Methicillin, β-lactams, and Clindamycin Resistance Profiles of Staphylococcus aureus Strains Isolated from Patients with UTI in Bechar Province (Algeria)

Article ID: e220823220161 Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Staphylococcus aureus is a bacterial pathogen responsible for many diseases. Multidrug resistance in S. aureus has become common worldwide and is a serious clinical issue in the treatment and care of S. aureus infected patients. S. aureus uropathogenic strains isolated from patients with UTI in Bechar province (Algeria) were phenotypically identified and evaluated for multiple drug resistance (MDR) patterns against recommended antimicrobial drugs.

Methods: Through selective media, the uropathogenic S. aureus strains were isolated by analyzing a total of 211 urine samples, then subjected to various biochemical identification tests. Multidrug resistance pattern (MRSA, MLSB, and β-lactamase production) among Staphylococcus aureus uropathogenic strains was performed using phenotypic tests.

A total of 50 S. aureus strains were isolated, i.e., 40,48% of all the isolated uropathogenic agents estimated at 126 isolates. More than 69% of the women had a urinary tract infection, i.e., a sex ratio (SR) of 0,43. The susceptibility test results showed that the isolated S. aureus strains were resistant to various antibiotics of the β-lactams class (penicillin, cefoxitin, and oxacillin) and were susceptible to gentamicin, chloramphenicol, co-trimoxazole, vancomycin, ofloxacin, and ciprofloxacin. Cefoxitin disk diffusion and agar screening tests showed that all the isolated S. aureus strains were qualified as MRSA at the rate of 100% (50/50), whereas a rate of 74% (37/50) was granted to MRSA using oxacillin disk diffusion test. The highest percentage of MDR-MRSA was observed in class three of antibiotics 12 (24%). The lowest percentage was observed in classes 8 and 9 of antibiotics 1 (2%). For MDR-MRSA, the MAR index ranged from 0,27 to 1,0.

Results: Penicillin disk diffusion (DD) and DDST (PI/PIT) tests showed a production rate of β-lactamase in the range of 94% and 80%, respectively. 85,1% (40/50) of penicillin-resistant strains were positive for DDST. Thus, the D-test among MRSA strains shows a rate of 38% (19/50) of cMLSB and no strain attributed to the iMLSB phenotype.

Conclusion: This is an alarming rate, confirming the concern that is still being discussed within the medical teams of the national health sector as well as the Algerian antimicrobial resistance network, which requires prompt intervention to update a new strategy to fight antimicrobial resistance.

Graphical Abstract

[1]
Amhis, W. Algeria: Program for the prevention and control of multiresistant bacteria infections in healthcare settings. 2016. Available from: http://resistancecontrol.info/2018-frontpage-francais/4f/algerie-programme-de-prevention-et-de-controle-des-infections-a-bacteries-multi-resistantes-en-milieu-de-soins/
[2]
Kumar, P.; Kumar, A.; Singh, A.K.; Thareja, S. A review of pyridine and pyrimidine derivatives as anti-MRSA agents. Antiinfect. Agents, 2023, 21(2), e050722206610.
[http://dx.doi.org/10.2174/2211352520666220705085733]
[3]
David, M.Z.; Daum, R.S. Treatment of Staphylococcus aureus unfections. Curr. Top. Microbiol. Immunol., 2017, 409, 325-383.
[http://dx.doi.org/10.1007/82_2017_42] [PMID: 28900682]
[4]
Quincampoix, J.C.; Mainardi, J.L. Mechanism of resistance in Gram-positive cocci. Resuscitation., 2001, 10, 267-275.
[http://dx.doi.org/10.1016/S1164-6756(01)00114-1]
[5]
Marisa, H.; Jouy, E.; Madec, J-Y.; Laurent, F. Methicillin-resistant Staphylococcus aureus (MRSA): shared between humans and animals? Epidemiological Bulletin. Animal Health and Food., 2012, 53, 40-42.
[6]
Sharma, S.; Srivastava, P.; Kulshrestha, A.; Abbas, A. Evaluation of different phenotypic methods for the detection of methicillin resistant Staphylococcus aureus and antimicrobial susceptibility pattern of MRSA. Int. J. Community Med. Public Health, 2017, 4(9), 3297-3301.
[http://dx.doi.org/10.18203/2394-6040.ijcmph20173832]
[7]
Benyagoub, E. Identification and study of the emergence of antibiotic resistance of microorganisms responsible for urinary tract infections in Bechar (Algeria). ScienceLib, 2013, 5, 1-13.
[8]
Benyagoub, E.; Alkhudhairy, M.K.; Benchaib, S.M.; Zaalan, A.; Mekhfi, Y.; Teyebi, N.; Razni, D.; Bendada, F. Isolation frequency of uropathogenic strains and search for ESBL producing Enterobacteriaceae isolated from patients with UTI in Bechar (Algeria). Antiinfect. Agents, 2021, 19(3), 303-316.
[http://dx.doi.org/10.2174/2211352518999201224102209]
[9]
Muhammad, A.; Ali, N.; Ali, S.; Shuaib, S.L.; Afridi, I.Q.; Saeed, W.; Khan, M.J. Antibiotics resistance of extended spectrum beta lactamases uropathogenic Escherichia coli in Peshawar-Pakistan. Pure Appl. Biol., 2020, 9(3), 1840-1848.
[http://dx.doi.org/10.19045/bspab.2020.90196]
[10]
Karou, S.D.; Ilboudo, D.P.; Nadembega, W.M.C.; Ameyapoh, Y.; Ouermi, D.; Pignatelli, S.; Pietra, V.; Traore, A.S.; Souza, C.; Simpore, J. Antibiotic resistance in urinary tract bacteria in Ouagadougou. Pakistan. Pak. J. Biol. Sci., 2009, 12(9), 712-716.
[http://dx.doi.org/10.3923/pjbs.2009.712.716]
[11]
Tille, M.P. Bailey & Scott’s diagnostic microbiology, 14th ed; Elsevier, 2018.
[12]
Performance standards for antimicrobial disk susceptibility testing M100; 30th ed.; Wayne Pennsylvania 19087-USA: CLSI, 2020.
[13]
Khan, Z.A.; Siddiqui, M.F.; Park, S. Current and emerging methods of antibiotic susceptibility testing. Diagnostics., 2019, 9(2), 49.
[http://dx.doi.org/10.3390/diagnostics9020049]
[14]
Nyandjou, Y.M.C.; Yakubu, S.E.; Abdullahi, I.O.; Machido, D.A. Multidrug resistance patterns and multiple antibiotic resitance index of Salmonella species isolated from waste dumps in Zaria Metropolis, Nigeria. J. Appl. Sci. Environ. Manag., 2019, 23(1), 41-46.
[http://dx.doi.org/10.4314/jasem.v23i1.6]
[15]
Saki, M.; Alkhudhairy, M.K.; Seyed-Mohammadi, S.; Jomehzadeh, N.; Khoshnood, S.; Moradzadeh, M.; Yazdansetad, S. Integron frequency of Escherichia coli strains from patients with urinary tract infection in Southwest of Iran. J. Acute Dis., 2019, 8(3), 113-117.
[http://dx.doi.org/10.4103/2221-6189.259110]
[16]
Ayandele, A.A.; Oladipo, E.K.; Oyebisi, O.; Kaka, M.O. Prevalence of multi-antibiotic resistant Escherichia coli and Klebsiella species obtained from a tertiary medical institution in Oyo state, Nigeria. Qatar Med. J., 2020, 2020(1), 9.
[http://dx.doi.org/10.5339/qmj.2020.9] [PMID: 32280610]
[17]
Thapa, D.; Pyakurel, S.; Thapa, S.; Lamsal, S.; Chaudhari, M.; Adhikari, N.; Shrestha, D. Staphylococcus aureus with inducible clindamycin resistance and methicillin resistance in a tertiary hospital in Nepal. Trop. Med. Health, 2021, 49(1), 99.
[http://dx.doi.org/10.1186/s41182-021-00392-2] [PMID: 34961568]
[18]
Swenson, J.M.; Spargo, J.; Tenover, F.C.; Ferraro, M.J. Optimal inoculation methods and quality control for the NCCLS oxacillin agar screen test for detection of oxacillin resistance in Staphylococcus aureus. J. Clin. Microbiol., 2001, 39(10), 3781-3784.
[http://dx.doi.org/10.1128/JCM.39.10.3781-3784.2001] [PMID: 11574618]
[19]
Anand, K.B.; Agrawal, P.; Kumar, S.; Kapila, K. Comparison of cefoxitin disc diffusion test, oxacillin screen AGAR, and PCR for meca gene for detection of MRSA. Indian J. Med. Microbiol., 2009, 27(1), 27-29.
[http://dx.doi.org/10.1016/S0255-0857(21)01748-5] [PMID: 19172055]
[20]
Brown, D.F.J.; Edwards, D.I.; Hawkey, P.M.; Morrison, D.; Ridgway, G.L.; Towner, K.J.; Wren, M.W.D. Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). J. Antimicrob. Chemother., 2005, 56(6), 1000-1018.
[http://dx.doi.org/10.1093/jac/dki372] [PMID: 16293678]
[21]
Isenberg, HD. Ed.; Clinical microbiology procedures hand book, 2nd ed; ASM Press: Washington, DC, 2004.
[22]
Sachin, Sharma.; Mall, A. ,The prevalence, antibiogram and characterisationof methicillin resistant Staphylococcus aureus among the patients from the Doon Valley hospitals. Afr. J. Microbiol. Res., 2011, 5(21), 3446-3451.
[http://dx.doi.org/10.5897/AJMR11.600]
[23]
Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 1966, 45(4_ts), 493-496.
[http://dx.doi.org/10.1093/ajcp/45.4_ts.493] [PMID: 5325707]
[24]
Alkhudhairy, M.K; Al-Mohana, A.M; Hussein, A.N. Detection of β-lactamases producing Methicillin-Resistant Staphylococcus aureus (MRSA). Al-qadisiyah. J. Agric. Sci., 2018, 23(2), 229-239.
[25]
Gardiner, B.J.; Grayson, M.L.; Wood, G.M. Inducible resistance to clindamycin in Staphylococcus aureus: validation of Vitek-2 against CLSI D-test. Pathology, 2013, 45(2), 181-184.
[http://dx.doi.org/10.1097/PAT.0b013e32835cccda] [PMID: 23277176]
[26]
Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; Paterson, D.L.; Rice, L.B.; Stelling, J.; Struelens, M.J.; Vatopoulos, A.; Weber, J.T.; Monnet, D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 2012, 18(3), 268-281.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03570.x] [PMID: 21793988]
[27]
Elkharrat, D.; Arrouy, L.; Benhamou, F.; Dray, A.; Grenet, J.; Corre, A.L. Epidemiological Bulletin, Animal Health and Food; Springer: Paris, 2007, pp. 1-20.
[http://dx.doi.org/10.1007/978-2-287-48617-3_1]
[28]
Marrhich, M.B. Antibiotics used in urinary tract infections., Thesis of State Doctorate in Pharmacy.: Dakar, 2008.
[29]
Lyamba, J.M. Study of the interaction of clinical strains of Staphylococcus aureus with an abiotic surface; Doctoral thesis. Faculty of Pharmacy, Doctoral School in Pharmaceutical Sciences, Free University of Brussels, Belgium, 2012.
[30]
Mimoes, M.; Malheiro, J. Antimicrobial resistance of biofilms in medical devices. In: Biofilms and implantable medical devices: Infection and control; Deng, Y.; Lv, W., Eds.; Ed. Elseviers, 2017; p. 97-113.
[http://dx.doi.org/10.1016/C2014-0-04106-8]
[31]
Lebeaux, D.; Ghigo, J-M. [Management of biofilm-associated infections: What can we expect from recent research on biofilm lifestyles?]. Med. Sci., 2012, 28(8-9), 727-739.
[http://dx.doi.org/10.1051/medsci/2012288015] [PMID: 22920875]
[32]
Koinam, F.R.; Guira, F.; Somda, N.S.; Yaméogo, A.; Bonkoungou, I.J.; Traoré, Y.; Savadogo, A. Profile of sensitivity and resistance to antibiotics of Staphylococcus aureus strains isolated from patients fluids in medical biology department of National Public Health Laboratory of Ouagadougou, Burkina Faso. Rev. Sci. Fondam. Appl., 2017, 9(1), 553-566.
[http://dx.doi.org/10.4314/jfas.v9i1.32]
[33]
Assouma, F.F.; Sina, H.; Dossou, A.D.; Socohou, A.; Hounsou, M.C.; Avogbe, P.H.; Boya, B.; Mousse, W.; Adjanohoun, A.; Baba-Moussa, L. Antibiotic resistance profiling of pathogenic Staphylococcus species from urinary tract infection patients in Benin. BioMed Res. Int., 2023, 2023, 1-9.
[http://dx.doi.org/10.1155/2023/6364128] [PMID: 37223336]
[34]
Coulibaly, I.; Koume, K.; Conde, F; Foba, F.I.; M’bengue, G.V.C.; Guessennd, N; Tiekoura, K.B.; Konate, I.; Kone, D. Evaluation of the risk of contamination of milk preparations in the neonatology department of the CHU of Treichville and resistance to antibiotics in the bacterial flora. Agronomie Africaine., 2018, 30(2), 205-214.
[35]
Hossain, M.J.; Sohidullah, M.; Alam, M.A.; Al Mamun, M.S.; Badr, Y.; Altaib, H.; Rahman, M.M. Molecular detection of methicillin resistant Staphylococcus aureus (MRSA) in poultry in Bangladesh: Having public health significance. J. Vet. Med. Sci., 2022, 2(6), 17-21.
[http://dx.doi.org/10.24018/ejvetmed.2022.2.6.69]
[36]
Touaitia, R. Methicillin-resistant Staphylococcus aureus: emergence and mechanisms of resistance; Doctoral thesis. Faculty of Sciences, Badji Mokhtar University of Annaba (Algeria), 2016.
[37]
Alkhudhairy, M.K.; Hassan, A-S.U.; Khdear, Y.A. Detection of methicillin-Resistant Staphylococcus aureus (MRSA) among women with breast cancer in Iraq. Ann. Rom. Soc. Cell Biol., 2021, 25(1), 5044-5055.
[38]
Daurel, C.; Leclercq, R. L’antibiogramme de Staphylococcus aureus. Rev. Francoph. des Lab, 2008, 2008(407), 81-90.
[http://dx.doi.org/10.1016/S1773-035X(08)74870-6]
[39]
Akhter, S.; Nazir, A.; Karnain, O.; Rouf, M. Prevalence of constitutive and inducible clindamycin resistance among methicillin-resistant Staphylococcus aureus isolates in a tertiary care Hospital, Kashmir valley. JoMMID, 2022, 10(3), 104-113.
[http://dx.doi.org/10.52547/JoMMID.10.3.104]
[40]
Bala, R.; Kaur, N.; Gupta, N.; Chauhan, J.; Garg, R.; Kumar, H.; Saini, A.K. Detection of inducible resistance to clindamycin among methicillin resistant and sensitive strains of Staphylococcus aureus from India. J. Pure Appl. Microbiol., 2021, 15(4), 1957-1962.
[http://dx.doi.org/10.22207/JPAM.15.4.17]
[41]
Owona, D.; Woestyn, S.; Olive, N.; Gigi, J.; Delmée, M. Evaluation of phenotypical methods for the detection of heteroresistant MRSA. Immunol. Anal. Biol. Spec., 2002, 17, 113-117.
[http://dx.doi.org/10.1016/S0923-2532(02)01177-8]
[42]
Mimica, M.J.; Berezin, E.N.; Carvalho, R.L.B.; Mimica, I.M.; Mimica, L.M.J.; Sáfadi, M.A.P.; Schneider, E.; Caiaffa-Filho, H.H. Detection of methicillin resistance in Staphylococcus aureus isolated from pediatric patients: Is the cefoxitin disk diffusion test accurate enough? Braz. J. Infect. Dis., 2007, 11(4), 415-417.
[http://dx.doi.org/10.1590/S1413-86702007000400009] [PMID: 17873996]
[43]
Tankeshwar, A. Inducible clindamycin resistance (D test). Microbe, 2022. Available from: https://microbeonline.com/inducibleclindamycin-resistance-d-test-principle-procedure-and-interpretation/
[44]
Pappu, R.K.; Poddar, C.K.; Kumar, S.; Sinha, R.N.; Shahi, S.K. Incidence of inducible clindamycin resistance in clinical isolates of Staphylococcus aureus isolates from tertiary care Hospital; Experience in Koshi area (Northern Bihar), India. J. Evid. Based Med. Healthc., 2019, 6(2), 71-76.
[http://dx.doi.org/10.18410/jebmh/2019/14]
[45]
Gunduz, T.; Akgul, S.; Ozcolpan, G.; Limoncu, M.E. Investigation of inducible clindamycin resistance among clinical isolates of staphylococci. Afr. J. Microbiol. Res., 2012, 6(10), 2294-2298.
[http://dx.doi.org/10.5897/AJMR11.1012]
[46]
Murphy, P.B; Bistas, K.G; Le, J.K Clindamycin.StatPearls; StatPearls Publishing: Treasure Island, FL, 2022.
[47]
Solomon, S; Ijaz, K Surveillance and monitoring of antimicrobial resistance (AMR). AMR Control., 2015, 2015, 34-39.
[48]
Raouf, F.E.A.; Benyagoub, E.; Alkhudhairy, M.K.; Akrami, S.; Saki, M. Extended-spectrum beta-lactamases among Klebsiella pneumoniae from Iraqi patients with community-acquired pneumonia. Rev. Assoc. Med. Bras., 2022, 68(6), 833-837.
[http://dx.doi.org/10.1590/1806-9282.20220222] [PMID: 35766700]
[49]
Asmat, U.; Mumtaz, M.Z.; Malik, A. Rising prevalence of multidrug-resistant uropathogenic bacteria from urinary tract infections in pregnant women. J. Taibah Univ. Med. Sci., 2021, 16(1), 102-111.
[http://dx.doi.org/10.1016/j.jtumed.2020.10.010] [PMID: 33603638]
[50]
Serwecińska, L. Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health. Water, 2020, 12(12), 3313.
[http://dx.doi.org/10.3390/w12123313]
[51]
Plackett, B. Why big pharma has abandoned antibiotics. Nature, 2020, 586(7830), S50-S52.
[http://dx.doi.org/10.1038/d41586-020-02884-3]
[52]
Miethke, M.; Pieroni, M.; Weber, T.; Brönstrup, M.; Hammann, P.; Halby, L.; Arimondo, P.B.; Glaser, P.; Aigle, B.; Bode, H.B.; Moreira, R.; Li, Y.; Luzhetskyy, A.; Medema, M.H.; Pernodet, J-L.; Stadler, M.; Tormo, J.R.; Genilloud, O.; Truman, A.W.; Weissman, K.J.; Takano, E.; Sabatini, S.; Stegmann, E.; Brötz-Oesterhelt, H.; Wohlleben, W.; Seemann, M.; Empting, M.; Hirsch, A.K.H.; Loretz, B.; Lehr, C-M.; Titz, A.; Herrmann, J.; Jaeger, T.; Alt, S.; Hesterkamp, T.; Winterhalter, M.; Schiefer, A.; Pfarr, K.; Hoerauf, A.; Graz, H.; Graz, M.; Lindvall, M.; Ramurthy, S.; Karlén, A.; van Dongen, M.; Petkovic, H.; Keller, A.; Peyrane, F.; Donadio, S.; Fraisse, L.; Piddock, L.J.V.; Gilbert, I.H.; Moser, H.E.; Müller, R. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem., 2021, 5(10), 726-749.
[http://dx.doi.org/10.1038/s41570-021-00313-1]
[53]
Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S.C.; Browne, A.J.; Chipeta, M.G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef Hamadani, B.H.; Kumaran, E.A.P.; McManigal, B.; Achalapong, S.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Babin, F-X.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Berkley, J.A.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Clotaire Donatien, R.; Cook, A.J.; Cooper, B.; Cressey, T.R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N.P.J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S.J.; Duong Bich, T.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.; Forrest, K.; Garcia, C.; Garrett, D.; Gastmeier, P.; Giref, A.Z.; Greer, R.C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S.I.; Holm, M.; Hopkins, S.; Hsia, Y.; Iregbu, K.C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Jenney, A.W.J.; Khorana, M.; Khusuwan, S.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H.H.; Lim, C.; Lim, K.; Limmathurotsakul, D.; Loftus, M.J.; Lunn, M.; Ma, J.; Manoharan, A.; Marks, F.; May, J.; Mayxay, M.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Musila, L.A.; Mussi-Pinhata, M.M.; Naidu, R.N.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C.W.; Ochoa, T.J.; Olivas-Martinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizuela, E.; Ounchanum, P.; Pak, G.D.; Paredes, J.L.; Peleg, A.Y.; Perrone, C.; Phe, T.; Phommasone, K.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Rattanavong, S.; Riddell, A.; Roberts, T.; Robotham, J.V.; Roca, A.; Rosenthal, V.D.; Rudd, K.E.; Russell, N.; Sader, H.S.; Saengchan, W.; Schnall, J.; Scott, J.A.G.; Seekaew, S.; Sharland, M.; Shivamallappa, M.; Sifuentes-Osornio, J.; Simpson, A.J.; Steenkeste, N.; Stewardson, A.J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Tigoi, C.; Turner, C.; Turner, P.; van Doorn, H.R.; Velaphi, S.; Vongpradith, A.; Vongsouvath, M.; Vu, H.; Walsh, T.; Walson, J.L.; Waner, S.; Wangrangsimakul, T.; Wannapinij, P.; Wozniak, T.; Young Sharma, T.E.M.W.; Yu, K.C.; Zheng, P.; Sartorius, B.; Lopez, A.D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 2022, 399(10325), 629-655.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[54]
Seethalakshmi, P.S.; Charity, O.J.; Giakoumis, T.; Kiran, G.S.; Sriskandan, S.; Voulvoulis, N.; Selvin, J. Delineating the impact of COVID-19 on antimicrobial resistance: An Indian perspective. Sci. Total Environ., 2022, 818, 151702.
[http://dx.doi.org/10.1016/j.scitotenv.2021.151702] [PMID: 34798093]
[55]
Gallagher, J. New superbug-killing antibiotic discovered using AI. , 2023. Available from: https://www.bbc.com/news/health-65709834
[56]
Michalczyk, E.; Hommernick, K.; Behroz, I.; Kulike, M.; Pakosz-Stępień, Z.; Mazurek, L.; Seidel, M.; Kunert, M.; Santos, K.; von Moeller, H.; Loll, B.; Weston, J.B.; Mainz, A.; Heddle, J.G.; Süssmuth, R.D.; Ghilarov, D. Molecular mechanism of topoisomerase poisoning by the peptide antibiotic albicidin. Nat. Catal., 2023, 6(1), 52-67.
[http://dx.doi.org/10.1038/s41929-022-00904-1] [PMID: 36741192]