Gündisch, D.; Sun, D. Carbazole scaffold in medicinal chemistry and natural products: A review from 2010-2015. Curr. Top. Med. Chem., 2016, 16(11), 1290-1313.
[http://dx.doi.org/10.2174/1568026615666150915112647] [PMID: 26369811]
[46]
Cao, R.; Peng, W.; Wang, Z.; Xu, A. beta-Carboline alkaloids: biochemical and pharmacological functions. Curr. Med. Chem., 2007, 14(4), 479-500.
[http://dx.doi.org/10.2174/092986707779940998] [PMID: 17305548]
[47]
Mineno, M.; Sera, M.; Ueda, T.; Mizufune, H.; Zanka, A.; O’Bryan, C.; Brown, J.; Scorah, N. Integrated cross-coupling strategy for an α-carboline-based Aurora B kinase inhibitor. J. Org. Chem., 2015, 80(3), 1564-1568.
[http://dx.doi.org/10.1021/jo502489x] [PMID: 25616084]
[48]
Chauhan, S.S.; Singh, A.K.; Meena, S.; Lohani, M.; Singh, A.; Arya, R.K.; Cheruvu, S.H.; Sarkar, J.; Gayen, J.R.; Datta, D.; Chauhan, P.M.S. Synthesis of novel β-carboline based chalcones with high cytotoxic activity against breast cancer cells. Bioorg. Med. Chem. Lett., 2014, 24(13), 2820-2824.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.109] [PMID: 24844196]
[49]
Lim, J.; Taoka, B.; Otte, R.D.; Spencer, K.; Dinsmore, C.J.; Altman, M.D.; Chan, G.; Rosenstein, C.; Sharma, S.; Su, H.P.; Szewczak, A.A.; Xu, L.; Yin, H.; Zugay-Murphy, J.; Marshall, C.G.; Young, J.R. Discovery of 1-amino-5H-pyrido[4,3-b]indol-4-carboxamide inhibitors of Janus kinase 2 (JAK2) for the treatment of myeloproliferative disorders. J. Med. Chem., 2011, 54(20), 7334-7349.
[http://dx.doi.org/10.1021/jm200909u] [PMID: 21942426]
[50]
Abboud, M.; Aubert, E.; Mamane, V. Double N-arylation reaction of polyhalogenated 4,4′-bipyridines. Expedious synthesis of functionalized 2,7-diazacarbazoles. Beilstein J. Org. Chem., 2012, 8, 253-258.
[http://dx.doi.org/10.3762/bjoc.8.26] [PMID: 22423292]
[51]
Abboud, M.; Mamane, V.; Aubert, E.; Lecomte, C.; Fort, Y. Synthesis of polyhalogenated 4,4′-bipyridines via a simple dimerization procedure. J. Org. Chem., 2010, 75(10), 3224-3231.
[http://dx.doi.org/10.1021/jo100152e] [PMID: 20426403]
[52]
Joan, D.H.; J, G.l.; Karen, W. 1,7-Diazacarbazoles and their use in the treatment of cancer. WO Patent 073263, 2011.
[53]
Alekseyev, R.S.; Kurkin, A.V.; Yurovskaya, M.A. The Piloty-Robinson reaction of N-substituted piperidin-4-one azines. A novel route for the synthesis of 3,6-diazacarbazole. Chem. Heterocycl. Compd., 2011, 47(5), 584-596.
[http://dx.doi.org/10.1007/s10593-011-0802-4]
[54]
Lunagariya, N.A.; Gohil, V.M.; Kushwah, V.; Neelagiri, S.; Jain, S.; Singh, S.; Bhutani, K.K. Design, synthesis and biological evaluation of 1,3,6-trisubstituted β-carboline derivatives for cytotoxic and anti-leishmanial potential. Bioorg. Med. Chem. Lett., 2016, 26(3), 789-794.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.095] [PMID: 26791014]
[55]
Kamal, A.; Narasimha Rao, M.P.; Swapna, P.; Srinivasulu, V.; Bagul, C.; Shaik, A.B.; Mullagiri, K.; Kovvuri, J.; Reddy, V.S.; Vidyasagar, K.; Nagesh, N. Synthesis of β-carboline–benzimidazole conjugates using lanthanum nitrate as a catalyst and their biological evaluation. Org. Biomol. Chem., 2014, 12(15), 2370-2387.
[http://dx.doi.org/10.1039/C3OB42236D] [PMID: 24604306]
[56]
Kovvuri, J.; Nagaraju, B.; Nayak, V.L.; Akunuri, R.; Rao, M.P.N.; Ajitha, A.; Nagesh, N.; Kamal, A. Design, synthesis and biological evaluation of new β-carboline-bisindole compounds as DNA binding, photocleavage agents and topoisomerase I inhibitors. Eur. J. Med. Chem., 2018, 143, 1563-1577.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.054] [PMID: 29129513]
[57]
Sathish, M.; Kavitha, B.; Nayak, V.L.; Tangella, Y.; Ajitha, A.; Nekkanti, S.; Alarifi, A.; Shankaraiah, N.; Nagesh, N.; Kamal, A. Synthesis of podophyllotoxin linked β-carboline congeners as potential anticancer agents and DNA topoisomerase II inhibitors. Eur. J. Med. Chem., 2018, 144, 557-571.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.055] [PMID: 29289881]
[58]
Shankaraiah, N.; Siraj, K.P.; Nekkanti, S.; Srinivasulu, V.; Sharma, P.; Senwar, K.R.; Sathish, M.; Vishnuvardhan, M.V.P.S.; Ramakrishna, S.; Jadala, C.; Nagesh, N.; Kamal, A. DNA-binding affinity and anticancer activity of β-carboline–chalcone conjugates as potential DNA intercalators: Molecular modelling and synthesis. Bioorg. Chem., 2015, 59, 130-139.
[http://dx.doi.org/10.1016/j.bioorg.2015.02.007] [PMID: 25771335]
[59]
Kamal, A.; Sathish, M.; Nayak, V.L.; Srinivasulu, V.; Kavitha, B.; Tangella, Y.; Thummuri, D.; Bagul, C.; Shankaraiah, N.; Nagesh, N. Design and synthesis of dithiocarbamate linked β-carboline derivatives: DNA topoisomerase II inhibition with DNA binding and apoptosis inducing ability. Bioorg. Med. Chem., 2015, 23(17), 5511-5526.
[http://dx.doi.org/10.1016/j.bmc.2015.07.037] [PMID: 26264845]
[60]
Shuai, K.; Liu, B. Regulation of JAK–STAT signalling in the immune system. Nat. Rev. Immunol., 2003, 3(11), 900-911.
[http://dx.doi.org/10.1038/nri1226] [PMID: 14668806]
[61]
Valentino, L.; Pierre, J. JAK/STAT signal transduction: Regulators and implication in hematological malignancies. Biochem. Pharmacol., 2006, 71(6), 713-721.
[http://dx.doi.org/10.1016/j.bcp.2005.12.017] [PMID: 16426581]
[62]
Baxter, E.J.; Scott, L.M.; Campbell, P.J.; East, C.; Fourouclas, N.; Swanton, S.; Vassiliou, G.S.; Bench, A.J.; Boyd, E.M.; Curtin, N.; Scott, M.A.; Erber, W.N.; Green, A.R. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet, 2005, 365(9464), 1054-1061.
[http://dx.doi.org/10.1016/S0140-6736(05)71142-9] [PMID: 15781101]
[63]
Kralovics, R.; Passamonti, F.; Buser, A.S.; Teo, S.S.; Tiedt, R.; Passweg, J.R.; Tichelli, A.; Cazzola, M.; Skoda, R.C. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med., 2005, 352(17), 1779-1790.
[http://dx.doi.org/10.1056/NEJMoa051113] [PMID: 15858187]
[64]
Vinayal, P.A.; G, B.D.; Qingjie, L.; L, J.W.; Harold, M.; Guifen, Z.; Kurt, Z. Carbazole and carboline kinase inhibitors. WO Patent 080474, 2010.
[65]
Merry, C.; Fu, K.; Wang, J.; Yeh, I.J.; Zhang, Y. Targeting the checkpoint kinase Chk1 in cancer therapy. Cell Cycle, 2010, 9(2), 279-283.
[http://dx.doi.org/10.4161/cc.9.2.10445] [PMID: 20023404]
[66]
Ma, C.X.; Janetka, J.W.; Piwnica-Worms, H. Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol. Med., 2011, 17(2), 88-96.
[http://dx.doi.org/10.1016/j.molmed.2010.10.009] [PMID: 21087899]
[67]
Goto, H.; Izawa, I.; Li, P.; Inagaki, M. Novel regulation of checkpoint kinase 1: Is checkpoint kinase 1 a good candidate for anti-cancer therapy? Cancer Sci., 2012, 103(7), 1195-1200.
[http://dx.doi.org/10.1111/j.1349-7006.2012.02280.x] [PMID: 22435685]
[68]
Shumaila, A.M.; Puranik, V.G.; Kusurkar, R.S. Diastereoselective synthesis of tetrasubstituted-octahydro-3, 6-diazacarbazoles and tetrasubstituted-3, 6-diazacarbazoles via double Pictet–Spengler reaction. Tetrahedron Lett., 2011, 52(21), 2661-2663.
[69]
Gazzard, L.; Appleton, B.; Chapman, K.; Chen, H.; Clark, K.; Drobnick, J.; Goodacre, S.; Halladay, J.; Lyssikatos, J.; Schmidt, S.; Sideris, S.; Wiesmann, C.; Williams, K.; Wu, P.; Yen, I.; Malek, S. Discovery of the 1,7-diazacarbazole class of inhibitors of checkpoint kinase 1. Bioorg. Med. Chem. Lett., 2014, 24(24), 5704-5709.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.063] [PMID: 25453805]
[70]
Uckun, F.M.; Tibbles, H.E.; Vassilev, A.O. Bruton’s tyrosine kinase as a new therapeutic target. Anticancer. Agents Med. Chem., 2007, 7(6), 624-632.
[http://dx.doi.org/10.2174/187152007784111331] [PMID: 18045057]
[71]
Mohamed, A.J.; Nore, B.F.; Christensson, B.; Smith, C.I. Signalling of Bruton’s tyrosine kinase, Btk. Scand. J. Immunol., 1999, 49(2), 113-118.
[http://dx.doi.org/10.1046/j.1365-3083.1999.00504.x] [PMID: 10075013]
[72]
Buggy, J.J.; Elias, L. Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int. Rev. Immunol., 2012, 31(2), 119-132.
[http://dx.doi.org/10.3109/08830185.2012.664797] [PMID: 22449073]
[73]
Kim, H.O. Development of BTK inhibitors for the treatment of B-cell malignancies. Arch. Pharm. Res., 2019, 42(2), 171-181.
[http://dx.doi.org/10.1007/s12272-019-01124-1] [PMID: 30706214]
[74]
Gayko, U.; Fung, M.; Clow, F.; Sun, S.; Faust, E.; Price, S.; James, D.; Doyle, M.; Bari, S.; Zhuang, S.H. Development of the Bruton’s tyrosine kinase inhibitor ibrutinib for B cell malignancies. Ann. N. Y. Acad. Sci., 2015, 1358(1), 82-94.
[http://dx.doi.org/10.1111/nyas.12878] [PMID: 26348626]
[75]
Lee, C.S.; Rattu, M.A.; Kim, S.S. A review of a novel, Bruton’s tyrosine kinase inhibitor, ibrutinib. J. Oncol. Pharm. Pract., 2016, 22(1), 92-104.
[http://dx.doi.org/10.1177/1078155214561281] [PMID: 25425007]
[76]
Jian, L.; Joseph, K.; Ronald, K.; Xiaolei, G.; Babu, B.S.; Younong, Y.; Hao, W.; Shilan, L.; Chundao, Y. Azacarbazole BTK inhibitors. WO Patent 164284, 2016.
[77]
Chunjian, L.; James, L. Carboline carboxamide compounds useful as kinase inhibitors. WO Patent 159857, 2011.
[78]
Hunter, W.S. Tricyclic atropisomer compounds. WO 2016/065222, 2016.
[79]
Belkina, A.C.; Denis, G.V. BET domain co-regulators in obesity, inflammation and cancer. Nat. Rev. Cancer, 2012, 12(7), 465-477.
[http://dx.doi.org/10.1038/nrc3256] [PMID: 22722403]
[80]
Ran, X.; Zhao, Y.; Liu, L.; Bai, L.; Yang, C.Y.; Zhou, B.; Meagher, J.L.; Chinnaswamy, K.; Stuckey, J.A.; Wang, S. Structure-based design of γ-carboline analogues as potent and specific bet bromodomain inhibitors. J. Med. Chem., 2015, 58(12), 4927-4939.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00613] [PMID: 26080064]
[81]
Fung, J.J.; Kosaka, A.; Shan, X.; Danet-Desnoyers, G.; Gormally, M.; Owen, K. Registered report: Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukemia. eLife, 2015, 4, e08997.
[http://dx.doi.org/10.7554/eLife.08997] [PMID: 26327698]
[82]
Asangani, I.A.; Dommeti, V.L.; Wang, X.; Malik, R.; Cieslik, M.; Yang, R.; Escara-Wilke, J.; Wilder-Romans, K.; Dhanireddy, S.; Engelke, C.; Iyer, M.K.; Jing, X.; Wu, Y.M.; Cao, X.; Qin, Z.S.; Wang, S.; Feng, F.Y.; Chinnaiyan, A.M. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature, 2014, 510(7504), 278-282.
[http://dx.doi.org/10.1038/nature13229] [PMID: 24759320]
[83]
Stathis, A.; Quesnel, B.; Amorim, S.; Thieblemont, C.; Zucca, E.; Raffoux, E.; Dombret, H.; Peng, Y.; Palumbo, A.; Vey, N.; Thomas, X.; Michallet, M.; Gomez-Roca, C.; Recher, C.; Karlin, L.; Yee, K.; Rezai, K.; Preudhomme, C.; Facon, T.; Herait, P. 5LBA Results of a first-in-man phase I trial assessing OTX015, an orally available BET-bromodomain (BRD) inhibitor, in advanced hematologic malignancies. Eur. J. Cancer, 2014, 50, 196.
[http://dx.doi.org/10.1016/S0959-8049(14)70726-9]
[84]
Vázquez, R.; Riveiro, M.E.; Astorgues-Xerri, L.; Odore, E.; Rezai, K.; Erba, E.; Panini, N.; Rinaldi, A.; Kwee, I.; Beltrame, L.; Bekradda, M.; Cvitkovic, E.; Bertoni, F.; Frapolli, R.; D’Incalci, M. The bromodomain inhibitor OTX015 (MK-8628) exerts anti-tumor activity in triple-negative breast cancer models as single agent and in combination with everolimus. Oncotarget, 2017, 8(5), 7598-7613.
[http://dx.doi.org/10.18632/oncotarget.13814] [PMID: 27935867]
[85]
A, Q.C.; S, H.L.; D, H.M. Tricyclic compounds as anticancer agents. WO Patent 183114, 2016.
[86]
Norris Derek, J.; Wayne, V. Tricyclic compounds as anticancer agents. WO Patent 183118, 2016.
[87]
Jijun, L. Tricyclic compound for bromodomain-containing protein inhibitor and preparation, pharmaceutical composition, and application thereof. WO Patent 133681, 2017.
[88]
Shankaraiah, N.; Jadala, C.; Nekkanti, S.; Senwar, K.R.; Nagesh, N.; Shrivastava, S.; Naidu, V.G.M.; Sathish, M.; Kamal, A. Design and synthesis of C3-tethered 1,2,3-triazolo-β-carboline derivatives: Anticancer activity, DNA-binding ability, viscosity and molecular modeling studies. Bioorg. Chem., 2016, 64, 42-50.
[http://dx.doi.org/10.1016/j.bioorg.2015.11.005] [PMID: 26657602]
[89]
Sheng, J.; Gan, J.; Huang, Z. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery. Med. Res. Rev., 2013, 33(5), 1119-1173.
[http://dx.doi.org/10.1002/med.21278] [PMID: 23633219]
[90]
Delgado, J.L.; Hsieh, C.M.; Chan, N.L.; Hiasa, H. Topoisomerases as anticancer targets. Biochem. J., 2018, 475(2), 373-398.
[http://dx.doi.org/10.1042/BCJ20160583] [PMID: 29363591]
[91]
Deveau, A.M.; Labroli, M.A.; Dieckhaus, C.M.; Barthen, M.T.; Smith, K.S.; Macdonald, T.L. The synthesis of amino-acid functionalized β-Carbolines as topoisomerase II inhibitors. Bioorg. Med. Chem. Lett., 2001, 11(10), 1251-1255.
[http://dx.doi.org/10.1016/S0960-894X(01)00136-6] [PMID: 11392530]
[92]
Zhao, M.; Bi, L.; Wang, W.; Wang, C.; Baudy-Floc’h, M.; Ju, J.; Peng, S. Synthesis and cytotoxic activities of β-carboline amino acid ester conjugates. Bioorg. Med. Chem., 2006, 14(20), 6998-7010.
[http://dx.doi.org/10.1016/j.bmc.2006.06.021] [PMID: 16806943]
[93]
Chaniyara, R.; Tala, S.; Chen, C.W.; Zang, X.; Kakadiya, R.; Lin, L.F.; Chen, C.H.; Chien, S.I.; Chou, T.C.; Tsai, T.H.; Lee, T.C.; Shah, A.; Su, T.L. Novel antitumor indolizino[6,7-b]indoles with multiple modes of action: DNA cross-linking and topoisomerase I and II inhibition. J. Med. Chem., 2013, 56(4), 1544-1563.
[http://dx.doi.org/10.1021/jm301788a] [PMID: 23360284]
[94]
Chikamori, K.; Grozav, A.G.; Kozuki, T.; Grabowski, D.; Ganapathi, R.; Ganapathi, M.K. DNA topoisomerase II enzymes as molecular targets for cancer chemotherapy. Curr. Cancer Drug Targets, 2010, 10(7), 758-771.
[http://dx.doi.org/10.2174/156800910793605785] [PMID: 20578986]
[95]
Christodoulou, M.S.; Zarate, M.; Ricci, F.; Damia, G.; Pieraccini, S.; Dapiaggi, F.; Sironi, M.; Lo Presti, L.; García-Argáez, A.N.; Dalla Via, L.; Passarella, D. 4-(1,2-diarylbut-1-en-1-yl)isobutyranilide derivatives as inhibitors of topoisomerase II. Eur. J. Med. Chem., 2016, 118, 79-89.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.090] [PMID: 27128175]
[96]
Kwon, H.B.; Park, C.; Jeon, K.H.; Lee, E.; Park, S.E.; Jun, K.Y.; Kadayat, T.M.; Thapa, P.; Karki, R.; Na, Y.; Park, M.S.; Rho, S.B.; Lee, E.S.; Kwon, Y. A series of novel terpyridine-skeleton molecule derivants inhibit tumor growth and metastasis by targeting topoisomerases. J. Med. Chem., 2015, 58(3), 1100-1122.
[http://dx.doi.org/10.1021/jm501023q] [PMID: 25603122]
[97]
Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M.L.; Rehman, M.; Walther, T.C.; Olsen, J.V.; Mann, M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009, 325(5942), 834-840.
[http://dx.doi.org/10.1126/science.1175371] [PMID: 19608861]
[98]
Chan, A.M.; Fletcher, S. Shifting the paradigm in treating multi-factorial diseases: polypharmacological co-inhibitors of HDAC6. RSC Med. Chem., 2021, 12(2), 178-196.
[http://dx.doi.org/10.1039/D0MD00286K] [PMID: 34046608]
[99]
Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov., 2006, 5(9), 769-784.
[http://dx.doi.org/10.1038/nrd2133] [PMID: 16955068]
[100]
Li, W.; Sun, Z. Mechanism of action for HDAC inhibitors-insights from omics approaches. Int. J. Mol. Sci., 2019, 20(7), 1616.
[http://dx.doi.org/10.3390/ijms20071616] [PMID: 30939743]
[101]
Nakagawa, M.; Oda, Y.; Eguchi, T.; Aishima, S.I.; Yao, T.; Hosoi, F.; Basaki, Y.; Ono, M.; Kuwano, M.; Tanaka, M.; Tsuneyoshi, M. Expression profile of class I histone deacetylases in human cancer tissues. Oncol. Rep., 2007, 18(4), 769-774.
[http://dx.doi.org/10.3892/or.18.4.769] [PMID: 17786334]
[102]
Ling, Y.; Guo, J.; Yang, Q.; Zhu, P.; Miao, J.; Gao, W.; Peng, Y.; Yang, J.; Xu, K.; Xiong, B.; Liu, G.; Tao, J.; Luo, L.; Zhu, Q.; Zhang, Y. Development of novel β-carboline-based hydroxamate derivatives as HDAC inhibitors with antiproliferative and antimetastatic activities in human cancer cells. Eur. J. Med. Chem., 2018, 144, 398-409.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.061] [PMID: 29288941]
[103]
Gryder, B.E.; Sodji, Q.H.; Oyelere, A.K. Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med. Chem., 2012, 4(4), 505-524.
[http://dx.doi.org/10.4155/fmc.12.3] [PMID: 22416777]
[104]
Zhang, H.; Shang, Y.P.; Chen, H.; Li, J. Histone deacetylases function as novel potential therapeutic targets for cancer. Hepatol. Res., 2017, 47(2), 149-159.
[http://dx.doi.org/10.1111/hepr.12757] [PMID: 27457249]
[105]
Namballa, H.K.; Anchi, P.; Lakshmi Manasa, K.; Soni, J.P.; Godugu, C.; Shankaraiah, N.; Kamal, A. β-Carboline tethered cinnamoyl 2-aminobenzamides as class I selective HDAC inhibitors: Design, synthesis, biological activities and modelling studies. Bioorg. Chem., 2021, 117, 105461.
[http://dx.doi.org/10.1016/j.bioorg.2021.105461] [PMID: 34753060]
[106]
Hamilton, E.; Infante, J.R. Targeting CDK4/6 in patients with cancer. Cancer Treat. Rev., 2016, 45, 129-138.
[http://dx.doi.org/10.1016/j.ctrv.2016.03.002] [PMID: 27017286]
[107]
Li, D.; Liu, W.; Huang, Y.; Liu, M.; Tian, C.; Lu, H.; Jia, H.; Xu, Z.; Ding, H.; Zhao, Q. Facile synthesis of C1-substituted β-carbolines as CDK4 inhibitors for the treatment of cancer. Bioorg. Chem., 2022, 121, 105659.
[http://dx.doi.org/10.1016/j.bioorg.2022.105659] [PMID: 35180487]
[108]
Venkataramana Reddy, P.O.; Hridhay, M.; Nikhil, K.; Khan, S.; Jha, P.N.; Shah, K.; Kumar, D. Synthesis and investigations into the anticancer and antibacterial activity studies of β-carboline chalcones and their bromide salts. Bioorg. Med. Chem. Lett., 2018, 28(8), 1278-1282.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.033] [PMID: 29573910]
[109]
Chen, J.; Liu, T.; Wu, R.; Lou, J.; Dong, X.; He, Q.; Yang, B.; Hu, Y. Design, synthesis, and biological evaluation of novel γ-carboline ketones as anticancer agents. Eur. J. Med. Chem., 2011, 46(4), 1343-1347.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.057] [PMID: 21342735]
[110]
Cao, R.; Guan, X.; Shi, B.; Chen, Z.; Ren, Z.; Peng, W.; Song, H. Design, synthesis and 3D-QSAR of β-carboline derivatives as potent antitumor agents. Eur. J. Med. Chem., 2010, 45(6), 2503-2515.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.036] [PMID: 20304536]
[111]
Shankaraiah, N.; Nekkanti, S.; Chudasama, K.J.; Senwar, K.R.; Sharma, P.; Jeengar, M.K.; Naidu, V.G.M.; Srinivasulu, V.; Srinivasulu, G.; Kamal, A. Design, synthesis and anticancer evaluation of tetrahydro-β-carboline-hydantoin hybrids. Bioorg. Med. Chem. Lett., 2014, 24(23), 5413-5417.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.038] [PMID: 25453799]
[112]
Kamal, A.; Srinivasulu, V.; Nayak, V.L.; Sathish, M.; Shankaraiah, N.; Bagul, C.; Reddy, N.V.S.; Rangaraj, N.; Nagesh, N. Design and synthesis of C3-pyrazole/chalcone-linked beta-carboline hybrids: antitopoisomerase I, DNA-interactive, and apoptosis-inducing anticancer agents. ChemMedChem, 2014, 9(9), 2084-2098.
[http://dx.doi.org/10.1002/cmdc.201300406] [PMID: 24470122]
[113]
Jha, A.M.; Singh, A.C.; Bharti, M.K. Clastogenicity of carbazole in mouse bone marrow cells in vivo. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2002, 521(1-2), 11-17.
[http://dx.doi.org/10.1016/S1383-5718(02)00210-3] [PMID: 12437999]
[114]
Dang, Z.; Xu, S.; Zhang, H.; Gui, W.; Zhao, Y.; Duan, L.; Hu, W. In vitro and in vivo efficacies of carbazole aminoalcohols in the treatment of alveolar echinococcosis. Acta Trop., 2018, 185, 138-143.
[http://dx.doi.org/10.1016/j.actatropica.2018.05.007] [PMID: 29746870]
[115]
Patel, O.P.S.; Mishra, A.; Maurya, R.; Saini, D.; Pandey, J.; Taneja, I.; Raju, K.S.R.; Kanojiya, S.; Shukla, S.K.; Srivastava, M.N.; Wahajuddin, M.; Tamrakar, A.K.; Srivastava, A.K.; Yadav, P.P. Naturally occurring carbazole alkaloids from Murraya koenigii as potential antidiabetic agents. J. Nat. Prod., 2016, 79(5), 1276-1284.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00883] [PMID: 27136692]
[116]
Ghobadian, R.; Esfandyari, R.; Nadri, H.; Moradi, A.; Mahdavi, M.; Akbarzadeh, T.; Khaleghzadeh-Ahangar, H.; Edraki, N.; Sharifzadeh, M.; Amini, M. Design, synthesis, in vivo and in vitro studies of 1,2,3,4-tetrahydro-9H-carbazole derivatives, highly selective and potent butyrylcholinesterase inhibitors. Mol. Divers., 2020, 24(1), 211-223.
[http://dx.doi.org/10.1007/s11030-019-09943-6] [PMID: 30927138]