Superhydrophobic Graphene-based Materials

Page: [349 - 368] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

International attention has been directed toward superhydrophobic nanocomposite coatings for a great variety of industrial applications. Nowadays, graphene-based self-cleaning coatings represent the most important examination arenas. This study reviews the superhydrophobicity fundamentals, graphene-based nanocomposite fabrication and applications for self-cleaning surfaces. These efforts have stimulated the modeling of recently structured surfaces via a micro-nano binary system. The controlled preparation of nanoscale orientation, configuration, arrangement, and direction along the architectural composite building blocks would result in air-entrapping capacity along the surface grooves. Polymer/graphene nanocomposites with novel and intriguing designs have offered efficient self-cleaning surfaces. These nano-surfaces have a rough structure, low surface free energy, and are hydrophobic materials. To improve the self-cleaning ability, several graphene/ inorganic nanofiller hybrids are dispersed in polymeric resins. The review covered the creation of graphene compounds, interactions with polymers, and uses of the resulting nanocomposites. It highlights the efficacy of controlling the nanostructured design mechanisms for self-cleaning applications. The applications of superhydrophobic materials developed using graphene-related nanocomposites for self-cleaning marine antifouling surfaces are the focus of this study. Stability, as well as long-standing durability, represents vital advantages for developing eco-friendly superhydrophobic alternatives. This review concludes with a discussion of the field's current and future advancements. It is expected to serve as a cutting-edge research hub for the creation of a durable and sustainable self-cleaning coating.

Graphical Abstract

[1]
Tsang, C.H.A.; Kwok, H.Y.H.; Cheng, Z.; Leung, D.Y.C. The applications of graphene-based materials in pollutant control and disinfec-tion. Prog. Solid State Chem., 2017, 45-46, 1-8.
[http://dx.doi.org/10.1016/j.progsolidstchem.2017.02.001]
[2]
Elbourne, A.; Crawford, R.J.; Ivanova, E.P. Nano-structured antimicrobial surfaces: From nature to synthetic analogues. J. Colloid Interface Sci., 2017, 508, 603-616.
[http://dx.doi.org/10.1016/j.jcis.2017.07.021] [PMID: 28728752]
[3]
Mohamed, A.M.A.; Abdullah, A.M.; Younan, N.A. Corrosion behavior of superhydrophobic surfaces: A review. Arab. J. Chem., 2015, 8(6), 749-765.
[http://dx.doi.org/10.1016/j.arabjc.2014.03.006]
[4]
Ma, M.; Hill, R.M. Superhydrophobic surfaces. Curr. Opin. Colloid Interface Sci., 2006, 11(4), 193-202.
[http://dx.doi.org/10.1016/j.cocis.2006.06.002]
[5]
Martines, E.; Seunarine, K.; Morgan, H.; Gadegaard, N.; Wilkinson, C.D.W.; Riehle, M.O. Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett., 2005, 5(10), 2097-2103.
[http://dx.doi.org/10.1021/nl051435t] [PMID: 16218745]
[6]
Onda, T.; Shibuichi, S.; Satoh, N.; Tsujii, K. Super-water-repellent fractal surfaces. Langmuir, 1996, 12(9), 2125-2127.
[http://dx.doi.org/10.1021/la950418o]
[7]
Selim, M.S.; Shenashen, M.A.; Elmarakbi, A. EL-Saeed, A.M.; Selim, M.M.; El-Safty, S.A. Sunflower oil-based hyperbranched al-kyd/spherical ZnO nanocomposite modeling for mechanical and anticorrosive applications. RSC Adv., 2017, 7(35), 21796-21808.
[http://dx.doi.org/10.1039/C7RA01343D]
[8]
Selim, M.S.; Shenashen, M.A.; El-Safty, S.A.; Higazy, S.A.; Selim, M.M.; Isago, H.; Elmarakbi, A.; Elmarakbi, A. Recent progress in ma-rine foul-release polymeric nanocomposite coatings. Prog. Mater. Sci., 2017, 87, 1-32.
[http://dx.doi.org/10.1016/j.pmatsci.2017.02.001]
[9]
Dong, C.; Gu, Y.; Zhong, M.; Li, L.; Sezer, K.; Ma, M.; Liu, W. Fabrication of superhydrophobic Cu surfaces with tunable regular micro and random nano-scale structures by hybrid laser texture and chemical etching. J. Mater. Process. Technol., 2011, 211(7), 1234-1240.
[http://dx.doi.org/10.1016/j.jmatprotec.2011.02.007]
[10]
Woodward, J.T.; Gwin, H.; Schwartz, D.K. Contact angles on surfaces with mesoscopic chemical heterogeneity. Langmuir, 2000, 16(6), 2957-2961.
[http://dx.doi.org/10.1021/la991068z]
[11]
Ma, M.; Mao, Y.; Gupta, M.; Gleason, K.K.; Rutledge, G.C. Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules, 2005, 38(23), 9742-9748.
[http://dx.doi.org/10.1021/ma0511189]
[12]
(a) Samak, N.A.; Selim, M.S.; Hao, Z.; Xing, J. Controlled-synthesis of alumina-graphene oxide nanocomposite coupled with DNA/sulfide fluorophore for eco-friendly “Turn off/on” H2S nanobiosensor. Talanta, 2020, 211, 120655.
[http://dx.doi.org/10.1016/j.talanta.2019.120655] [PMID: 32070568];
(b) Selim, M.S.; Fatthallah, N.A.; Higazy, S.A.; Hao, Z.; Jing, Mo P. A comparative study between two novel silicone/graphene-based nanostructured surfaces for maritime antifouling. J. Colloid Interface Sci., 2022, 606(Pt 1), 367-383.
[http://dx.doi.org/10.1016/j.jcis.2021.08.026] [PMID: 34392032]
[13]
a) Selim, M.S.; El-Safty, S.A.; Abbas, M.A.; Shenashen, M.A. Facile design of graphene oxide-ZnO nanorod-based ternary nanocompo-site as a superhydrophobic and corrosion-barrier coating. Colloids Surf. A Physicochem. Eng. Asp., 2021, 611, 125793.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125793];
b) Selim, M.S.; El-Safty, S.A.; Shenashen, M.A.; El-Sockary, M.A.; Elenien, O.M.A. EL-Saeed, A.M. Robust alkyd/exfoliated graphene oxide nanocomposite as a surface coating. Prog. Org. Coat., 2019, 126, 106-118.
[http://dx.doi.org/10.1016/j.porgcoat.2018.09.032]
[14]
Mittal, G.; Dhand, V.; Rhee, K.Y.; Park, S.J.; Lee, W.R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nano-composites. J. Ind. Eng. Chem., 2015, 21, 11-25.
[http://dx.doi.org/10.1016/j.jiec.2014.03.022]
[15]
Nurazzi, N.M.; Sabaruddin, F.A.; Harussani, M.M.; Kamarudin, S.H.; Rayung, M.; Asyraf, M.R.M.; Aisyah, H.A.; Norrrahim, M.N.F.; Ilyas, R.A.; Abdullah, N.; Zainudin, E.S.; Sapuan, S.M.; Khalina, A. Mechanical performance and applications of CNTs reinforced poly-mer composites-A review. Nanomaterials, 2021, 11(9), 2186.
[http://dx.doi.org/10.3390/nano11092186] [PMID: 34578502]
[16]
Samsonidze, G.G.; Saito, A.R.; Jorio, D.A.; Pimenta, E.M.A.; Souza Filho, E.A.G.; Grüneis, F.A.; Dresselhaus, D.G.; Dresselhausa, M.S. The concept of cutting lines in carbon nanotube science. J. Nanosci. Nanotechnol., 2003, 3(6), 431-458.
[http://dx.doi.org/10.1166/jnn.2003.231] [PMID: 15002123]
[17]
Sun, B.; Wang, W.; Sain, M. Carbonaceous nanocomposites for biomedical applications as high-drug loading nanocarriers for sustained delivery: A Review. J. Compos. Sci., 2022, 6(12), 379.
[http://dx.doi.org/10.3390/jcs6120379]
[18]
Banerjee, S.; Shim, J.; Rivera, J.; Jin, X.; Estrada, D.; Solovyeva, V.; You, X.; Pak, J.; Pop, E.; Aluru, N.; Bashir, R. Electrochemistry at the edge of a single graphene layer in a nanopore. ACS Nano, 2013, 7(1), 834-843.
[http://dx.doi.org/10.1021/nn305400n] [PMID: 23249127]
[19]
Singh, E.; Chen, Z.; Houshmand, F.; Ren, W.; Peles, Y.; Cheng, H.M.; Koratkar, N. Superhydrophobic graphene foams. Small, 2013, 9(1), 75-80.
[http://dx.doi.org/10.1002/smll.201201176] [PMID: 22911509]
[20]
Zha, D.; Mei, S.; Wang, Z.; Li, H.; Shi, Z.; Jin, Z. Superhydrophobic polyvinylidene fluoride/graphene porous materials. Carbon, 2011, 49(15), 5166-5172.
[http://dx.doi.org/10.1016/j.carbon.2011.07.032]
[21]
Ensikat, H.J.; Ditsche-Kuru, P.; Neinhuis, C.; Barthlott, W. Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein J. Nanotechnol., 2011, 2, 152-161.
[http://dx.doi.org/10.3762/bjnano.2.19] [PMID: 21977427]
[22]
Selim, M.S.; El-Safty, S.A.; Shenashen, M.A.; Higazy, S.A.; Elmarakbi, A. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(17), 3701-3732.
[http://dx.doi.org/10.1039/C9TB02119A] [PMID: 32141469]
[23]
Wang, G.; Guo, Z.; Liu, W. Interfacial effects of superhydrophobic plant surfaces: A review. J. Bionics Eng., 2014, 11(3), 325-345.
[http://dx.doi.org/10.1016/S1672-6529(14)60047-0]
[24]
a) Neinhuis, C.; Barthlott, W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot., 1997, 79(6), 667-677.
[http://dx.doi.org/10.1006/anbo.1997.0400];
b) Otten, A.; Herminghaus, S. How plants keep dry: A physicist’s point of view. Langmuir, 2004, 20(6), 2405-2408.
[http://dx.doi.org/10.1021/la034961d] [PMID: 15835702]
[25]
a) Gao, X.; Jiang, L. Water-repellent legs of water striders. Nature, 2004, 432(7013), 36.
[http://dx.doi.org/10.1038/432036a] [PMID: 15525973];
b) Bechert, D.W.; Bruse, M.; Hage, W. Experiments with three-dimensional riblets as an idealized model of shark skin. Exp. Fluids, 2000, 28(5), 403-412.
[http://dx.doi.org/10.1007/s003480050400]
[26]
Ma, J.W. Impact of surface topography on colloidal and bacterial adhesion. Master of Science Rice University, 2011 Thesis.
[27]
Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L.; Jiang, L. Petal effect: A superhydrophobic state with high adhesive force. Langmuir, 2008, 24(8), 4114-4119.
[http://dx.doi.org/10.1021/la703821h] [PMID: 18312016]
[28]
Bhushan, B.; Jung, Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduc-tion. Prog. Mater. Sci., 2011, 56(1), 1-108.
[http://dx.doi.org/10.1016/j.pmatsci.2010.04.003]
[29]
Nosonovsky, M.; Bhushan, B. Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering. Curr. Opin. Colloid Interface Sci., 2009, 14(4), 270-280.
[http://dx.doi.org/10.1016/j.cocis.2009.05.004]
[30]
Patankar, N.A. Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir, 2004, 20(19), 8209-8213.
[http://dx.doi.org/10.1021/la048629t] [PMID: 15350093]
[31]
Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem., 1936, 28(8), 988-994.
[http://dx.doi.org/10.1021/ie50320a024]
[32]
Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc., 1944, 40, 546-551.
[http://dx.doi.org/10.1039/tf9444000546]
[33]
Wenzel, R.N. Surface roughness and contact angle. J. Phys. Colloid Chem., 1949, 53(9), 1466-1467.
[http://dx.doi.org/10.1021/j150474a015]
[34]
Jung, Y.C.; Bhushan, B. Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity. Nanotechnology, 2006, 17(19), 4970-4980.
[http://dx.doi.org/10.1088/0957-4484/17/19/033]
[35]
Nosonovsky, M.; Bhushan, B. Lotus versus rose: Biomimetic surface effects. In: Green Tribology, Biomimetics, Energy Conservation and Sustainability; Nosonovsky, M.; Bhushan, B., Eds.; Springer: Berlin, Heidelberg, 2012; pp. 25-40.
[http://dx.doi.org/10.1007/978-3-642-23681-5_2]
[36]
Thompson, T.E.; Falardeau, E.R.; Hanlon, L.R. The electrical conductivity and optical reflectance of graphite-SbF5 compounds. Carbon, 1977, 15(1), 39-43.
[http://dx.doi.org/10.1016/0008-6223(77)90072-0]
[37]
El-Maghrabi, H.H.; Nada, E.A.; Soliman, F.S.; Moustafa, Y.M.; Amin, A.E.S. One pot environmental friendly nanocomposite synthesis of novel TiO2-nanotubes on graphene sheets as effective photocatalyst. Egypt. J. Pet., 2016, 25(4), 575-584.
[http://dx.doi.org/10.1016/j.ejpe.2015.12.004]
[38]
Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A.N.; Conrad, E.H.; First, P.N.; de Heer, W.A. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312(5777), 1191-1196.
[http://dx.doi.org/10.1126/science.1125925] [PMID: 16614173]
[39]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669.
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
[40]
Ni, Z.H.; Wang, H.M.; Kasim, J.; Fan, H.M.; Yu, T.; Wu, Y.H.; Feng, Y.P.; Shen, Z.X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett., 2007, 7(9), 2758-2763.
[http://dx.doi.org/10.1021/nl071254m] [PMID: 17655269]
[41]
Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.H.; Kim, P.; Choi, J.Y.; Hong, B.H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230), 706-710.
[http://dx.doi.org/10.1038/nature07719] [PMID: 19145232]
[42]
Chen, H.; Müller, M.B.; Gilmore, K.J.; Wallace, G.G.; Li, D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater., 2008, 20(18), 3557-3561.
[http://dx.doi.org/10.1002/adma.200800757]
[43]
Novoselov, K.S.; McCann, E.; Morozov, S.V.; Fal’ko, V.I.; Katsnelson, M.I.; Zeitler, U.; Jiang, D.; Schedin, F.; Geim, A.K. Unconven-tional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys., 2006, 2(3), 177-180.
[http://dx.doi.org/10.1038/nphys245]
[44]
Hass, J.; Varchon, F.; Millán-Otoya, J.E.; Sprinkle, M.; Sharma, N.; de Heer, W.A.; Berger, C.; First, P.N.; Magaud, L.; Conrad, E.H. Why multilayer graphene on 4H-SiC(0001) behaves like a single sheet of graphene. Phys. Rev. Lett., 2008, 100(12), 125504.
[http://dx.doi.org/10.1103/PhysRevLett.100.125504] [PMID: 18517883]
[45]
(a) Mohammed, S.S.; Hao, Z.; Mo, P.; Jiang, Y.; Tan, G. Superhydrophobic self-cleaning surfaces in nature. Nanoarchitectonics., 2020, 1(1), 26-37.
[http://dx.doi.org/10.37256/nat.112020121.26-37];
(b) Selim, M.S.; Yang, H.; El-Safty, S.A.; Fatthallah, N.A.; Shenashen, M.A.; Wang, F.Q.; Huang, Y. Superhydrophobic coating of silicone/β–MnO2 nanorod composite for marine antifouling. Colloids Surf. A Physicochem. Eng. Asp., 2019, 570, 518-530.
[http://dx.doi.org/10.1016/j.colsurfa.2019.03.026];
c) Selim, M.S.; Yang, H.; Wang, F.Q.; Fatthallah, N.A.; Li, X.; Li, Y.; Huang, Y. Superhydrophobic silicone/SiC nanowire composite as a fouling release coating material. J. Coat. Technol. Res., 2019, 16(4), 1165-1180.
[http://dx.doi.org/10.1007/s11998-019-00192-8]
[46]
Jang, B.Z.; Zhamu, A. Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J. Mater. Sci., 2008, 43(15), 5092-5101.
[http://dx.doi.org/10.1007/s10853-008-2755-2]
[47]
Mack, J.J.; Viculis, L.M.; Ali, A.; Luoh, R.; Yang, G.; Hahn, H.T.; Ko, F.K.; Kaner, R.B. Graphite nanoplatelet reinforcement of electro-spun polyacrylonitrile nanofibers. Adv. Mater., 2005, 17(1), 77-80.
[http://dx.doi.org/10.1002/adma.200400133]
[48]
Hansma, P.K.; Turner, P.J.; Ruoff, R.S. Optimized adhesives for strong, lightweight, damage-resistant, nanocomposite materials: new in-sights from natural materials. Nanotechnology, 2007, 18(4), 044026.
[http://dx.doi.org/10.1088/0957-4484/18/4/044026]
[49]
Ramanathan, T.; Abdala, A.A.; Stankovich, S.; Dikin, D.A.; Herrera-Alonso, M.; Piner, R.D.; Adamson, D.H.; Schniepp, H.C.; Chen, X.; Ruoff, R.S.; Nguyen, S.T.; Aksay, I.A. Prud’Homme, R.K.; Brinson, L.C. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol., 2008, 3(6), 327-331.
[http://dx.doi.org/10.1038/nnano.2008.96] [PMID: 18654541]
[50]
Das, B.; Eswar, P.K.; Ramamurty, U.; Rao, C.N.R. Nano-indentation studies on polymer matrix composites reinforced by few-layer gra-phene. Nanotechnology, 2009, 20(12), 125705.
[http://dx.doi.org/10.1088/0957-4484/20/12/125705] [PMID: 19420482]
[51]
Yu, A.; Ramesh, P.; Itkis, M.E.; Bekyarova, E.; Haddon, R.C. Graphite nanoplatelet-epoxy composite thermal interface materials. J. Phys. Chem. C, 2007, 111(21), 7565-7569.
[http://dx.doi.org/10.1021/jp071761s]
[52]
Zhang, X.; Huang, Y.; Wang, Y.; Ma, Y.; Liu, Z.; Chen, Y. Synthesis and characterization of a graphene–C60 hybrid material. Carbon, 2009, 47(1), 334-337.
[http://dx.doi.org/10.1016/j.carbon.2008.10.018]
[53]
Guo, J.; Ren, L.; Wang, R.; Zhang, C.; Yang, Y.; Liu, T. Water dispersible graphene noncovalently functionalized with tryptophan and its poly(vinyl alcohol) nanocomposite. Compos., Part B Eng., 2011, 42(8), 2130-2135.
[http://dx.doi.org/10.1016/j.compositesb.2011.05.008]
[54]
Jeon, G.W.; An, J.E.; Jeong, Y.G. High performance cellulose acetate propionate composites reinforced with exfoliated graphene. Compos., Part B Eng., 2012, 43(8), 3412-3418.
[http://dx.doi.org/10.1016/j.compositesb.2012.01.023]
[55]
Tan, L.; Xu, J.; Zhang, X.; Hang, Z.; Jia, Y.; Wang, S. Synthesis of g-C3N4/CeO2 nanocomposites with improved catalytic activity on the thermal decomposition of ammonium perchlorate. Appl. Surf. Sci., 2015, 356, 447-453.
[http://dx.doi.org/10.1016/j.apsusc.2015.08.078]
[56]
Li, H.J.; Sun, B.W.; Sui, L.; Qian, D.J.; Chen, M. Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation. Phys. Chem. Chem. Phys., 2015, 17(5), 3309-3315.
[http://dx.doi.org/10.1039/C4CP05020G] [PMID: 25523639]
[57]
Shi, Y.; Wang, B.; Duan, L.; Zhu, Y.; Gui, Z.; Yuen, R.K.K.; Hu, Y. Processable dispersions of graphitic carbon nitride based nanohybrids and application in polymer nanocomposites. Ind. Eng. Chem. Res., 2016, 55(28), 7646-7654.
[http://dx.doi.org/10.1021/acs.iecr.6b01237]
[58]
Yu, Q.B.; Fang, S.H.; Wang, X.Z. The g-C3N4 nanosheets separated by PS for photocatalytic degradation of dye. J. Nano Res., 2017, 49, 215-224.
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.49.215]
[59]
Gusynin, V.P.; Sharapov, S.G.; Carbotte, J.P. Unusual microwave response of dirac quasiparticles in graphene. Phys. Rev. Lett., 2006, 96(25), 256802.
[http://dx.doi.org/10.1103/PhysRevLett.96.256802] [PMID: 16907333]
[60]
Lin, Z.; Liu, Y.; Wong, C. Facile fabrication of superhydrophobic octadecylamine-functionalized graphite oxide film. Langmuir, 2010, 26(20), 16110-16114.
[http://dx.doi.org/10.1021/la102619n] [PMID: 20857962]
[61]
Xue, Y.; Liu, Y.; Lu, F.; Qu, J.; Chen, H.; Dai, L. Functionalization of graphene oxide with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications. J. Phys. Chem. Lett., 2012, 3(12), 1607-1612.
[http://dx.doi.org/10.1021/jz3005877] [PMID: 26285716]
[62]
Chen, Z.; Dong, L.; Yang, D.; Lu, H. Superhydrophobic graphene-based materials: Surface construction and functional applications. Adv. Mater., 2013, 25(37), 5352-5359.
[http://dx.doi.org/10.1002/adma.201302804] [PMID: 24089354]
[63]
Leenaerts, O.; Partoens, B.; Peeters, F.M. Water on graphene: Hydrophobicity and dipole moment using density functional theory. Phys. Rev. B Condens. Matter Mater. Phys., 2009, 79(23), 235440.
[http://dx.doi.org/10.1103/PhysRevB.79.235440]
[64]
Li, H.; Zeng, X.C. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets. ACS Nano, 2012, 6(3), 2401-2409.
[http://dx.doi.org/10.1021/nn204661d] [PMID: 22356158]
[65]
Dong, X.; Chen, J.; Ma, Y.; Wang, J.; Chan-Park, M.B.; Liu, X.; Wang, L.; Huang, W.; Chen, P. Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chem. Commun., 2012, 48(86), 10660-10662.
[http://dx.doi.org/10.1039/c2cc35844a] [PMID: 23001335]
[66]
Shin, Y.J.; Wang, Y.; Huang, H.; Kalon, G.; Wee, A.T.S.; Shen, Z.; Bhatia, C.S.; Yang, H. Surface-energy engineering of graphene. Langmuir, 2010, 26(6), 3798-3802.
[http://dx.doi.org/10.1021/la100231u] [PMID: 20158275]
[67]
Jayadev, D.; Jayan, J.S.; Pillai, Z.S.; Joseph, K.; Saritha, A. Characterization of superhydrophobic polymer coating.Superhydrophobic Polymer Coatings; Elsevier, 2019, pp. 91-121.
[http://dx.doi.org/10.1016/B978-0-12-816671-0.00006-0]
[68]
Ashok Kumar, S.S.; Bashir, S.; Ramesh, K.; Ramesh, S. A comprehensive review: Super hydrophobic graphene nanocomposite coatings for underwater and wet applications to enhance corrosion resistance. FlatChem, 2022, 31, 100326.
[http://dx.doi.org/10.1016/j.flatc.2021.100326]
[69]
Jena, G.; Philip, J. A review on recent advances in graphene oxide-based composite coatings for anticorrosion applications. Prog. Org. Coat., 2022, 173, 107208.
[http://dx.doi.org/10.1016/j.porgcoat.2022.107208]
[70]
Goharshenas, M. S.; Parsimehr, H.; Ehsani, A. Multifunctional superhydrophobic surfaces. Adv. Colloid Interface Sci., 2021, 290, 102397.
[http://dx.doi.org/10.1016/j.cis.2021.102397]
[71]
Fang, M.; Wang, K.; Lu, H.; Yang, Y.; Nutt, S. Single-layer graphene nanosheets with controlled grafting of polymer chains. J. Mater. Chem., 2010, 20(10), 1982.
[http://dx.doi.org/10.1039/b919078c]
[72]
Zhang, L.; Zha, D.; Du, T.; Mei, S.; Shi, Z.; Jin, Z. Formation of superhydrophobic microspheres of poly(vinylidene fluoride- hexafluoro-propylene)/graphene composite via gelation. Langmuir, 2011, 27(14), 8943-8949.
[http://dx.doi.org/10.1021/la200982n] [PMID: 21657267]
[73]
Fang, M.; Tang, Z.; Lu, H.; Nutt, S. Multifunctional superhydrophobic composite films from a synergistic self-organization process. J. Mater. Chem., 2012, 22(1), 109-114.
[http://dx.doi.org/10.1039/C1JM13213J]
[74]
Wang, Y.; Yu, Y.; Hu, X.; Feng, A.; Jiang, F.; Song, L. p -Phenylenediamine strengthened graphene oxide for the fabrication of superhy-drophobic surface. Mater. Des., 2017, 127, 22-29.
[http://dx.doi.org/10.1016/j.matdes.2017.04.033]
[75]
Shanmugharaj, A.M.; Yoon, J.H.; Yang, W.J.; Ryu, S.H. Synthesis, characterization, and surface wettability properties of amine functional-ized graphene oxide films with varying amine chain lengths. J. Colloid Interface Sci., 2013, 401, 148-154.
[http://dx.doi.org/10.1016/j.jcis.2013.02.054] [PMID: 23622684]
[76]
Moradi, R.; Karimi-Sabet, J.; Shariaty-Niassar, M.; Koochaki, M. Preparation and characterization of polyvinylidene fluoride/graphene super hydrophobic fibrous films. Polymers., 2015, 7(8), 1444-1463.
[http://dx.doi.org/10.3390/polym7081444]
[77]
Choi, B.G.; Park, H.S. Superhydrophobic graphene/nafion nanohybrid films with hierarchical roughness. J. Phys. Chem. C, 2012, 116(5), 3207-3211.
[http://dx.doi.org/10.1021/jp207818b]
[78]
Feng, L.; Zhang, Z.; Mai, Z.; Ma, Y.; Liu, B.; Jiang, L.; Zhu, D. A super-hydrophobic and super-oleophilic coating mesh film for the sepa-ration of oil and water. Angew. Chem. Int. Ed., 2004, 43(15), 2012-2014.
[http://dx.doi.org/10.1002/anie.200353381] [PMID: 15065288]
[79]
Chen, X.; Yuan, J.; Huang, J.; Ren, K.; Liu, Y.; Lu, S.; Li, H. Large-scale fabrication of superhydrophobic polyurethane/nano-Al2O3 coat-ings by suspension flame spraying for anti-corrosion applications. Appl. Surf. Sci., 2014, 311, 864-869.
[http://dx.doi.org/10.1016/j.apsusc.2014.05.186]
[80]
Tu, C.W.; Tsai, C.H.; Wang, C.F.; Kuo, S.W.; Chang, F.C. Fabrication of superhydrophobic and superoleophilic polystyrene surfaces by a facile one-step met hod. Macromol. Rapid Commun., 2007, 28(23), 2262-2266.
[http://dx.doi.org/10.1002/marc.200700447]
[81]
Wang, D.; Liu, N.; Xu, W.; Sun, G. Layer-by-layer structured nanofiber membranes with photoinduced self-cleaning functions. J. Phys. Chem. C, 2011, 115(14), 6825-6832.
[http://dx.doi.org/10.1021/jp200425u]
[82]
Larmour, I.A.; Bell, S.E.J.; Saunders, G.C. Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposi-tion. Angew. Chem. Int. Ed., 2007, 46(10), 1710-1712.
[http://dx.doi.org/10.1002/anie.200604596] [PMID: 17226889]
[83]
Varshney, P.; Nanda, D.; Satapathy, M.; Mohapatra, S.S.; Kumar, A. A facile modification of steel mesh for oil–water separation. New J. Chem., 2017, 41(15), 7463-7471.
[http://dx.doi.org/10.1039/C7NJ01265A]
[84]
Ding, B.; Ogawa, T.; Kim, J.; Fujimoto, K.; Shiratori, S. Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by elec-trospinning. Thin Solid Films, 2008, 516(9), 2495-2501.
[http://dx.doi.org/10.1016/j.tsf.2007.04.086]
[85]
Qiang, F.; Hu, L.L.; Gong, L.X.; Zhao, L.; Li, S.N.; Tang, L.C. Facile synthesis of super-hydrophobic, electrically conductive and mechan-ically flexible functionalized graphene nanoribbon/polyurethane sponge for efficient oil/water separation at static and dynamic states. Chem. Eng. J., 2018, 334, 2154-2166.
[http://dx.doi.org/10.1016/j.cej.2017.11.054]
[86]
Shateri-Khalilabad, M.; Yazdanshenas, M.E. Preparation of superhydrophobic electroconductive graphene-coated cotton cellulose. Cellulose, 2013, 20(2), 963-972.
[http://dx.doi.org/10.1007/s10570-013-9873-y]
[87]
Mo, Z.H.; Luo, Z.; Huang, Q.; Deng, J.P.; Wu, Y.X. Superhydrophobic hybrid membranes by grafting arc-like macromolecular bridges on graphene sheets: Synthesis, characterization and properties. Appl. Surf. Sci., 2018, 440, 359-368.
[http://dx.doi.org/10.1016/j.apsusc.2017.12.268]
[88]
Ye, Y.; Zhang, D.; Liu, T.; Liu, Z.; Liu, W.; Pu, J.; Chen, H.; Zhao, H.; Li, X. Improvement of anticorrosion ability of epoxy matrix in simulate marine environment by filled with superhydrophobic POSS-GO nanosheets. J. Hazard. Mater., 2019, 364, 244-255.
[http://dx.doi.org/10.1016/j.jhazmat.2018.10.040] [PMID: 30368062]
[89]
Ye, Y.; Zhang, D.; Li, J.; Liu, T.; Pu, J.; Zhao, H.; Wang, L. One-step synthesis of superhydrophobic polyhedral oligomeric silsesquiox-ane-graphene oxide and its application in anti-corrosion and anti-wear fields. Corros. Sci., 2019, 147, 9-21.
[http://dx.doi.org/10.1016/j.corsci.2018.10.034]
[90]
Cho, E.C.; Chang-Jian, C.W.; Chen, H.C.; Chuang, K.S.; Zheng, J.H.; Hsiao, Y.S.; Lee, K.C.; Huang, J.H. Robust multifunctional superhy-drophobic coatings with enhanced water/oil separation, self-cleaning, anti-corrosion, and anti-biological adhesion. Chem. Eng. J., 2017, 314, 347-357.
[http://dx.doi.org/10.1016/j.cej.2016.11.145]
[91]
Junaidi, M.U.M.; Azaman, S.A.H.; Ahmad, N.N.R.; Leo, C.P.; Lim, G.W.; Chan, D.J.C.; Yee, H.M. Superhydrophobic coating of silica with photoluminescence properties synthesized from rice husk ash. Prog. Org. Coat., 2017, 111, 29-37.
[http://dx.doi.org/10.1016/j.porgcoat.2017.05.009]
[92]
Cong, H.P.; Ren, X.C.; Wang, P.; Yu, S.H. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano, 2012, 6(3), 2693-2703.
[http://dx.doi.org/10.1021/nn300082k] [PMID: 22303866]
[93]
Shen, B.; Chen, J.; Yan, X.; Xue, Q. Synthesis of fluorine-doped multi-layered graphene sheets by arc-discharge. RSC Advances, 2012, 2(17), 6761-6764.
[http://dx.doi.org/10.1039/c2ra20593a]
[94]
Hsieh, C.T.; Chen, W.Y. Water/oil repellency and work of adhesion of liquid droplets on graphene oxide and graphene surfaces. Surf. Coat. Tech., 2011, 205(19), 4554-4561.
[http://dx.doi.org/10.1016/j.surfcoat.2011.03.128]
[95]
Sharma, V.; Sharma, V.; Goyat, M.S.; Hooda, A.; Pandey, J.K.; Kumar, A.; Gupta, R.; Upadhyay, A.K.; Prakash, R.; Kirabira, J.B.; Man-dal, P.; Bhargav, P.K. Recent progress in nano-oxides and CNTs based corrosion resistant superhydrophobic coatings: A critical review. Prog. Org. Coat., 2020, 140, 105512.
[http://dx.doi.org/10.1016/j.porgcoat.2019.105512]
[96]
Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced am-phiphilic surfaces. Nature, 1997, 388(6641), 431-432.
[http://dx.doi.org/10.1038/41233]
[97]
Nine, M.J.; Cole, M.A.; Johnson, L.; Tran, D.N.H.; Losic, D. Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties. ACS Appl. Mater. Interfaces, 2015, 7(51), 28482-28493.
[http://dx.doi.org/10.1021/acsami.5b09611] [PMID: 26632960]
[98]
Ke, Q.; Fu, W.; Jin, H.; Zhang, L.; Tang, T.; Zhang, J. Fabrication of mechanically robust superhydrophobic surfaces based on silica micro-nanoparticles and polydimethylsiloxane. Surf. Coat. Tech., 2011, 205(21-22), 4910-4914.
[http://dx.doi.org/10.1016/j.surfcoat.2011.04.073]
[99]
Cao, D.; Zhang, Y.; Li, Y.; Shi, X.; Gong, H.; Feng, D.; Guo, X.; Shi, Z.; Zhu, S.; Cui, Z. Fabrication of superhydrophobic coating for preventing microleakage in a dental composite restoration. Mater. Sci. Eng. C, 2017, 78, 333-340.
[http://dx.doi.org/10.1016/j.msec.2017.04.054] [PMID: 28575992]
[100]
Sosa, M.D.; Canneva, A.; Kaplan, A.; D’Accorso, N.B.; Negri, R.M. From superhydrophilic to superhydrophobic polymer-nanoparticles coated meshes for water-oil separation systems with resistance to hard water. J. Petrol. Sci. Eng., 2020, 194, 107513.
[http://dx.doi.org/10.1016/j.petrol.2020.107513]
[101]
Shen, Y.; Cai, Z.; Tao, J.; Li, K.; Chen, H.; Wu, Z.; Jia, Z.; Li, H. Multi-type nanoparticles in superhydrophobic PU-based coatings towards self-cleaning, self-healing and mechanochemical durability. Prog. Org. Coat., 2021, 159, 106451.
[http://dx.doi.org/10.1016/j.porgcoat.2021.106451]
[102]
Radwan, A.B.; Mohamed, A.M.A.; Abdullah, A.M.; Al-Maadeed, M.A. Corrosion protection of electrospun PVDF–ZnO superhydropho-bic coating. Surf. Coat. Tech., 2016, 289, 136-143.
[http://dx.doi.org/10.1016/j.surfcoat.2015.12.087]
[103]
Kumar, S.S.A.; Bashir, S.; Ramesh, K.; Ramesh, S. New perspectives on Graphene/Graphene oxide based polymer nanocomposites for corrosion applications: The relevance of the Graphene/Polymer barrier coatings. Prog. Org. Coat., 2021, 154, 106215.
[http://dx.doi.org/10.1016/j.porgcoat.2021.106215]
[104]
Saharudin, K.A.; Karim, M.A.; Sreekantan, S. Preparation of a polydimethylsiloxane (PDMS)/graphene-based super-hydrophobic coating. Mater. Today Proc., 2019, 17, 752-760.
[http://dx.doi.org/10.1016/j.matpr.2019.06.359]
[105]
Asmatulu, R.; Ceylan, M.; Nuraje, N. Study of superhydrophobic electrospun nanocomposite fibers for energy systems. Langmuir, 2011, 27(2), 504-507.
[http://dx.doi.org/10.1021/la103661c] [PMID: 21171580]
[106]
Ramasundaram, S.; Jung, J.H.; Chung, E.; Maeng, S.K.; Lee, S.H.; Song, K.G.; Hong, S.W. Increasing hydrophobicity of poly(propylene) fibers by coating reduced graphene oxide and their application as depth filter media. Carbon, 2014, 70, 179-189.
[http://dx.doi.org/10.1016/j.carbon.2013.12.091]
[107]
Zhang, L.; Li, H.; Lai, X.; Su, X.; Liang, T.; Zeng, X. Thiolated graphene-based superhydrophobic sponges for oil-water separation. Chem. Eng. J., 2017, 316, 736-743.
[http://dx.doi.org/10.1016/j.cej.2017.02.030]
[108]
Pu, J.; Wan, S.; Lu, Z.; Zhang, G.; Wang, L.; Zhang, X.; Xue, Q. Controlled water adhesion and electrowetting of conducting hydrophobic graphene/carbon nanotubes composite films on engineering materials. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(4), 1254-1260.
[http://dx.doi.org/10.1039/C2TA00344A]
[109]
Asthana, A.; Maitra, T.; Büchel, R.; Tiwari, M.K.; Poulikakos, D. Multifunctional superhydrophobic polymer/carbon nanocomposites: graphene, carbon nanotubes, or carbon black? ACS Appl. Mater. Interfaces, 2014, 6(11), 8859-8867.
[http://dx.doi.org/10.1021/am501649w] [PMID: 24846501]
[110]
Rafiee, J.; Rafiee, M.A.; Yu, Z.Z.; Koratkar, N. Superhydrophobic to superhydrophilic wetting control in graphene films. Adv. Mater., 2010, 22(19), 2151-2154.
[http://dx.doi.org/10.1002/adma.200903696] [PMID: 20564251]
[111]
Lin, Y.; Ehlert, G.J.; Bukowsky, C.; Sodano, H.A. Superhydrophobic functionalized graphene aerogels. ACS Appl. Mater. Interfaces, 2011, 3(7), 2200-2203.
[http://dx.doi.org/10.1021/am200527j] [PMID: 21714511]
[112]
Nassar, G.; Daou, E.; Najjar, R.; Bassil, M.; Habchi, R. A review on the current research on graphene-based aerogels and their applica-tions. Carbon Trends, 2021, 4, 100065.
[113]
Li, J.; Li, J.; Meng, H.; Xie, S.; Zhang, B.; Li, L.; Ma, H.; Zhang, J.; Yu, M. Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(9), 2934.
[http://dx.doi.org/10.1039/c3ta14725h]
[114]
Zhang, X.; Zhou, J.; Zheng, Y.; Wei, H.; Su, Z. Graphene-based hybrid aerogels for energy and environmental applications. Chem. Eng. J., 2021, 420, 129700.
[http://dx.doi.org/10.1016/j.cej.2021.129700]
[115]
Jung-Soo, L.A.; Jong-Chul, Y.; Ji-Hyun, J. A route towards super hydrophobic graphene surfaces: Surface-treated reduced graphene oxide spheres. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(25), 7312-7315.
[http://dx.doi.org/10.1039/c3ta11434a]
[116]
Zhang, Y.; Guo, L.; Wei, S.; He, Y.; Xia, H.; Chen, Q.; Sun, H.B.; Xiao, F.S. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today, 2010, 5(1), 15-20.
[http://dx.doi.org/10.1016/j.nantod.2009.12.009]
[117]
Guo, L.; Zhang, Y.L.; Han, D.D.; Jiang, H.B.; Wang, D.; Li, X.B.; Xia, H.; Feng, J.; Chen, Q.D.; Sun, H.B. Laser-mediated programmable N doping and simultaneous reduction of graphene oxides. Adv. Opt. Mater., 2014, 2(2), 120-125.
[http://dx.doi.org/10.1002/adom.201300401]
[118]
Jiang, H.B.; Zhang, Y.L.; Han, D.D.; Xia, H.; Feng, J.; Chen, Q.D.; Hong, Z.R.; Sun, H.B. Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference. Adv. Funct. Mater., 2014, 24(29), 4595-4602.
[http://dx.doi.org/10.1002/adfm.201400296]
[119]
Wang, J.N.; Zhang, Y.L.; Liu, Y.; Zheng, W.; Lee, L.P.; Sun, H.B. Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications. Nanoscale, 2015, 7(16), 7101-7114.
[http://dx.doi.org/10.1039/C5NR00719D] [PMID: 25829140]
[120]
Jishnu, A.; Jayan, J.S.; Saritha, A.; Sethulekshmi, A.S.; Venu, G. Superhydrophobic graphene-based materials with self-cleaning and anti-corrosion performance: An appraisal of neoteric advancement and future perspectives, Colloid. Surf. A, 2020, 606, 125395.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125395]
[121]
Yuan, Y.; Wang, Y.; Liu, S.; Zhang, X.; Liu, X.; Sun, C.; Yuan, D.; Zhang, Y.; Cao, X. Direct chemical vapor deposition synthesis of gra-phene super-hydrophobic transparent glass. Vacuum, 2022, 202, 111136.
[http://dx.doi.org/10.1016/j.vacuum.2022.111136]
[122]
Kavitha, A.S.; Deeksha, P.; Deepika, G.; Nishanthini, J.; Hikku, G.S.; Antinate, S.S.; Jeyasubramanian, K.; Murugesan, R. Super-hydrophobicity: Mechanism, fabrication and its application in medical implants to prevent biomaterial associated infections. J. Ind. Eng. Chem., 2020, 92, 1-17.
[http://dx.doi.org/10.1016/j.jiec.2020.08.008]
[123]
Zang, J.; Ryu, S.; Pugno, N.; Wang, Q.; Tu, Q.; Buehler, M.J.; Zhao, X. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater., 2013, 12(4), 321-325.
[http://dx.doi.org/10.1038/nmat3542] [PMID: 23334002]
[124]
Ariga, K.; Yamauchi, Y.; Rydzek, G.; Ji, Q.; Yonamine, Y.; Wu, K.C.W.; Hill, J.P. Layer-by-layer nanoarchitectonics: Invention, innova-tion, and evolution. Chem. Lett., 2014, 43(1), 36-68.
[http://dx.doi.org/10.1246/cl.130987]
[125]
Zhu, M.; Zuo, W.; Yu, H.; Yang, W.; Chen, Y. Superhydrophobic surface directly created by electrospinning based on hydrophilic materi-al. J. Mater. Sci., 2006, 41(12), 3793-3797.
[http://dx.doi.org/10.1007/s10853-005-5910-z]
[126]
Zheng, J.; He, A.; Li, J.; Xu, J.; Han, C.C. Studies on the controlled morphology and wettability of polystyrene surfaces by electrospinning or electrospraying. Polymer, 2006, 47(20), 7095-7102.
[http://dx.doi.org/10.1016/j.polymer.2006.08.019]
[127]
Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Graphene/elastomer nanocomposites. Carbon, 2015, 95, 460-484.
[http://dx.doi.org/10.1016/j.carbon.2015.08.055]
[128]
Liang, J.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y.; Guo, T.; Chen, Y. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater., 2009, 19(14), 2297-2302.
[http://dx.doi.org/10.1002/adfm.200801776]
[129]
Kim, H.M.; Kim, S.G.; Lee, H.S. Dispersions of partially reduced graphene oxide in various organic solvents and polymers. Carbon Lett., 2017, 23, 55-62.
[130]
Luong, N.D.; Hippi, U.; Korhonen, J.T.; Soininen, A.J.; Ruokolainen, J.; Johansson, L.S.; Nam, J.D.; Sinh, L.H.; Seppälä, J. Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization. Polymer, 2011, 52(23), 5237-5242.
[http://dx.doi.org/10.1016/j.polymer.2011.09.033]
[131]
Zinadini, S.; Zinatizadeh, A.A.; Rahimi, M.; Vatanpour, V.; Zangeneh, H. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Membr. Sci., 2014, 453, 292-301.
[http://dx.doi.org/10.1016/j.memsci.2013.10.070]
[132]
Li, Y.; Dai, H. Recent advances in zinc–air batteries. Chem. Soc. Rev., 2014, 43(15), 5257-5275.
[http://dx.doi.org/10.1039/C4CS00015C] [PMID: 24926965]
[133]
Chen, D.; Tang, L.; Li, J. Graphene-based materials in electrochemistry. Chem. Soc. Rev., 2010, 39(8), 3157-3180.
[http://dx.doi.org/10.1039/b923596e] [PMID: 20589275]
[134]
Wang, P.; Yao, T.; Sun, B.; Fan, X.; Dong, S.; Bai, Y.; Shi, Y. A cost-effective method for preparing mechanically stable anti-corrosive superhydrophobic coating based on electrochemically exfoliated graphene. Colloids Surf. A Physicochem. Eng. Asp., 2017, 513, 396-401.
[http://dx.doi.org/10.1016/j.colsurfa.2016.11.002]
[135]
Zhang, H.; Lamb, R.; Lewis, J. Engineering nanoscale roughness on hydrophobic surface—preliminary assessment of fouling behaviour. Sci. Technol. Adv. Mater., 2005, 6(3-4), 236-239.
[http://dx.doi.org/10.1016/j.stam.2005.03.003]
[136]
Selim, M.S.; Hao, Z.; Mo, P.; Yi, J.; Ou, H. Biobased alkyd/graphene oxide decorated with β–MnO2 nanorods as a robust ternary nano-composite for surface coating. Colloids Surf. A Physicochem. Eng. Asp., 2020, 601, 125057.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125057]
[137]
a) Selim, M.S.; Yang, H.; Li, Y.; Wang, F.Q.; Li, X.; Huang, Y. Ceramic hyperbranched alkyd/γ-Al2O3 nanorods composite as a surface coating. Prog. Org. Coat., 2018, 120, 217-227.
[http://dx.doi.org/10.1016/j.porgcoat.2018.04.002];
b) Askar, A.A.; Selim, M.S.; El-Safty, S.A.; Hashem, A.I.; Selim, M.M.; Shenashen, M.A. Antimicrobial and immunomodulatory poten-tial of nanoscale hierarchical one-dimensional zinc oxide and silicon carbide materials. Mater. Chem. Phys., 2021, 263, 124376.
[http://dx.doi.org/10.1016/j.matchemphys.2021.124376];
c) Selim, M.S.; Hamouda, H.; Hao, Z.; Shabana, S.; Chen, X. Design of γ-AlOOH, γ-MnOOH, and α-Mn2O3 nanorods as advanced anti-bacterial active agents. Dalton Trans., 2020, 49(25), 8601-8613.
[http://dx.doi.org/10.1039/D0DT01689F] [PMID: 32543624];
d) Fatthallah, N.A.; Selim, M.S.; El Safty, S.A.; Selim, M.M.; Shenashen, M.A. Engineering nanoscale hierarchical morphologies and ge-ometrical shapes for microbial inactivation in aqueous solution. Mater. Sci. Eng. C, 2021, 122, 111844.
[http://dx.doi.org/10.1016/j.msec.2020.111844] [PMID: 33641886];
(e) Selim, M.S.; Elseman, A.M.; Hao, Z. ZnO nanorods: An advanced cathode buffer layer for inverted Perovskite solar cells. ACS Appl. Energy Mater., 2020, 3(12), 11781-11791.
[http://dx.doi.org/10.1021/acsaem.0c01945]
[138]
Wan, F.; Pei, X.; Yu, B.; Ye, Q.; Zhou, F.; Xue, Q. Grafting polymer brushes on biomimetic structural surfaces for anti-algae fouling and foul release. ACS Appl. Mater. Interfaces, 2012, 4(9), 4557-4565.
[http://dx.doi.org/10.1021/am300912w] [PMID: 22931043]
[139]
a) Sankar, G.G.; Sathya, S.; Murthy, P.S.; Das, A.; Pandiyan, R.; Venugopalan, V.B.; Doble, M. Polydimethyl siloxane nanocomposites: Their antifouling efficacy invitro and in marine conditions, Inter Biodetor. Biodegrad., 2015, 104, 307-314.;
b) Yilgör, E.; Yilgör, I. Silicone containing copolymers: Synthesis, properties and applications. Prog. Polym. Sci., 2014, 39(6), 1165-1195.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.11.003]
[140]
Chakradhar, R.P.S.; Kumar, V.D.; Rao, J.L.; Basu, B.J. Fabrication of superhydrophobic surfaces based on ZnO–PDMS nanocomposite coatings and study of its wetting behaviour. Appl. Surf. Sci., 2011, 257(20), 8569-8575.
[http://dx.doi.org/10.1016/j.apsusc.2011.05.016]
[141]
Chapman, J.; Regan, F. Nanofunctionalized superhydrophobic antifouling coatings for environmental sensor applications – Advancing deployment with answers from nature. Adv. Eng. Mater., 2012, 14(4), B175-B184.
[http://dx.doi.org/10.1002/adem.201180037]
[142]
a) Selim, M.S.; Elmarakbi, A.; Azzam, A.M.; Shenashen, M.A. EL-Saeed, A.M.; El-Safty, S.A. Eco-friendly design of superhydrophobic nano-magnetite/silicone composites for marine foul-release paints. Prog. Org. Coat., 2018, 116, 21-34.
[http://dx.doi.org/10.1016/j.porgcoat.2017.12.008];
b) Selim, M.S.; Yang, H.; Wang, F.Q.; Li, X.; Huang, Y.; Fatthallah, N.A. Silicone/Ag@SiO2 core–shell nanocomposite as a self-cleaning antifouling coating material. RSC Advances, 2018, 8(18), 9910-9921.
[http://dx.doi.org/10.1039/C8RA00351C] [PMID: 35540804]
[143]
Prasai, D.; Tuberquia, J.C.; Harl, R.R.; Jennings, G.K.; Bolotin, K.I.; Bolotin, K.I. Graphene: Corrosion-Inhibiting Coating. ACS Nano, 2012, 6(2), 1102-1108.
[http://dx.doi.org/10.1021/nn203507y] [PMID: 22299572]
[144]
Farhadi, S.; Farzaneh, M.; Kulinich, S.A. Anti-icing performance of superhydrophobic surfaces. Appl. Surf. Sci., 2011, 257(14), 6264-6269.
[http://dx.doi.org/10.1016/j.apsusc.2011.02.057]
[145]
Genzer, J.; Efimenko, K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling, 2006, 22(5), 339-360.
[http://dx.doi.org/10.1080/08927010600980223] [PMID: 17110357]
[146]
Zhu, X.; Zhang, Z.; Men, X.; Yang, J.; Wang, K.; Xu, X.; Zhou, X.; Xue, Q. Robust superhydrophobic surfaces with mechanical durability and easy repairability. J. Mater. Chem., 2011, 21(39), 15793-15797.
[http://dx.doi.org/10.1039/c1jm12513c]
[147]
Xue, C.H.; Jia, S.T.; Zhang, J.; Tian, L.Q.; Chen, H.Z.; Wang, M. Preparation of superhydrophobic surfaces on cotton textiles. Sci. Technol. Adv. Mater., 2008, 9(3), 035008.
[http://dx.doi.org/10.1088/1468-6996/9/3/035008] [PMID: 27878005]
[148]
Selim, M.S.; El-Safty, S.A.; El-Sockary, M.A.; Hashem, A.I.; Abo Elenien, O.M. EL-Saeed, A.M.; Fatthallah, N.A. Modeling of spherical silver nanoparticles in silicone-based nanocomposites for marine antifouling. RSC Advances, 2015, 5(78), 63175-63185.
[http://dx.doi.org/10.1039/C5RA07400B]
[149]
Selim, M.S.; El-Safty, S.A.; El-Sockary, M.A.; Hashem, A.I.; Abo Elenien, O.M. Smart photo-induced silicone/TiO2 nanocomposites with dominant exposed surfaces for self-cleaning foul-release coatings of ship hulls. Mater. Des., 2016, 101, 218-225.
[http://dx.doi.org/10.1016/j.matdes.2016.03.124]
[150]
Selim, M.S.; El-Safty, S.A.; El-Sockary, M.A.; Hashem, A.I.; Abo Elenien, O.M. EL-Saeed, A.M.; Fatthallah, N.A. Data on photo-nanofiller models for self-cleaning foul release coating of ship hulls. Data Brief, 2016, 8, 1357-1364.
[http://dx.doi.org/10.1016/j.dib.2016.08.010] [PMID: 27579341]
[151]
a) Selim, M.S.; Shenashen, M.A.; Elmarakbi, A.; Fatthallah, N.A.; Hasegawa, S. El- Safty, S.A. Synthesis of ultrahydrophobic and ther-mally stable inorganic–organic nanocomposites for self-cleaning foul release coatings. Chem. Eng. J., 2017, 320, 653-666.
[http://dx.doi.org/10.1016/j.cej.2017.03.067];
b) Selim, M.S.; El-Safty, S.A.; El-Sockary, M.A.; Hashem, A.I.; Abo Elenien, O.M. EL-Saeed, A.M.; Fatthallah, N.A. Tailored design of Cu2O nanocube/silicone composites as efficient foul-release coatings. RSC Advances, 2015, 5(26), 19933-19943.
[http://dx.doi.org/10.1039/C5RA01597A]
[152]
Selim, M.S.; El-Safty, S.A.; Fatthallah, N.A.; Shenashen, M.A. Silicone/graphene oxide sheet-alumina nanorod ternary composite for su-perhydrophobic antifouling coating. Prog. Org. Coat., 2018, 121, 160-172.
[http://dx.doi.org/10.1016/j.porgcoat.2018.04.021]