Connection-Based Zagreb Indices of Polycyclic Aromatic Hydrocarbons Structures

Page: [246 - 256] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Topological indices (TIs) are mathematical formulas that are applied in mathematical chemistry to predict the physical and chemical properties of various chemical structures. In this study, three different types of polycyclic aromatic hydrocarbon structures (PAHs) (i.e., Hexa-peri-hexabenzocoronene, Dodeca-benzo-circumcoronene, and Hexa-cata- hexabenzocoronene) are studied with the help of the different connection number-based Zagreb indices.

Materials and Methods: ϑ = (V(ϑ),E(ϑ)) is used as a graph, where V(ϑ) is a collection of vertices and E(ϑ) is a collection of edges. For a vertex y, ∈V(ϑ), the degree dϑ (y), is the number of those vertices that are at a distance of 1 from y and the connection number ρϑ (y) is the number of such vertices that are at a distance of 2 from vertex y.

Results: Theoretical applications of topological indices were described in detail.

Conclusion: Finally, we obtained the first and second Zagreb connections as well as the modified first, second, third, and fourth Zagreb connection indices, which were calculated for three different types (Hexa-peri-hexabenzocorone, Dodeca-benzo-circumcoronene, and Hexa-cata-hexabenzocoronene) of polycyclic aromatic hydrocarbon structures.

[1]
Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc., 1947, 69(1), 17-20.
[http://dx.doi.org/10.1021/ja01193a005] [PMID: 20291038]
[2]
Mauri, A.; Consonni, V.; Todeschini, R. Molecular descriptors.Handbook of computational chemistry; Springer: Cham, 2017, pp. 2065-2093.
[http://dx.doi.org/10.1007/978-3-319-27282-5_51]
[3]
Liu, J.B.; Gu, J.J.; Wang, K. The expected values for the Gutman index, Schultz index, and some Sombor indices of a random cyclooctane chain. Int J Quan Chem, 2022, 123(3), 27022.
[4]
Khalaf, A.J.M.; Hanif, M.F.; Siddiqui, M.K.; Farahani, M.R. On degree based topological indices of bridge graphs. Journal of Discrete Mathematical Sciences and Cryptography, 2020, 23(6), 1139-1156.
[http://dx.doi.org/10.1080/09720529.2020.1822040]
[5]
Liu, J.B.; Wang, C.; Wang, S.; Wei, B. Zagreb indices and multiplicative Zagreb indices of eulerian graphs. Bull. Malays. Math. Sci. Soc., 2019, 42(1), 67-78.
[http://dx.doi.org/10.1007/s40840-017-0463-2]
[6]
Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons. Chem. Phys. Lett., 1972, 17(4), 535-538.
[http://dx.doi.org/10.1016/0009-2614(72)85099-1]
[7]
Gutman, I.; Das, K.C. The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem, 2004, 50(1), 83-92.
[8]
Gutman, I.; Ruscic, B.; Trinajstic, N.; Wilcox, C.F., Jr Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys., 1975, 62(9), 3399-3405.
[http://dx.doi.org/10.1063/1.430994]
[9]
Nikolic, S.; Kovacevic, G.; Milicevic, A.; Trinajstic, N. The Zagreb indices 30 years after. Croat. Chem. Acta, 2003, 76(2), 113-124.
[10]
Hao, J. Theorems about Zagreb indices and modified Zagreb indices. MATCH Commun. Math. Comput. Chem, 2011, 65, 659-670.
[11]
Usman, M.; Javaid, M. Connection-Based Multiplicative Zagreb Indices of Poly- cyclic Aromatic Hydrocarbon Structures. Appl. Math. Sci., 2022, 1(2), 36-56.
[12]
Das, K.C. Maximizing the sum of the squares of the degrees of a graph. Discrete Math., 2004, 285(1-3), 57-66.
[http://dx.doi.org/10.1016/j.disc.2004.04.007]
[13]
Eliasi, M.; Iranmanesh, A.; Gutman, I. Multiplicative versions of first Zagreb index. Match (Mulh.), 2012, 68(1), 217.
[14]
Eliasi, M.; Vukicevic, D. Comparing the multiplicative Zagreb indices. MATCH Commun. Math. Comput. Chem, 2013, 69, 765-773.
[15]
Liu, J.B.; Raza, Z.; Javaid, M. Zagreb connection numbers for cellular neural networks. Discrete Dyn. Nat. Soc., 2020, 2020, 1-8.
[http://dx.doi.org/10.1155/2020/8038304]
[16]
Ali, U.; Javaid, M.; Kashif, A. Modified Zagreb connection indices of the T-sum graphs. Main Group Met. Chem., 2020, 43(1), 43-55.
[http://dx.doi.org/10.1515/mgmc-2020-0005]
[17]
Javaid, M.; Ali, U.; Siddiqui, K. Novel connection based Zagreb indices of several wheel-related graphs. Computat J Combinat Math, 2021, 1, 1-28.
[18]
Sattar, A.; Javaid, M.; Bonyah, E. Connection-based multiplicative Zagreb indices of dendrimer nanostars. J. Math., 2021, 2021, 1-14.
[http://dx.doi.org/10.1155/2021/2107623]
[19]
Raza, Z.; Bataineh, M.S.; Sukaiti, M.E. On the zagreb connection indices of hex and honeycomb networks. J. Intell. Fuzzy Syst., 2021, 40(3), 4107-4114.
[http://dx.doi.org/10.3233/JIFS-200659]
[20]
Du, Z.; Ali, A.; Trinajstić, N. Alkanes with the first three maximal/minimal modified first Zagreb connection indices. Mol. Inform., 2019, 38(4), 1800116.
[http://dx.doi.org/10.1002/minf.201800116] [PMID: 30614630]
[21]
Noureen, S.; Bhatti, A.A.; Ali, A. Extremal trees for the modified first Zagreb connection index with fixed number of segments or vertices of degree 2. J. Taibah Univ. Sci., 2020, 14(1), 31-37.
[http://dx.doi.org/10.1080/16583655.2019.1699227]
[22]
Bell, F.K. A note on the irregularity of graphs. Linear Algebra Appl., 1992, 161, 45-54.
[http://dx.doi.org/10.1016/0024-3795(92)90004-T]
[23]
de Caen, D. An upper bound on the sum of squares of degrees in a graph. Discrete Math., 1998, 185(1-3), 245-248.
[http://dx.doi.org/10.1016/S0012-365X(97)00213-6]
[24]
Nagase, M.; Kato, K.; Yagi, A.; Segawa, Y.; Itami, K. Six-fold C–H borylation of hexa- peri -hexabenzocoronene. Beilstein J. Org. Chem., 2020, 16(1), 391-397.
[http://dx.doi.org/10.3762/bjoc.16.37] [PMID: 32256855]
[25]
Sakamoto, K.; Nishina, N.; Enoki, T.; Aihara, J. Aromatic character of nanographene model compounds. J. Phys. Chem. A, 2014, 118(16), 3014-3025.
[http://dx.doi.org/10.1021/jp5017032] [PMID: 24689779]
[26]
Hiszpanski, A.M.; Baur, R.M.; Kim, B.; Tremblay, N.J.; Nuckolls, C.; Woll, A.R.; Loo, Y.L. Tuning polymorphism and orientation in organic semiconductor thin films via post-deposition processing. J. Am. Chem. Soc., 2014, 136(44), 15749-15756.
[http://dx.doi.org/10.1021/ja5091035] [PMID: 25317987]