Endocrine, Metabolic & Immune Disorders - Drug Targets

Author(s): Nian Ding, Yanbo Fan and Chenghong Zheng*

DOI: 10.2174/1871530323666230824165645

The Jiangtang Tongmai Prescription Inhibits Inflammation and Fibrosis of Lung Fibroblast Autophagy Induced by Hyperglycemia by Regulating CAV1 Expression

Page: [717 - 724] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Objective: The lung is one of the target organs of diabetes. This study aimed to probe the protective mechanism of Jiangtang Tongmai Prescription (JTTMP) against diabetic lung injury.

Methods: JTTMP-containing serum was collected, and a high glucose and high-fat diabetic cell model was established. The cells were treated with a drug-containing serum or a CAV1-associated vector. Transfection efficiency was measured by qRT-PCR and western blot, the cell proliferative capacity was tested by CCK-8 assay, and the expression of autophagosome marker LC3B was measured by immunophluorescence assay. Expression levels of the autophagy markers LC3B, p62, and Beclin-1, and the expression levels of the fibrosis markers α-SMA, FN-1, and TGF-β1 were determined by western blot, and the levels of inflammatory factors TNF-α and IL-1β in the supernatants were assessed by ELISA.

Results: In high glucose and high fat-induced MRC-5 cells, JTTMP-containing serum impeded the abnormal cell proliferation and the expression levels of autophagy markers, fibrosis markers, as well as inflammatory factors. CAV1 expression was decreased in MRC-5 cells treated with JTTMP-containing serum. In MRC-5 cells upon transfection with the CAV1 overexpression vector and treatment with JTTMP-containing serum, increased cell proliferation, increased LC3B, p62, Beclin-1, α-SMA, FN-1, and TGF-β1, TNF-α, and IL-1β levels were found compared with cells treated with JTTMP-containing serum alone.

Conclusion: This study suggests that JTTMP suppresses CAV1 expression to attenuate diabetic lung injury by reducing abnormal proliferation and autophagy, and reducing levels of fibrosis and inflammation.

Graphical Abstract

[1]
Gandhi, G.Y.; Mooradian, A.D. Management of hyperglycemia in older adults with type 2 diabetes. Drugs Aging, 2022, 39(1), 39-58.
[http://dx.doi.org/10.1007/s40266-021-00910-1] [PMID: 34921341]
[2]
Kuitert, L.M.E. The lung in diabetes: Yet another target organ? Chron. Respir. Dis., 2008, 5(2), 67-68.
[http://dx.doi.org/10.1177/1479972308091408] [PMID: 18539718]
[3]
Pitocco, D.; Fuso, L.; Conte, E.G.; Zaccardi, F.; Condoluci, C.; Scavone, G.; Incalzi, R.A.; Ghirlanda, G. The diabetic lung--a new target organ? Rev. Diabet. Stud., 2012, 9(1), 23-35.
[http://dx.doi.org/10.1900/RDS.2012.9.23] [PMID: 22972442]
[4]
Zhang, L.; Jiang, F.; Xie, Y.; Mo, Y.; Zhang, X.; Liu, C. Diabetic endothelial microangiopathy and pulmonary dysfunction. Front. Endocrinol., 2023, 14, 1073878.
[http://dx.doi.org/10.3389/fendo.2023.1073878]
[5]
Belligund, P.; Attaway, A.; Lopez, R.; Damania, D. Hatipoğlu, U.; Zein, J.G. Diabetes associated with higher health care utilization and poor outcomes after COPD-related hospitalizations. Am. J. Manag. Care, 2022, 28(9), e325-e332.
[http://dx.doi.org/10.37765/ajmc.2022.89225] [PMID: 36121364]
[6]
Kopf, S.; Kumar, V.; Kender, Z.; Han, Z.; Fleming, T.; Herzig, S.; Nawroth, P.P. Diabetic pneumopathy-a new diabetes-associated complication: Mechanisms, consequences and treatment considerations. Front. Endocrinol., 2021, 12, 765201.
[7]
Cazzola, M.; Rogliani, P.; Ora, J.; Calzetta, L.; Matera, M.G. Cardiovascular diseases or type 2 diabetes mellitus and chronic airway diseases: Mutual pharmacological interferences. Ther. Adv. Chronic Dis., 2023, 14, 20406223231171556.
[http://dx.doi.org/10.1177/20406223231171556]
[8]
Zheng, H.; Wu, J.; Jin, Z.; Yan, L.J. Potential biochemical mechanisms of lung injury in diabetes. Aging Dis., 2017, 8(1), 7-16.
[http://dx.doi.org/10.14336/AD.2016.0627] [PMID: 28203478]
[9]
Wang, J.; Ma, Q.; Li, Y.; Li, P.; Wang, M.; Wang, T.; Wang, C.; Wang, T.; Zhao, B. Research progress on traditional chinese medicine syndromes of diabetes mellitus. Biomed. Pharmacother., 2020, 121, 109565.
[http://dx.doi.org/10.1016/j.biopha.2019.109565]
[10]
Liu, J.P.; Zhang, M.; Wang, W.Y.; Grimsgaard, S. Chinese herbal medicines for type 2 diabetes mellitus. Cochrane Database Syst. Rev., 2004, 2002(3), CD003642.
[PMID: 15266492]
[11]
Chen, C.T.; Chen, C.F.; Lin, T.Y.; Hua, W.J.; Hua, K.; Tsai, C.Y.; Hsu, C.H. Traditional Chinese medicine Kuan-Sin-Yin decoction inhibits cell mobility via downregulation of CCL2, CEACAM1 and PIK3R3 in hepatocellular carcinoma cells. J. Ethnopharmacol., 2023, 317, 116834.
[http://dx.doi.org/10.1016/j.jep.2023.116834] [PMID: 37355084]
[12]
Fang, C.; Zhang, J.; Han, J.; Lei, Y.; Cao, Z.; Pan, J.; Pan, Z.; Zhang, Z.; Qu, N.; Luo, H.; Ma, Y.; Han, D. Tiaogan Jiejiu Tongluo Formula attenuated alcohol-induced chronic liver injury by regulating lipid metabolism in rats. J. Ethnopharmacol., 2023, 317, 116838.
[http://dx.doi.org/10.1016/j.jep.2023.116838] [PMID: 37355081]
[13]
Ding, N.; Zheng, C. Jiangtang tongmai prescription reduced diabetic lung injury through snon and tgf-beta1/smads signaling pathway. Front. Endocrinol., 2022, 13, 846583.
[14]
Shvets, E.; Ludwig, A.; Nichols, B.J. News from the caves: Update on the structure and function of caveolae. Curr. Opin. Cell Biol., 2014, 29, 99-106.
[http://dx.doi.org/10.1016/j.ceb.2014.04.011]
[15]
Cohen, A.W.; Hnasko, R.; Schubert, W.; Lisanti, M.P. Role of caveolae and caveolins in health and disease. Physiol. Rev., 2004, 84(4), 1341-1379.
[http://dx.doi.org/10.1152/physrev.00046.2003] [PMID: 15383654]
[16]
Parton, R.G.; Simons, K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol., 2007, 8(3), 185-194.
[http://dx.doi.org/10.1038/nrm2122] [PMID: 17318224]
[17]
Puddu, A.; Montecucco, F.; Maggi, D. Caveolin-1 and atherosclerosis: Regulation of LDLs fate in endothelial cells. Int. J. Mol. Sci., 2023, 24(10), 8869.
[http://dx.doi.org/10.3390/ijms24108869] [PMID: 37240214]
[18]
Van Krieken, R.; Krepinsky, J.C. Caveolin-1 in the pathogenesis of diabetic nephropathy: Potential therapeutic target? Curr. Diab. Rep., 2017, 17(3), 19.
[http://dx.doi.org/10.1007/s11892-017-0844-9] [PMID: 28283950]
[19]
Ward, R.; Ergul, A. Relationship of endothelin-1 and NLRP3 inflammasome activation in HT22 hippocampal cells in diabetes. Life Sci., 2016, 159, 97-103.
[http://dx.doi.org/10.1016/j.lfs.2016.02.043]
[20]
Burja, B.; Kuret, T.; Janko, T.; Topalovic, D.; Zivkovic, L.; Mrak-Poljsak, K.; Spremo-Potparevic, B.; Zigon, P.; Distler, O.; Cucnik, S.; Sodin-Semrl, S.; Lakota, K.; Frank-Bertoncelj, M. Olive leaf extract attenuates inflammatory activation and dna damage in human arterial endothelial cells. Front. Cardiovasc. Med., 2019, 6, 56.
[http://dx.doi.org/10.3389/fcvm.2019.00056]
[21]
Ding, N.; Zheng, C. Mechanism of Jiangtang Tongmai Recipe in treating diabetic lung damage based on network pharmacology and experimental verification. J. Tradit. Chin. Med., 2022, 42(7), 1129-1138.
[22]
Harding, J.L.; Pavkov, M.E.; Magliano, D.J.; Shaw, J.E.; Gregg, E.W. Global trends in diabetes complications: A review of current evidence. Diabetologia, 2019, 62(1), 3-16.
[http://dx.doi.org/10.1007/s00125-018-4711-2] [PMID: 30171279]
[23]
Martín-Frías, M.; Lamas, A.; Lara, E.; Alonso, M.; Ros, P.; Barrio, R. Pulmonary function in children with type 1 diabetes mellitus. J. Pediatr. Endocrinol. Metab., 2015, 28(1-2), 163-169.
[http://dx.doi.org/10.1515/jpem-2014-0147] [PMID: 25153374]
[24]
Scaramuzza, A.E.; Morelli, M.; Rizzi, M.; Borgonovo, S.; De Palma, A.; Mameli, C.; Giani, E.; Beretta, S.; Zuccotti, G.V. Impaired diffusing capacity for carbon monoxide in children with type 1 diabetes: Is this the first sign of long-term complications? Acta Diabetol., 2012, 49(2), 159-164.
[http://dx.doi.org/10.1007/s00592-011-0353-2] [PMID: 22105342]
[25]
El-Shaer, N.O.; Hegazy, A.M.; Muhammad, M.H. Protective effect of quercetin on pulmonary dysfunction in streptozotocin-induced diabetic rats via inhibition of NLRP3 signaling pathway. Environ. Sci. Pollut. Res. Int., 2023, 30(14), 42390-42398.
[http://dx.doi.org/10.1007/s11356-023-25254-8] [PMID: 36648717]
[26]
Mameli, C.; Ghezzi, M.; Mari, A.; Cammi, G.; Macedoni, M.; Redaelli, F.C.; Calcaterra, V.; Zuccotti, G.; D’Auria, E. The diabetic lung: Insights into pulmonary changes in children and adolescents with type 1 diabetes. Metabolites, 2021, 11(2), 69.
[http://dx.doi.org/10.3390/metabo11020069] [PMID: 33530418]
[27]
Su, H.; Tian, C.J.; Wang, Y.; Shi, J.; Chen, X.; Zhen, Z.; Bai, Y.; Deng, L.; Feng, C.; Ma, Z.; Liu, J. Ginsenoside Rb1 reduces oxidative/carbonyl stress damage and ameliorates inflammation in the lung of streptozotocin-induced diabetic rats. Pharm. Biol., 2022, 60(1), 2229-2236.
[http://dx.doi.org/10.1080/13880209.2022.2140168] [PMID: 36367996]
[28]
Zhan, L.; Zhang, Y.; Su, W.; Zhang, Q.; Chen, R.; Zhao, B.; Li, W.; Xue, R.; Xia, Z.; Lei, S. The roles of autophagy in acute lung injury induced by myocardial ischemia reperfusion in diabetic rats. J. Diabetes Res., 2018, 2018, 5047526.
[http://dx.doi.org/10.1155/2018/5047526]
[29]
Haddad, D.; Al Madhoun, A.; Nizam, R.; Al-Mulla, F. Role of caveolin-1 in diabetes and its complications. Oxid. Med. Cell. Longev., 2020, 2020, 9761539.
[http://dx.doi.org/10.1155/2020/9761539]
[30]
Bian, F.; Yang, X.; Zhou, F.; Wu, P.H.; Xing, S.; Xu, G.; Li, W.; Chi, J.; Ouyang, C.; Zhang, Y.; Xiong, B.; Li, Y.; Zheng, T.; Wu, D.; Chen, X.; Jin, S. C-reactive protein promotes atherosclerosis by increasing LDL transcytosis across endothelial cells. Br. J. Pharmacol., 2014, 171(10), 2671-2684.
[http://dx.doi.org/10.1111/bph.12616] [PMID: 24517733]
[31]
Zhang, Y.; Yang, X.; Bian, F.; Wu, P.; Xing, S.; Xu, G.; Li, W.; Chi, J.; Ouyang, C.; Zheng, T.; Wu, D.; Zhang, Y.; Li, Y.; Jin, S. TNF-alpha promotes early atherosclerosis by increasing transcytosis of LDL across endothelial cells: Crosstalk between NF-kappaB and PPAR-gamma. J. Mol. Cell. Cardiol., 2014, 72, 85-94.
[32]
Sonveaux, P.; Martinive, P.; DeWever, J.; Batova, Z.; Daneau, G.; Pelat, M.; Ghisdal, P.; Grégoire, V.; Dessy, C.; Balligand, J.L.; Feron, O. Caveolin-1 expression is critical for vascular endothelial growth factor-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis. Circ. Res., 2004, 95(2), 154-161.
[http://dx.doi.org/10.1161/01.RES.0000136344.27825.72] [PMID: 15205364]
[33]
Pereira da Silva, E.A.; Martin-Aragon Baudel, M.; Hong, J.; Bartels, P.; Navedo, M.F.; Nieves-Cintron, M. Vascular Ca(V)1.2 channels in diabetes. Curr. Top. Membr., 2022, 90, 65-93.