Endocrine, Metabolic & Immune Disorders - Drug Targets

Author(s): Rishabh Chaudhary, Janvi Khanna, Manni Rohilla, Sumeet Gupta* and Seema Bansal*

DOI: 10.2174/1871530323666230822095932

Investigation of Pancreatic-beta Cells Role in the Biological Process of Ageing

Page: [348 - 362] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Cellular senescence is associated with the formation and progression of a range of illnesses, including ageing and metabolic disorders such as diabetes mellitus and pancreatic beta cell dysfunction. Ageing and reduced glucose tolerance are interconnected. Often, Diabetes is becoming more common, which is concerning since it raises the risk of a variety of age-dependent disorders such as cardiovascular disease, cancer, Parkinson's disease, stroke, and Alzheimer's disease.

Objectives: The objectives of this study are to find out the most recent research on how ageing affects the functions of pancreatic beta cells, beta cell mass, beta cell senescence, mitochondrial dysfunction, and hormonal imbalance.

Methods: Various research and review manuscripts are gathered from various records such as Google Scholar, PubMed, Mendeley, Scopus, Science Open, the Directory of Open Access Journals, and the Education Resources Information Centre, using different terms like "Diabetes, cellular senescence, beta cells, ageing, insulin, glucose".

Results: In this review, we research novel targets in order to discover new strategies to treat diabetes. Abnormal glucose homeostasis and type 2 diabetes mellitus in the elderly may aid in the development of novel medicines to delay or prevent diabetes onset, improve quality of life, and, finally, increase life duration.

Conclusion: Aging accelerates beta cell senescence by generating premature cell senescence, which is mostly mediated by high glucose levels. Despite higher plasma glucose levels, hepatic gluconeogenesis accelerates and adipose tissue lipolysis rises, resulting in an increase in free fatty acid levels in the blood and worsening insulin resistance throughout the body.

Graphical Abstract

[1]
Klein, N.P.; Stockwell, M.S.; Demarco, M.; Gaglani, M.; Kharbanda, A.B.; Irving, S.A.; Rao, S.; Grannis, S.J.; Dascomb, K.; Murthy, K.; Rowley, E.A.; Dalton, A.F.; DeSilva, M.B.; Dixon, B.E.; Natarajan, K.; Stenehjem, E.; Naleway, A.L.; Lewis, N.; Ong, T.C.; Patel, P.; Konatham, D.; Embi, P.J.; Reese, S.E.; Han, J.; Grisel, N.; Goddard, K.; Barron, M.A.; Dickerson, M.; Liao, I.C.; Fadel, W.F.; Yang, D.H.; Arndorfer, J.; Fireman, B.; Griggs, E.P.; Valvi, N.R.; Hallowell, C.; Zerbo, O.; Reynolds, S.; Ferdinands, J.; Wondimu, M.H.; Williams, J.; Bozio, C.H.; Link Gelles, R.; Azziz-Baumgartner, E.; Schrag, S.J.; Thompson, M.G.; Verani, J.R. Effectiveness of COVID-19 Pfizer-BioNTech BNT162b2 mRNA vaccination in preventing COVID-19-associated emergency department and urgent care encounters and hospitalizations among nonimmunocompromised children and adolescents aged 5-17 Years—VISION Network, 10 States, April 2021-January 2022. MMWR Morb. Mortal. Wkly. Rep., 2022, 71(9), 352-358.
[http://dx.doi.org/10.15585/mmwr.mm7109e3] [PMID: 35239634]
[2]
Rossiello, F.; Jurk, D.; Passos, J.F.; d’Adda di Fagagna, F. Telomere dysfunction in ageing and age-related diseases. Nat. Cell Biol., 2022, 24(2), 135-147.
[http://dx.doi.org/10.1038/s41556-022-00842-x] [PMID: 35165420]
[3]
Fowlkes, A.L.; Yoon, S.K.; Lutrick, K.; Gwynn, L.; Burns, J.; Grant, L.; Phillips, A.L.; Ellingson, K.; Ferraris, M.V.; LeClair, L.B.; Mathenge, C.; Yoo, Y.M.; Thiese, M.S.; Gerald, L.B.; Solle, N.S.; Jeddy, Z.; Odame-Bamfo, L.; Mak, J.; Hegmann, K.T.; Gerald, J.K.; Ochoa, J.S.; Berry, M.; Rose, S.; Lamberte, J.M.; Madhivanan, P.; Pubillones, F.A.; Rai, R.P.; Dunnigan, K.; Jones, J.T.; Krupp, K.; Edwards, L.J.; Bedrick, E.J.; Sokol, B.E.; Lowe, A.; McLeland-Wieser, H.; Jovel, K.S.; Fleary, D.E.; Khan, S.M.; Poe, B.; Hollister, J.; Lopez, J.; Rivers, P.; Beitel, S.; Tyner, H.L.; Naleway, A.L.; Olsho, L.E.W.; Caban-Martinez, A.J.; Burgess, J.L.; Thompson, M.G.; Gaglani, M. Effectiveness of 2-dose BNT162b2 (Pfizer BioNTech) mRNA vaccine in preventing SARS-CoV-2 infection among children aged 5-11 years and adolescents aged 12-15 years-PROTECT cohort, July 2021-February 2022. MMWR Morb. Mortal. Wkly. Rep., 2022, 71(11), 422-428.
[http://dx.doi.org/10.15585/mmwr.mm7111e1] [PMID: 35298453]
[4]
Mogilenko, D.A.; Shchukina, I.; Artyomov, M.N. Immune ageing at single-cell resolution. Nat. Rev. Immunol., 2022, 22(8), 484-498.
[http://dx.doi.org/10.1038/s41577-021-00646-4] [PMID: 34815556]
[5]
Gong, Z.; Muzumdar, R.H. Pancreatic function, type 2 diabetes, and metabolism in aging. Int J Endocrinol., 2012, 2012, 320482.
[http://dx.doi.org/10.1155/2012/320482]
[6]
Sanjay, S.; Sharma, A.; Lee, H.J. Role of phytoconstituents as PPAR agonists: Implications for neurodegenerative disorders. Biomedicines, 2021, 9(12), 1914.
[http://dx.doi.org/10.3390/biomedicines9121914] [PMID: 34944727]
[7]
Amorim, J.A.; Coppotelli, G.; Rolo, A.P.; Palmeira, C.M.; Ross, J.M.; Sinclair, D.A. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat. Rev. Endocrinol., 2022, 18(4), 243-258.
[http://dx.doi.org/10.1038/s41574-021-00626-7] [PMID: 35145250]
[8]
Seale, K.; Horvath, S.; Teschendorff, A.; Eynon, N.; Voisin, S. Making sense of the ageing methylome. Nat. Rev. Genet., 2022, 23(10), 585-605.
[http://dx.doi.org/10.1038/s41576-022-00477-6] [PMID: 35501397]
[9]
Sousa-Victor, P.; García-Prat, L.; Muñoz-Cánoves, P. Control of satellite cell function in muscle regeneration and its disruption in age-ing. Nat. Rev. Mol. Cell Biol., 2022, 23(3), 204-226.
[http://dx.doi.org/10.1038/s41580-021-00421-2] [PMID: 34663964]
[10]
Ghosh, T.S.; Shanahan, F.; O’Toole, P.W. The gut microbiome as a modulator of healthy ageing. Nat. Rev. Gastroenterol. Hepatol., 2022, 19(9), 565-584.
[http://dx.doi.org/10.1038/s41575-022-00605-x] [PMID: 35468952]
[11]
Brunet, A.; Goodell, M.A.; Rando, T.A. Ageing and rejuvenation of tissue stem cells and their niches. Nat. Rev. Mol. Cell Biol., 2023, 24(1), 45-62.
[PMID: 35859206]
[12]
Sladitschek-Martens, H.L.; Guarnieri, A.; Brumana, G.; Zanconato, F.; Battilana, G.; Xiccato, R.L.; Panciera, T.; Forcato, M.; Bicciato, S.; Guzzardo, V.; Fassan, M.; Ulliana, L.; Gandin, A.; Tripodo, C.; Foiani, M.; Brusatin, G.; Cordenonsi, M.; Piccolo, S. YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS-STING. Nature, 2022, 607(7920), 790-798.
[http://dx.doi.org/10.1038/s41586-022-04924-6] [PMID: 35768505]
[13]
Michalak, M. Plant-derived antioxidants: Significance in skin health and the ageing process. Int. J. Mol. Sci., 2022, 23(2), 585.
[http://dx.doi.org/10.3390/ijms23020585] [PMID: 35054770]
[14]
Stein, K.C.; Morales-Polanco, F.; van der Lienden, J.; Rainbolt, T.K.; Frydman, J. Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature, 2022, 601(7894), 637-642.
[http://dx.doi.org/10.1038/s41586-021-04295-4] [PMID: 35046576]
[15]
Xin, T.; Tang, S.; Ji, F.; Cui, L.; He, B.; Lin, X.; Tian, X.; Hou, H.; Zhao, Y.; Ferry, M. Phase transformations in an ultralight BCC Mg alloy during anisothermal ageing. Acta Mater., 2022, 239, 118248.
[http://dx.doi.org/10.1016/j.actamat.2022.118248]
[16]
Giaimo, S.; Traulsen, A. The selection force weakens with age because ageing evolves and not vice versa. Nat. Commun., 2022, 13(1), 686.
[http://dx.doi.org/10.1038/s41467-022-28254-3] [PMID: 35115526]
[17]
Manabe, T.; Heneka, M.T. Cerebral dysfunctions caused by sepsis during ageing. Nat. Rev. Immunol., 2022, 22(7), 444-458.
[http://dx.doi.org/10.1038/s41577-021-00643-7] [PMID: 34764472]
[18]
Creevy, K.E.; Akey, J.M.; Kaeberlein, M.; Promislow, D.E.L.; Barnett, B.G.; Benton, B.; Borenstein, E.; Castelhano, M.G.; Chou, L.; Collins, D.; Coleman, A.E.; Crowder, K.; Dunbar, M.D.; Evans, J.; Fajt, V.R.; Fitzpatrick, A.L.; Jeffery, U.; Jonlin, E.C.; Karlsson, E.K.; Kerr, K.F.; Lee, H.; Levine, J.M.; Ma, J.; McClelland, R.L.; McNulty, K.E.; Morrill, K.; Nam, Y.; Ruple, A.; Schwartz, S.M.; Shrager, S.; Snyder-Mackler, N.; Thistlethwaite, W.; Tinkle, A.K.; Tolbert, M.K.; Urfer, S.R.; Wilfond, B.S. An open science study of ageing in companion dogs. Nature, 2022, 602(7895), 51-57.
[http://dx.doi.org/10.1038/s41586-021-04282-9] [PMID: 35110758]
[19]
Schmauck-Medina, T.; Molière, A.; Lautrup, S.; Zhang, J.; Chłopicki, S.; Madsen, H.B.; Cao, S.; Soendenbroe, C.; Mansell, E.; Vestergaard, M.B.; Li, Z.; Shiloh, Y.; Opresko, P.L.; Egly, J.M.; Kirkwood, T.; Verdin, E.; Bohr, V.A.; Cox, L.S.; Stevnsner, T.; Rasmussen, L.J.; Fang, E.F. New hallmarks of ageing: A 2022 Copenhagen ageing meeting summary. Aging, 2022, 14(16), 6829-6839.
[http://dx.doi.org/10.18632/aging.204248] [PMID: 36040386]
[20]
Mouat, I.C.; Horwitz, M.S. Age-associated B cells in viral infection. PLoS Pathog., 2022, 18(3), e1010297.
[http://dx.doi.org/10.1371/journal.ppat.1010297] [PMID: 35298565]
[21]
Sachinidis, A.; Garyfallos, A. COVID‐19 vaccination can occasionally trigger autoimmune phenomena, probably via inducing age‐associated B cells. Int. J. Rheum. Dis., 2022, 25(1), 83-85.
[http://dx.doi.org/10.1111/1756-185X.14238] [PMID: 34766739]
[22]
De Lange, W.; Hough, G. EASD watch-summaries from the 2010 meeting in stockholm-european association for the study of diabetes (EASD): Continuing education feature. SAJD, 2010, 3(4), 31-35.
[23]
Song, J.; Ni, Q.; Sun, J.; Xie, J.; Liu, J.; Ning, G.; Wang, W.; Wang, Q. Aging impairs adaptive unfolded protein response and drives beta cell dedifferentiation in humans. J. Clin. Endocrinol. Metab., 2022, 107(12), 3231-3241.
[http://dx.doi.org/10.1210/clinem/dgac535] [PMID: 36125175]
[24]
Aguayo-Mazzucato, C. Functional changes in beta cells during ageing and senescence. Diabetologia, 2020, 63(10), 2022-2029.
[http://dx.doi.org/10.1007/s00125-020-05185-6] [PMID: 32894312]
[25]
Ram, R.; Grisariu, S.; Shargian-Alon, L.; Amit, O.; Bar-On, Y.; Stepensky, P.; Yeshurun, M.; Avni, B.; Hagin, D.; Perry, C.; Gurion, R.; Sarid, N.; Herishanu, Y.; Gold, R.; Glait-Santar, C.; Kay, S.; Avivi, I. Toxicity and efficacy of chimeric antigen receptor T-cell therapy in patients with diffuse large B-cell lymphoma above the age of 70 years compared to younger patients - a matched control multicenter cohort study. Haematologica, 2021, 107(5), 1111-1118.
[http://dx.doi.org/10.3324/haematol.2021.278288] [PMID: 34233446]
[26]
Shrestha, S.; Erikson, G.; Lyon, J.; Spigelman, A.F.; Bautista, A.; Manning Fox, J.E.; dos Santos, C.; Shokhirev, M.; Cartailler, J.P.; Hetzer, M.W.; MacDonald, P.E.; Arrojo e Drigo, R. Aging compromises human islet beta cell function and identity by decreasing transcription factor activity and inducing ER stress. Sci. Adv., 2022, 8(40), eabo3932.
[http://dx.doi.org/10.1126/sciadv.abo3932] [PMID: 36197983]
[27]
Lee, J.H.; Lee, J. Endoplasmic reticulum (ER) stress and its role in pancreatic β-cell dysfunction and senescence in type 2 diabetes. Int. J. Mol. Sci., 2022, 23(9), 4843.
[http://dx.doi.org/10.3390/ijms23094843] [PMID: 35563231]
[28]
Siddiqui, M.K.; Anjana, R.M.; Dawed, A.Y.; Martoeau, C.; Srinivasan, S.; Saravanan, J.; Madanagopal, S.K.; Taylor, A.; Bell, S.; Veluchamy, A.; Pradeepa, R.; Sattar, N.; Venkatesan, R.; Palmer, C.N.A.; Pearson, E.R.; Mohan, V. Young-onset diabetes in Asian Indians is associated with lower measured and genetically determined beta cell function. Diabetologia, 2022, 65(6), 973-983.
[http://dx.doi.org/10.1007/s00125-022-05671-z] [PMID: 35247066]
[29]
Korf, J.M.; Honarpisheh, P.; Mohan, E.C.; Banerjee, A.; Blasco-Conesa, M.P.; Honarpisheh, P.; Guzman, G.U.; Khan, R.; Ganesh, B.P.; Hazen, A.L.; Lee, J.; Kumar, A.; McCullough, L.D.; Chauhan, A. CD11bhigh B cells increase after stroke and regulate microglia. J. Immunol., 2022, 209(2), 288-300.
[http://dx.doi.org/10.4049/jimmunol.2100884] [PMID: 35732342]
[30]
Vidal‐Pedrola, G.; Naamane, N.; Cameron, J.A.; Pratt, A.G.; Mellor, A.L.; Isaacs, J.D.; Scheel‐Toellner, D.; Anderson, A.E. Characterization of age‐associated B cells in early drug‐naïve rheumatoid arthritis patients. Immunology, 2023, 168(4), 640-653.
[PMID: 36281956]
[31]
Patel, R.; Parmar, N.; Rathwa, N.; Palit, S.P.; Li, Y.; Garcia-Ocaña, A.; Begum, R. A novel therapeutic combination of sitagliptin and melatonin regenerates pancreatic β-cells in mouse and human islets. Biochim. Biophys. Acta Mol. Cell Res., 2022, 1869(8), 119263.
[http://dx.doi.org/10.1016/j.bbamcr.2022.119263] [PMID: 35364117]
[32]
Westin, J.; Sehn, L.H. CAR T cells as a second-line therapy for large B-cell lymphoma: A paradigm shift? Blood, 2022, 139(18), 2737-2746.
[http://dx.doi.org/10.1182/blood.2022015789] [PMID: 35240677]
[33]
Lee, J.L.; Linterman, M.A. Mechanisms underpinning poor antibody responses to vaccines in ageing. Immunol. Lett., 2022, 241, 1-14.
[http://dx.doi.org/10.1016/j.imlet.2021.11.001] [PMID: 34767859]
[34]
Blencowe, M.; Furterer, A.; Wang, Q.; Gao, F.; Rosenberger, M.; Pei, L.; Nomoto, H.; Mawla, A.M.; Huising, M.O.; Coppola, G.; Yang, X.; Butler, P.C.; Gurlo, T. IAPP-induced beta cell stress recapitulates the islet transcriptome in type 2 diabetes. Diabetologia, 2022, 65(1), 173-187.
[http://dx.doi.org/10.1007/s00125-021-05569-2] [PMID: 34554282]
[35]
Morgan, D.; Tergaonkar, V. Unraveling B cell trajectories at single cell resolution. Trends Immunol., 2022, 43(3), 210-229.
[http://dx.doi.org/10.1016/j.it.2022.01.003] [PMID: 35090788]
[36]
Jain, R.W.; Yong, V.W. B cells in central nervous system disease: Diversity, locations and pathophysiology. Nat. Rev. Immunol., 2022, 22(8), 513-524.
[http://dx.doi.org/10.1038/s41577-021-00652-6] [PMID: 34903877]
[37]
Tudurí, E.; Soriano, S.; Almagro, L.; Montanya, E.; Alonso-Magdalena, P.; Nadal, Á.; Quesada, I. The pancreatic β-cell in ageing: Implications in age-related diabetes. Ageing Res. Rev., 2022, 80, 101674.
[http://dx.doi.org/10.1016/j.arr.2022.101674] [PMID: 35724861]
[38]
Monti, S.; Savage, K.J.; Kutok, J.L.; Feuerhake, F.; Kurtin, P.; Mihm, M.; Wu, B.; Pasqualucci, L.; Neuberg, D.; Aguiar, R.C.; Dal Cin, P.; Ladd, C.; Pinkus, G.S.; Salles, G.; Harris, N.L.; Dalla-Favera, R.; Habermann, T.M.; Aster, J.C.; Golub, T.R.; Shipp, M.A. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood, 2005, 105(5), 1851-1861.
[http://dx.doi.org/10.1182/blood-2004-07-2947] [PMID: 15550490]
[39]
Cox, A.R.; Lam, C.J.; Bonnyman, C.W.; Chavez, J.; Rios, J.S.; Kushner, J.A. Angiopoietin-like protein 8 (ANGPTL8)/betatrophin overexpression does not increase beta cell proliferation in mice. Diabetologia, 2015, 58(7), 1523-1531.
[http://dx.doi.org/10.1007/s00125-015-3590-z] [PMID: 25917759]
[40]
Aguayo-Mazzucato, C.; Andle, J.; Lee, T.B.; Midha, A.; Talemal, L.; Chipashvili, V.; Hollister-Lock, J.; van Deursen, J.; Weir, G.; Bonner-Weir, S. Acceleration of β cell aging determines diabetes and senolysis improves disease outcomes. Cell Metab., 2019, 30(1), 129-142.
[http://dx.doi.org/10.1016/j.cmet.2019.05.006]
[41]
Uittenboogaard, L.M.; Payan-Gomez, C.; Pothof, J.; van IJcken, W.; Mastroberardino, P.G.; van der Pluijm, I.; Hoeijmakers, J.H.J.; Tresini, M. BACH2: A marker of DNA damage and ageing. DNA Repair, 2013, 12(11), 982-992.
[http://dx.doi.org/10.1016/j.dnarep.2013.08.016] [PMID: 24075570]
[42]
Zhu, M.; Liu, X.; Liu, W.; Lu, Y.; Cheng, J.; Chen, Y. β cell aging and age-related diabetes. Aging, 2021, 13(5), 7691-7706.
[http://dx.doi.org/10.18632/aging.202593] [PMID: 33686020]
[43]
Kurupati, R.K.; Haut, L.H.; Schmader, K.E.; Ertl, H.C.J. Age-related changes in B cell metabolism. Aging, 2019, 11(13), 4367-4381.
[http://dx.doi.org/10.18632/aging.102058] [PMID: 31283526]
[44]
Guan, L.; Crasta, K.C.; Maier, A.B. Assessment of cell cycle regulators in human peripheral blood cells as markers of cellular senescence. Ageing Res. Rev., 2022, 78, 101634.
[http://dx.doi.org/10.1016/j.arr.2022.101634] [PMID: 35460888]
[45]
Fourati, S.; Cristescu, R.; Loboda, A.; Talla, A.; Filali, A.; Railkar, R.; Schaeffer, A.K.; Favre, D.; Gagnon, D.; Peretz, Y.; Wang, I.M.; Beals, C.R.; Casimiro, D.R.; Carayannopoulos, L.N.; Sékaly, R.P. Pre-vaccination inflammation and B-cell signalling predict age-related hyporesponse to hepatitis B vaccination. Nat. Commun., 2016, 7(1), 10369.
[http://dx.doi.org/10.1038/ncomms10369] [PMID: 26742691]
[46]
Alizadeh, A.A.; Eisen, M.B.; Davis, R.E.; Ma, C.; Lossos, I.S.; Rosenwald, A.; Boldrick, J.C.; Sabet, H.; Tran, T.; Yu, X.; Powell, J.I.; Yang, L.; Marti, G.E.; Moore, T.; Hudson, J., Jr; Lu, L.; Lewis, D.B.; Tibshirani, R.; Sherlock, G.; Chan, W.C.; Greiner, T.C.; Weisenburger, D.D.; Armitage, J.O.; Warnke, R.; Levy, R.; Wilson, W.; Grever, M.R.; Byrd, J.C.; Botstein, D.; Brown, P.O.; Staudt, L.M. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 2000, 403(6769), 503-511.
[http://dx.doi.org/10.1038/35000501] [PMID: 10676951]
[47]
Salam, N.; Rane, S.; Das, R.; Faulkner, M.; Gund, R.; Kandpal, U.; Lewis, V.; Mattoo, H.; Prabhu, S.; Ranganathan, V.; Durdik, J.; George, A.; Rath, S.; Bal, V. T cell ageing: Effects of age on development, survival & function. Indian J. Med. Res., 2013, 138(5), 595-608.
[PMID: 24434315]
[48]
Gruver, A.L.; Hudson, L.L.; Sempowski, G.D. Immunosenescence of ageing. J. Pathol., 2007, 211(2), 144-156.
[http://dx.doi.org/10.1002/path.2104] [PMID: 17200946]
[49]
Parveen, N.; Wang, J.K.; Bhattacharya, S.; Cuala, J.; Rajkumar, M.S.; Butler, A.E.; Wu, X.; Shih, H.P.; Georgia, S.K.; Dhawan, S. DNA methylation dependent restriction of tyrosine hydroxylase contributes to pancreatic β-cell heterogeneity. Diabetes, 2023, 72(5), 575-589.
[http://dx.doi.org/10.2337/db22-0506] [PMID: 36607262]
[50]
Plakhova, N.; Panagopoulos, V.; Vandyke, K.; Zannettino, A.C.W.; Mrozik, K.M. Mesenchymal stromal cell senescence in haematological malignancies. Cancer Metastasis Rev., 2023, 42(1), 277-296.
[http://dx.doi.org/10.1007/s10555-022-10069-9] [PMID: 36622509]
[51]
Cohn, R.L.; Gasek, N.S.; Kuchel, G.A.; Xu, M. The heterogeneity of cellular senescence: Insights at the single-cell level. Trends Cell Biol., 2023, 33(1), 9-17.
[http://dx.doi.org/10.1016/j.tcb.2022.04.011] [PMID: 35599179]
[52]
Yildiz, O.; Schroth, J.; Tree, T.; Turner, M. R.; Shaw, P. J.; Henson, S. M.; Malaspina, A. Senescent-like blood lymphocytes and disease progression in amyotrophic lateral sclerosis. Neurol Neuroimmunol, 2022, 10(1), e200042.
[53]
Liu, Z.; Wang, P.; Zhao, Y.; Po Lai, K.; Li, R. Biomedical importance of the ubiquitin-proteasome system in diabetes and metabolic transdifferentiation of pancreatic duct epithelial cells into β-cells. Gene, 2023, 858, 147191.
[http://dx.doi.org/10.1016/j.gene.2023.147191] [PMID: 36632913]
[54]
Wu, X.; Wang, A.; Wang, M.; Peng, Y.; Chen, Y.; Li, J.; Liu, Z.; Lu, H.; Zhou, J.; Peng, L.; Zhao, Y.; Zeng, X.; Fei, Y.; Zhang, W. Differential CpG DNA methylation of peripheral B cells, CD4+ T cells, and salivary gland tissues in IgG4-related disease. Arthritis Res. Ther., 2023, 25(1), 4.
[http://dx.doi.org/10.1186/s13075-022-02978-5] [PMID: 36609529]
[55]
Bahour, N.; Bleichmar, L.; Abarca, C.; Wilmann, E.; Sanjines, S.; Aguayo-Mazzucato, C. Clearance of p16Ink4a-positive cells in a mouse transgenic model does not change β-cell mass and has limited effects on their proliferative capacity. Aging, 2022, 15(2), 441-458.
[http://dx.doi.org/10.18632/aging.204483] [PMID: 36640267]
[56]
Protsenko, M.; Kerkelä, M.; Miettunen, J.; Auvinen, J.; Järvelin, M.R.; Jones, P.B.; Gissler, M.; Veijola, J. Insulin resistance and lipid levels in the middle-aged offspring of parents with severe mental illness. Schizophr. Res., 2023, 252, 271-278.
[http://dx.doi.org/10.1016/j.schres.2023.01.013] [PMID: 36696701]
[57]
Lopez-Jaramillo, P.; Gomez-Arbelaez, D.; Martinez-Bello, D.; Abat, M.E.M.; Alhabib, K.F.; Avezum, Á.; Barbarash, O.; Chifamba, J.; Diaz, M.L.; Gulec, S.; Ismail, N.; Iqbal, R.; Kelishadi, R.; Khatib, R.; Lanas, F.; Levitt, N.S.; Li, Y.; Mohan, V.; Mony, P.K.; Poirier, P.; Rosengren, A.; Soman, B.; Wang, C.; Wang, Y.; Yeates, K.; Yusuf, R.; Yusufali, A.; Zatonska, K.; Rangarajan, S.; Yusuf, S. Association of the triglyceride glucose index as a measure of insulin resistance with mortality and cardiovascular disease in populations from five continents (PURE study): A prospective cohort study. Lancet Healthy Longev., 2023, 4(1), e23-e33.
[http://dx.doi.org/10.1016/S2666-7568(22)00247-1] [PMID: 36521498]
[58]
Duarte, J.M.N. Loss of brain energy metabolism control as a driver for memory impairment upon insulin resistance. Biochem. Soc. Trans., 2023, 51(1), 287-301.
[http://dx.doi.org/10.1042/BST20220789] [PMID: 36606696]
[59]
Matthaei, S.; Benecke, H.; Klein, H.H.; Hamann, A.; Kreymann, G.; Greten, H. Potential mechanism of insulin resistance in ageing: Impaired insulin-stimulated glucose transport due to a depletion of the intracellular pool of glucose transporters in Fischer rat adipocytes. J. Endocrinol., 1990, 126(1), 99-107.
[http://dx.doi.org/10.1677/joe.0.1260099] [PMID: 2166128]
[60]
Shi, S.Y.; Luk, C.T.; Brunt, J.J.; Sivasubramaniyam, T.; Lu, S.Y.; Schroer, S.A.; Woo, M. Adipocyte-specific deficiency of Janus kinase (JAK) 2 in mice impairs lipolysis and increases body weight, and leads to insulin resistance with ageing. Diabetologia, 2014, 57(5), 1016-1026.
[http://dx.doi.org/10.1007/s00125-014-3185-0] [PMID: 24531222]
[61]
Paolisso, G.; Rizzo, M.R.; Mazziotti, G.; Tagliamonte, M.R.; Gambardella, A.; Rotondi, M.; Carella, C.; Giugliano, D.; Varricchio, M.; D’Onofrio, F. Advancing age and insulin resistance: Role of plasma tumor necrosis factor-α. Am. J. Physiol., 1998, 275(2), E294-E299.
[PMID: 9688632]
[62]
Santos, D.; Porter-Gill, P.; Goode, G.; Delhey, L.; Sørensen, A.E.; Rose, S.; Børsheim, E.; Dalgaard, L.T.; Carvalho, E. Circulating microRNA levels differ in the early stages of insulin resistance in prepubertal children with obesity. Life Sci., 2023, 312, 121246.
[http://dx.doi.org/10.1016/j.lfs.2022.121246] [PMID: 36455651]
[63]
Patel, R.S.; Lui, A.; Hudson, C.; Moss, L.; Sparks, R.P.; Hill, S.E.; Shi, Y.; Cai, J.; Blair, L.J.; Bickford, P.C.; Patel, N.A. Small molecule targeting long noncoding RNA GAS5 administered intranasally improves neuronal insulin signaling and decreases neuroinflammation in an aged mouse model. Sci. Rep., 2023, 13(1), 317.
[http://dx.doi.org/10.1038/s41598-022-27126-6] [PMID: 36609440]
[64]
Kim, T.; Kang, J. Relationship between obstructive sleep apnea, insulin resistance, and metabolic syndrome: A nationwide population-based survey. Endocr. J., 2023, 70(1), 107-119.
[http://dx.doi.org/10.1507/endocrj.EJ22-0280] [PMID: 36171092]
[65]
Simpson, E.J.; Mendis, B.; Dunlop, M.; Schroeter, H.; Kwik-Uribe, C.; Macdonald, I.A. Cocoa flavanol supplementation and the effect on insulin resistance in females who are overweight or obese: A randomized, placebo-controlled trial. Nutrients, 2023, 15(3), 565.
[http://dx.doi.org/10.3390/nu15030565] [PMID: 36771271]
[66]
Yi, L.; Maier, A.B.; Tao, R.; Lin, Z.; Vaidya, A.; Pendse, S.; Thasma, S.; Andhalkar, N.; Avhad, G.; Kumbhar, V. The efficacy and safety of β-nicotinamide mononucleotide (NMN) supplementation in healthy middle-aged adults: A randomized, multicenter, double-blind, placebo-controlled, parallel-group, dose-dependent clinical trial. Geroscience, 2023, 45(1), 29-43.
[http://dx.doi.org/10.1007/s11357-022-00705-1] [PMID: 36482258]
[67]
Haffner, S.M. Sex hormone-binding protein, hyperinsulinemia, insulin resistance and noninsulin-dependent diabetes. Horm. Res., 1996, 45(3-5), 233-237.
[http://dx.doi.org/10.1159/000184794] [PMID: 8964590]
[68]
Bruehl, H.; Sweat, V.; Hassenstab, J.; Polyakov, V.; Convit, A. Cognitive impairment in nondiabetic middle-aged and older adults is associated with insulin resistance. J. Clin. Exp. Neuropsychol., 2010, 32(5), 487-493.
[http://dx.doi.org/10.1080/13803390903224928] [PMID: 20524222]
[69]
Jin, A.; Wang, S.; Li, J.; Wang, M.; Lin, J.; Li, H.; Meng, X.; Wang, Y.; Pan, Y. Mediation of systemic inflammation on insulin resistance and prognosis of nondiabetic patients with ischemic stroke. Stroke, 2023, 54(3), 759-769.
[http://dx.doi.org/10.1161/STROKEAHA.122.039542] [PMID: 36722344]
[70]
Dezonne, R.S.; Pereira, C.M.; de Moraes Martins, C.J.; de Abreu, V.G.; Francischetti, E.A. Adiponectin, the adiponectin paradox, and Alzheimer’s Disease: Is this association biologically plausible? Metab. Brain Dis., 2023, 38(1), 109-121.
[http://dx.doi.org/10.1007/s11011-022-01064-8] [PMID: 35921057]
[71]
Ringin, E.; Dunstan, D.W.; McIntyre, R.S.; Berk, M.; Owen, N.; Rossell, S.L.; Van Rheenen, T.E. Interactive relationships of Type 2 diabetes and bipolar disorder with cognition: Evidence of putative premature cognitive ageing in the UK Biobank Cohort. Neuropsychopharmacology, 2023, 48(2), 362-370.
[http://dx.doi.org/10.1038/s41386-022-01471-6] [PMID: 36243769]
[72]
Samra, Y.A.; Zaidi, Y.; Rajpurohit, P.; Raghavan, R.; Cai, L.; Kaddour-Djebbar, I.; Tawfik, A. Warburg effect as a novel mechanism for homocysteine-induced features of age-related macular degeneration. Int. J. Mol. Sci., 2023, 24(2), 1071.
[http://dx.doi.org/10.3390/ijms24021071] [PMID: 36674587]
[73]
Shah, K.; DeSilva, S.; Abbruscato, T. The role of glucose transporters in brain disease: Diabetes and Alzheimer’s Disease. Int. J. Mol. Sci., 2012, 13(12), 12629-12655.
[http://dx.doi.org/10.3390/ijms131012629] [PMID: 23202918]
[74]
Marrano, N.; Biondi, G.; Borrelli, A.; Rella, M.; Zambetta, T.; Di Gioia, L.; Caporusso, M.; Logroscino, G.; Perrini, S.; Giorgino, F.; Natalicchio, A. Type 2 diabetes and alzheimer’s disease: The emerging role of cellular lipotoxicity. Biomolecules, 2023, 13(1), 183.
[http://dx.doi.org/10.3390/biom13010183] [PMID: 36671568]
[75]
Nair, M. Diabetes mellitus, part 1: Physiology and complications. Br. J. Nurs., 2007, 16(3), 184-188.
[http://dx.doi.org/10.12968/bjon.2007.16.3.22974] [PMID: 17363887]
[76]
Yilmaz, B.O.; Yilmaz, B.; Aydin, Y. Plant polyphenols in the regulation of ion channels during aging and induced diseases. In: Plant Bioactives as Natural Panacea Against Age-Induced Diseases; Elsevier, 2023; pp. 235-252.
[http://dx.doi.org/10.1016/B978-0-323-90581-7.00021-9]
[77]
Hart, G.W.; Huang, C-W.; Rust, N.C.; Wu, H-F. Altered O-GlcNAcylation and mitochondrial dysfunction, a molecular link between brain glucose dysregulation and sporadic Alzheimer’s disease. Neural Regen. Res., 2023, 18(4), 779-783.
[http://dx.doi.org/10.4103/1673-5374.354515] [PMID: 36204837]
[78]
Khin, P. P.; Lee, J. H.; Jun, H.-S. Pancreatic beta-cell dysfunction in type 2 diabetes. Eur. J. Inflamm., 2023, 21, 1721727X231154152.
[79]
Umano, G.R.; Galderisi, A.; Aiello, F.; Martino, M.; Camponesco, O.; Di Sessa, A.; Marzuillo, P.; Alfonso, P.; Miraglia del Giudice, E. Obstructive sleep apnea (OSA) is associated with the impairment of beta-cell response to glucose in children and adolescents with obesity. Int. J. Obes., 2023, 47(4), 257-262.
[80]
Fontés, G.; Zarrouki, B.; Hagman, D.K.; Latour, M.G.; Semache, M.; Roskens, V.; Moore, P.C.; Prentki, M.; Rhodes, C.J.; Jetton, T.L.; Poitout, V. Glucolipotoxicity age-dependently impairs beta cell function in rats despite a marked increase in beta cell mass. Diabetologia, 2010, 53(11), 2369-2379.
[http://dx.doi.org/10.1007/s00125-010-1850-5] [PMID: 20628728]
[81]
Wei, S.; Li, C.; Wang, Z.; Chen, Y. Nutritional strategies for intervention of diabetes and improvement of β-cell function. Biosci. Rep., 2023, 43(2), BSR20222151.
[http://dx.doi.org/10.1042/BSR20222151] [PMID: 36714968]
[82]
Uhlemeyer, C.; Müller, N.; Rieck, M.; Kuboth, J.; Schlegel, C.; Grieß, K.; Dorweiler, T.F.; Heiduschka, S.; Eckel, J.; Roden, M.; Lammert, E.; Stoffel, M.; Belgardt, B.F. Selective ablation of P53 in pancreatic beta cells fails to ameliorate glucose metabolism in genetic, dietary and pharmacological models of diabetes mellitus. Mol. Metab., 2023, 67, 101650.
[http://dx.doi.org/10.1016/j.molmet.2022.101650] [PMID: 36470401]
[83]
Robertson, R.P. Antioxidant drugs for treating beta-cell oxidative stress in type 2 diabetes: Glucose-centric versus insulin-centric therapy. Discov. Med., 2010, 9(45), 132-137.
[PMID: 20193639]
[84]
Brusco, N.; Sebastiani, G.; Di Giuseppe, G.; Licata, G.; Grieco, G.E.; Fignani, D.; Nigi, L.; Formichi, C.; Aiello, E.; Auddino, S.; Quero, G.; Cefalo, C.M.A.; Cinti, F.; Mari, A.; Ferraro, P.M.; Pontecorvi, A.; Alfieri, S.; Giaccari, A.; Dotta, F.; Mezza, T. Intraislet insulin synthesis defects are associated with endoplasmic reticulum stress and loss of beta cell identity in human diabetes. Diabetologia, 2023, 66(2), 354-366.
[http://dx.doi.org/10.1007/s00125-022-05814-2] [PMID: 36280617]
[85]
Fiory, F.; Lombardi, A.; Miele, C.; Giudicelli, J.; Beguinot, F.; Van Obberghen, E. Methylglyoxal impairs insulin signalling and insulin action on glucose-induced insulin secretion in the pancreatic beta cell line INS-1E. Diabetologia, 2011, 54(11), 2941-2952.
[http://dx.doi.org/10.1007/s00125-011-2280-8] [PMID: 21861178]
[86]
Gu, Z.; Du, Y.; Liu, Y.; Ma, L.; Li, L.; Gong, Y.; Tian, H.; Li, C. Effect of aging on islet beta-cell function and its mechanisms in Wistar rats. Age, 2012, 34(6), 1393-1403.
[http://dx.doi.org/10.1007/s11357-011-9312-7] [PMID: 21898034]
[87]
Han, J.; Xu, J.; Epstein, P.N.; Liu, Y.Q. Long-term effect of maternal obesity on pancreatic beta cells of offspring: Reduced beta cell adaptation to high glucose and high-fat diet challenges in adult female mouse offspring. Diabetologia, 2005, 48(9), 1810-1818.
[http://dx.doi.org/10.1007/s00125-005-1854-8] [PMID: 16010523]
[88]
Holloway, A.C.; Lim, G.E.; Petrik, J.J.; Foster, W.G.; Morrison, K.M.; Gerstein, H.C. Fetal and neonatal exposure to nicotine in Wistar rats results in increased beta cell apoptosis at birth and postnatal endocrine and metabolic changes associated with type 2 diabetes. Diabetologia, 2005, 48(12), 2661-2666.
[http://dx.doi.org/10.1007/s00125-005-0022-5] [PMID: 16270195]
[89]
Rorsman, P.; Ramracheya, R.; Rorsman, N.J.G.; Zhang, Q. ATP-regulated potassium channels and voltage-gated calcium channels in pancreatic alpha and beta cells: Similar functions but reciprocal effects on secretion. Diabetologia, 2014, 57(9), 1749-1761.
[http://dx.doi.org/10.1007/s00125-014-3279-8] [PMID: 24906950]
[90]
Jung, S.C.; Zhou, T.; Ko, E.A. Age-dependent expression of ion channel genes in rat. Korean J. Physiol. Pharmacol., 1993, 27(1), 85-94.
[http://dx.doi.org/10.4196/kjpp.2023.27.1.85] [PMID: 36575936]
[91]
Dai, C.; Tan, M.; Meng, X.; Dong, J.; Zhang, Y. Effects of potassium channel knockdown on peripheral blood T lymphocytes and NFAT signaling pathway in Xinjiang Kazak patients with hypertension. Clin. Exp. Hypertens., 2023, 45(1), 2169449.
[http://dx.doi.org/10.1080/10641963.2023.2169449] [PMID: 36691302]
[92]
Remigante, A.; Spinelli, S.; Marino, A.; Pusch, M.; Morabito, R.; Dossena, S. Oxidative stress and immune response in melanoma: Ion channels as targets of therapy. Int. J. Mol. Sci., 2023, 24(1), 887.
[http://dx.doi.org/10.3390/ijms24010887] [PMID: 36614330]
[93]
Dadi, P.K.; Vierra, N.C.; Jacobson, D.A. Pancreatic β-cell-specific ablation of TASK-1 channels augments glucose-stimulated calcium entry and insulin secretion, improving glucose tolerance. Endocrinology, 2014, 155(10), 3757-3768.
[http://dx.doi.org/10.1210/en.2013-2051] [PMID: 24932805]
[94]
Düfer, M.; Neye, Y.; Hörth, K.; Krippeit-Drews, P.; Hennige, A.; Widmer, H.; McClafferty, H.; Shipston, M.J.; Häring, H.U.; Ruth, P.; Drews, G. BK channels affect glucose homeostasis and cell viability of murine pancreatic beta cells. Diabetologia, 2011, 54(2), 423-432.
[http://dx.doi.org/10.1007/s00125-010-1936-0] [PMID: 20981405]
[95]
Dumortier, O.; Blondeau, B.; Duvillié, B.; Reusens, B.; Bréant, B.; Remacle, C. Different mechanisms operating during different critical time-windows reduce rat fetal beta cell mass due to a maternal low-protein or low-energy diet. Diabetologia, 2007, 50(12), 2495-2503.
[http://dx.doi.org/10.1007/s00125-007-0811-0] [PMID: 17882398]
[96]
Liboz, A.; Beaupere, C.; Roblot, N.; Tinevez, J-Y.; Guilmeau, S.; Burnol, A-F.; Gueddouri, D.; Prieur, X.; Feve, B.; Guillemain, G. Insulin resistance-driven beta-cell adaptation in mice: Mechanistic characterization and 3D analysis. bioRxiv, 2023, 2023.01.
[http://dx.doi.org/10.1101/2023.01.09.523222]
[97]
Halliez, C.; Ibrahim, H.; Otonkoski, T.; Mallone, R. In vitro beta cell killing models using immune cells and human pluripotent stem cell-derived islets: Challenges and opportunities. Front. Endocrinol., 2023, 13, 1076683.
[http://dx.doi.org/10.3389/fendo.2022.1076683] [PMID: 36726462]
[98]
Wang, Z.; Fan, L.; Ni, Y.; Wu, D.; Ma, A.; Zhao, Y.; Li, J.; Cui, Q.; Zhou, Y.; Zhang, L.; Lou, Y.R.; Prud’homme, G.J.; Wang, Q. Combined therapy of GABA and sitagliptin prevents high-fat diet impairment of beta-cell function. Mol. Cell. Endocrinol., 2023, 559, 111755.
[http://dx.doi.org/10.1016/j.mce.2022.111755] [PMID: 36049597]
[99]
Liu, Z.; Tanabe, K.; Bernal-Mizrachi, E.; Permutt, M.A. Mice with beta cell overexpression of glycogen synthase kinase-3β have reduced beta cell mass and proliferation. Diabetologia, 2008, 51(4), 623-631.
[http://dx.doi.org/10.1007/s00125-007-0914-7] [PMID: 18219478]
[100]
Riggs, A.C.; Bernal-Mizrachi, E.; Ohsugi, M.; Wasson, J.; Fatrai, S.; Welling, C.; Murray, J.; Schmidt, R.E.; Herrera, P.L.; Permutt, M.A. Mice conditionally lacking the Wolfram gene in pancreatic islet beta cells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis. Diabetologia, 2005, 48(11), 2313-2321.
[http://dx.doi.org/10.1007/s00125-005-1947-4] [PMID: 16215705]
[101]
Ackermann, A.M.; Gannon, M. Molecular regulation of pancreatic β-cell mass development, maintenance, and expansion. J. Mol. Endocrinol., 2007, 38(2), 193-206.
[http://dx.doi.org/10.1677/JME-06-0053] [PMID: 17293440]
[102]
Butler, A.E.; Cao-Minh, L.; Galasso, R.; Rizza, R.A.; Corradin, A.; Cobelli, C.; Butler, P.C. Adaptive changes in pancreatic beta cell fractional area and beta cell turnover in human pregnancy. Diabetologia, 2010, 53(10), 2167-2176.
[http://dx.doi.org/10.1007/s00125-010-1809-6] [PMID: 20523966]
[103]
Hakonen, E.; Ustinov, J.; Eizirik, D.L.; Sariola, H.; Miettinen, P.J.; Otonkoski, T. In vivo activation of the PI3K-Akt pathway in mouse beta cells by the EGFR mutation L858R protects against diabetes. Diabetologia, 2014, 57(5), 970-979.
[http://dx.doi.org/10.1007/s00125-014-3175-2] [PMID: 24493201]
[104]
Wu, X.; Wang, L.; Schroer, S.; Choi, D.; Chen, P.; Okada, H.; Woo, M. Perinatal survivin is essential for the establishment of pancreatic beta cell mass in mice. Diabetologia, 2009, 52(10), 2130-2141.
[http://dx.doi.org/10.1007/s00125-009-1469-6] [PMID: 19644667]
[105]
Cnop, M.; Hughes, S.J.; Igoillo-Esteve, M.; Hoppa, M.B.; Sayyed, F.; van de Laar, L.; Gunter, J.H.; de Koning, E.J.P.; Walls, G.V.; Gray, D.W.G.; Johnson, P.R.V.; Hansen, B.C.; Morris, J.F.; Pipeleers-Marichal, M.; Cnop, I.; Clark, A. The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia, 2010, 53(2), 321-330.
[http://dx.doi.org/10.1007/s00125-009-1562-x] [PMID: 19855953]
[106]
Haase, T.N.; Rasmussen, M.; Jaksch, C.A.M.; Gaarn, L.W.; Petersen, C.K.; Billestrup, N.; Nielsen, J.H. Growth arrest specific protein (GAS) 6: A role in the regulation of proliferation and functional capacity of the perinatal rat beta cell. Diabetologia, 2013, 56(4), 763-773.
[http://dx.doi.org/10.1007/s00125-012-2821-9] [PMID: 23334461]
[107]
Genevay, M.; Pontes, H.; Meda, P. Beta cell adaptation in pregnancy: A major difference between humans and rodents? Diabetologia, 2010, 53(10), 2089-2092.
[http://dx.doi.org/10.1007/s00125-010-1848-z] [PMID: 20623217]
[108]
Trigo, D.; Nadais, A.; Carvalho, A.; Morgado, B.; Santos, F.; Nóbrega-Pereira, S. da Cruz e Silva, O.A.B. Mitochondria dysfunction and impaired response to oxidative stress promotes proteostasis disruption in aged human cells. Mitochondrion, 2023, 69, 1-9.
[http://dx.doi.org/10.1016/j.mito.2022.10.002] [PMID: 36273801]
[109]
Subasinghe, W.; Syed, I.; Kowluru, A. Phagocyte-like NADPH oxidase promotes cytokine-induced mitochondrial dysfunction in pancreatic β-cells: Evidence for regulation by Rac1. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, 300(1), R12-R20.
[http://dx.doi.org/10.1152/ajpregu.00421.2010] [PMID: 20943855]
[110]
Zhao, Y.F.; Wang, L.; Lee, S.; Sun, Q.; Tuo, Y.; Wang, Y.; Pei, J.; Chen, C. Cholesterol induces mitochondrial dysfunction and apoptosis in mouse pancreatic beta-cell line MIN6 cells. Endocrine, 2010, 37(1), 76-82.
[http://dx.doi.org/10.1007/s12020-009-9275-y] [PMID: 19876772]
[111]
Rahman, S.M.N.; Giacca, A. β-Cell stress pathways in diabetes: Potential targets for therapy? Endocrinology, 2022, 164(2), bqac211.
[http://dx.doi.org/10.1210/endocr/bqac211] [PMID: 36534981]
[112]
Glauser, D.A.; Schlegel, W. The emerging role of FOXO transcription factors in pancreatic β cells. J. Endocrinol., 2007, 193(2), 195-207.
[http://dx.doi.org/10.1677/JOE-06-0191] [PMID: 17470511]
[113]
Rieck, S.; Kaestner, K.H. Expansion of β-cell mass in response to pregnancy. Trends Endocrinol. Metab., 2010, 21(3), 151-158.
[http://dx.doi.org/10.1016/j.tem.2009.11.001] [PMID: 20015659]
[114]
Lin, Y.; Wei, J.; Li, Y.; Chen, J.; Zhou, Z.; Song, L.; Wei, Z.; Lv, Z.; Chen, X.; Xia, W.; Xu, S. Developmental exposure to di(2-ethylhexyl) phthalate impairs endocrine pancreas and leads to long-term adverse effects on glucose homeostasis in the rat. Am. J. Physiol. Endocrinol. Metab., 2011, 301(3), E527-E538.
[http://dx.doi.org/10.1152/ajpendo.00233.2011] [PMID: 21673306]
[115]
Gilbert, E.R.; Liu, D. Epigenetics: The missing link to understanding β-cell dysfunction in the pathogenesis of type 2 diabetes. Epigenetics, 2012, 7(8), 841-852.
[http://dx.doi.org/10.4161/epi.21238] [PMID: 22810088]
[116]
Cooksey, R.C.; Jouihan, H.A.; Ajioka, R.S.; Hazel, M.W.; Jones, D.L.; Kushner, J.P.; McClain, D.A. Oxidative stress, β-cell apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology, 2004, 145(11), 5305-5312.
[http://dx.doi.org/10.1210/en.2004-0392] [PMID: 15308612]
[117]
Pataky, M.W.; Young, W.F.; Nair, K.S. Hormonal and metabolic changes of aging and the influence of lifestyle modifications. Mayo Clin. Proc., 2021, 96(3), 788-814.